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Abstract
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market share results in socially-excessive product lines and zero net profits. With
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1 Introduction

What happens when firms compete using both product locations and prices? More con-

cretely, how does Coca-Cola compete against PepsiCo, or Wendy’s compete against Burger

King, and how successful will they be at exploiting endogenous product-specific heterogeneity

to extract profits?

To get at these questions, we develop a novel spatial structure in which consumers re-

ceive firm-specific location shocks, so that a consumer’s location relative to one firm’s product

line/franchise network is uncorrelated with his location relative to a rival’s product line. The

other features of the economy are standard. First, firms choose product locations and prices.

Then, consumers receive spatial location shocks and choose where to shop.

In our base model, the only source of consumer heterogeneity is the spatial heterogeneity

that firms endogenously introduce via their location choices. When consumers are distributed

uniformly across spatial locations, firms optimally spread their products evenly and set the

same price at each product location. Prices reflect only the average properties of the two

networks—summarized by each firm’s concentration of product locations.

With these results in hand, we characterize equilibrium product/franchise concentration

and pricing. The ex-post heterogeneity in consumer location reduces the elasticity of demand,

and hence price competition. It follows directly that firms price above marginal cost and

generate positive gross profits, i.e., profits before consideration of product creation/location

costs. What is remarkable is that these gross profits just cover the product creation costs.

That is, the competition for market share via product concentration completely exhausts the

profits generated by the ex-post heterogeneity. We prove that this qualitative finding ex-

tends when there is additional firm heterogeneity so that one firm has a “better product”, one

that, ceteris paribus, all consumers prefer, and/or has lower costs of product development:

in equilibrium, the “disadvantaged” firm earns zero net profits.

From a social welfare perspective, the competition between firms for market share results

in over-provision of products—in equilibrium, firms create more products than would a social

planner. Because higher product concentrations imply lower prices, a direct implication is

that firm profits are lower and consumer surplus is higher in the competitive equilibrium,

than they would be were the social planner to choose product locations.
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We then allow for exogenous heterogeneity in consumer preferences between firms, so

that, for example, ex-ante, some consumers prefer Coca Cola’s soda, while others prefer

PepsiCo’s. It is immediate that, in equilibrium, firms can exploit exogenous heterogeneity in

tastes to extract positive net profits. What is surprising is the extent to which competition

on endogenous spatial dimensions spills over to reduce the profits that firms derive from

exogenous taste heterogeneity. Indeed, in the neighborhood of zero taste heterogeneity, the

intensified price competition associated with endogenous spatial heterogeneity causes firms

to compete away fully three-quarters of the possible profit gain from introducing slight taste

heterogeneity. The profit loss due to competition on product location grows as taste hetero-

geneity increases up to the point where there is so much exogenous taste heterogeneity that

the price in the economy without the endogenous spatial dimension is the same as that when

the spatial dimension is present. At this point, firms extract no benefits from the products

that they establish: all product creation costs are, in essence, wasted.

We conclude by extending our model to a multi-product line setting in which each firm

is associated with two product lines (say sodas and juices). Correlation in taste across prod-

uct lines implies a consumer whose most preferred product from one firm is a soda is more

likely to most prefer a soda from a rival. While a preference for Coke could reveal a likely

preference for sodas over juices, we maintain the assumption that this preference for Coke

reveals nothing about preferences for Diet Pepsi versus Pepsi.

Correlation alone does not change our findings: with perfectly-positively correlated pref-

erences, so that a consumer either prefers sodas from both firms or prefers juices, intra-firm

competition decomposes into two competitions, one over soda and one over juice. Our earlier

analysis then implies that firms compete all profits away.

Matters are very different when (a) preferences are imperfectly correlated so that a con-

sumer who prefers a soda from one firm may prefer a rival’s juice and (b) product provision

costs differ across product lines, so that juices are more expensive to develop than sodas.

Firms still compete away all profits from their disadvantaged (e.g., expensive) product lines,

but they earn positive profits from their advantaged (e.g., inexpensive) products. Specifically,

a firm profits from consumers who prefer its advantaged product, but its rival’s disadvantaged

product. The reason is that firms stocks their advantaged product line more extensively. As

a result, for some consumers, a firm’s advantaged line competes against itself rather than
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against a rival’s disadvantaged product line—some consumers will prefer multiple products

on a firm’s advantaged line to any of the rival’s products. Firms internalize this own product

line competition, and do not expand their disadvantaged product lines to the same extent. In

turn, this reduces the intensity of price competition, allowing firms to earn strictly positive

profits. Interestingly, while profits go to zero as the correlation in preferences across product

lines goes to one, profits do not globally decline in this correlation: raising the probabil-

ity that a consumer who likes one firm’s advantaged product likes a rival’s disadvantaged

product lowers profits once this probability is high enough.

The paper’s outline is as follows. We next discuss related research. Section 2 shows that

an optimal response to any product line design of a rival features identical pricing of each

product and product locations that deliver equal market shares for each product. We then

assume these features and treat the number of a firm’s products as a continuous variable,

focusing on product concentrations. Section 3 develops our core continuous model with two

symmetric firms. We proceed to consider an asymmetric duopoly. The section concludes by

contrasting equilibrium outcomes with that preferred by a social planner. Section 4 explores

how heterogeneous consumer tastes affect outcomes. Section 5 investigates competition be-

tween firms with multiple product lines. Section 6 concludes. Proofs are in an Appendix.

Methodology and Related Research. Using spatial concepts to model economic phe-

nomena, and market structure in particular, dates back to Hotelling [1929]. Subsequent no-

table contributions include Lancaster [1971], d’Aspremont et al. [1979] and Salop [1979]. Ex-

isting research on competition in product lines have largely focused on product customization

by either endogenizing the range of appeal for a single product, supposing that firms provide a

product characterized by an interval [a, b] (see Dewan et al. [2000, 2003] or Alexandrov [2008])

or by allowing firms to acquire costly information about individual consumer preferences that

allows product customization (Bernhardt et al. [2007]) to a representative consumer.1

Other research has focused on the impact of consumer’s demand for variety on multi-

product firm competition. Klemperer [1992] models product-line competition between two

spatially-separated “grocery stores”, asking whether they would do better to compete head-

1In contrast to the symmetric equilibrium in our economy, quality provision is asymmetric in Bernhardt
et al. [2007], with one firm making a minimal investment in product-customizing capabilities in order to
mitigate the ensuing price competition: by not acquiring detailed information about customers, a firm
credibly commits to ineffectively targeting consumers, inducing its rival to raise its price.
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to-head on product lines or to have “interspersed” product lines. When grocery stores sell

distinct, “interspersed” products, some consumers may patronize both stores in order to buy

more preferred bundles of products, which they would never do were product lines identical.

Patronizing both stores can serve to enhance price competition, even though the individual

products of the two stores are imperfect substitutes, lowering firm profits. Peng and Tabuchi

[2007] combine a model of monopolistic competition over variety á la Dixit and Stiglitz [1977]

within a store with an address model of multiple stores to capture sensitivity of demand to

location. The set of possible spatial configurations in this environment is large.

The limited research on product line competition reflects the challenges of solving for

equilibrium outcomes when product location and pricing is endogenous. To ensure that a

posited set of (price, location) strategies is an equilibrium, one must verify that no deviation

in location or prices can raise profits—and in standard spatial settings, pure strategy equilib-

ria typically do not exist. Vogel [2008] solves for equilibrium locations and prices when firms

have a single product and heterogeneous marginal costs. His insight was that one did not

need to fully characterize off-equilibrium mixed-strategy outcomes to determine the equilib-

rium path. However, there is no clear way to extend his approach to competition in product

lines. Rather than confront such challenges head-on, like us, Chen and Riordan [2007] create

a clever spatial structure. In their star and spoke model, at the end of each spoke a firm is

possibly located with a product, and consumers are uniformly distributed over spokes. Each

consumer values the product at the end of her spoke, and with equal probability values the

product at the end of one other spoke. This preserves symmetry, facilitating analysis.

To obtain existence, de Palma et al. [1985] add heterogeneous consumer tastes that are

orthogonal to the spatial dimension using a multinomial logit specification: with sufficient

consumer heterogeneity, equilibria in pure strategies exist when firms compete simultane-

ously over both price and location of a single product. Janssen et al. [2005] extend this idea

to multi-product firms by using a uniform distribution for consumer heterogeneity, assuming

that a firm charges the same price for each of its products, and that some consumers at each

location have strong enough preferences for one firm that they always choose to patronize

that firm. This means that a firm has a dominant strategy to locate products so as to min-

imize the sum of transportation costs to its product line if all consumers were to patronize

that firm. Their setting delivers very different prediction from our model that prices are in-

dependent of the number of outlets. Moreover, we exploit the tractability of our framework
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to provide a far more complete characterization of equilibrium outcomes (e.g., compara-

tive statics on product line variety, characterizations of firm profit and welfare, impact of

heterogeneity of firms, and multi-line competition).

It is worth noting how the structure of demand within and across firms associated with

our consumer heterogeneity differs from previous work on multi-product firm competition.

The demand structure in the papers that use orthogonal consumer heterogeneity preserve

the underlying nature of competition in the original Hotelling model. Marginal changes in

location or price of a product only affect the demand of the two nearest-neighboring products

regardless of firm identity. Papers using vertical differentiation to examine multi-product firm

competition also have this feature (see Champsaur and Rochet [1989], Johnson and Myatt

[2006] or Yi-Ling et al. [2011]). In contrast, our structure leads to changes in demand of the

two nearest-neighboring own-firm products and to changes in demand for all of the competing

firm’s products. Our demand structure can also be compared to the non-address nested de-

mand model of multi-product firms introduced by Anderson and de Palma [2006], wherein de-

mand cross-price elasticity is higher across a firm’s product range than the cross-price elastic-

ity between competing firm products. The different demand structures lead to very different

results—in contrast to our prediction that each firm offers more products in equilibrium than

is socially optimal, Anderson and de Palma [2006] predict that each firm offers too few prod-

ucts. In their study of the design of ATM networks, Bernhardt and Massoud [2005] use a sim-

ilar demand structure for ATM usage but first require consumers to choose a bank member-

ship, for which consumers have endogenously imposed heterogeneous tastes. Similar to our

findings, they find that firms over invest in ATM networks in order to compete for customers.

This demand structure gives our model tractability even in asymmetric settings in which

firms are heterogeneous along multiple dimensions. The tractability is due to the coarse in-

formation conveyed to a firm by the nature of a consumer’s preference for its most preferred

product about the intensity of preferences for a competitor’s products: a consumer’s distance

to its preferred firm A product can convey information about which firm B product line is

closest (juice or soda), but it reveals nothing about the intensity of those preferences within

that product line. This simplifying abstraction is the polar opposite of the standard spatial

assumption that a consumer’s preference for Diet Pepsi relative to Pepsi exactly determines

the preference for Coke relative to Sprite that delivers the prediction that pricing depends

on every fine detail, rendering analysis infeasible.
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2 Discrete Product Model

Our core model develops a spatial oligopoly game between two firms, A and B. The firms

compete to sell their goods to a measure one of consumers. Each firm is associated with

its own spatial circle along which consumers are uniformly distributed. We normalize the

circumference of each circle to one. A firm chooses where on its spatial circle to establish its

products. Consumers who purchase a product distance d from their location incur a disutilty

cost of Td, where T > 0.2 It costs a firm F > 0 to establish a product: the total cost to

firm j ∈ {A,B} of nj products is njF . The marginal cost of production is constant and

normalized to 0. Firms seek to maximize profits.

We index firm j’s products by 1, 2, . . . nj, and let Nj = {1, . . . , nj}. We define lji to be

the location of the ith product of firm j. Without loss of generality we normalize the location

of product j1 to lj1 = 0 and order products so that lji < lji+1
. One can interpret product

locations as the characteristics locations (e.g., of Coca-Cola soft drink flavors) of a firm’s

product line or as the store locations (e.g., of Wendy’s franchises) in a franchise network.

Firm j charges price pji for its product ji. A strategy for firm j is a product line profile Sj =

[nj, {lji , pji}
nj

i=1] that simultaneously specifies the number of products, each product location,

and the price set for each product.3 The set of possible product line profiles for firm j is Σj.

A consumer receives utility V from the homogeneous good that the two firms sell. We

assume that V is large enough that, in equilibrium, all consumers purchase the good. After

firms simultaneously choose product line profiles, consumers receive firm-specific location

shocks, dA and dB. For firm j, a given consumer c is equally likely to be located at any point

on firm j’s circle, and c’s location on firm A’s spatial circle is uncorrelated with his loca-

tion on firm B’s spatial circle. Figure 1 shows a potential location realization for consumer

c. These location shocks could reflect product characteristic differentiation with associated

dis-utility from not consuming at one’s most preferred point in the characteristic space, or

geographical differentiation. The location shocks are easiest to interpret in characteristic

2Our central results extend when consumers incur quadratic disutility costs, Td2.
3In a two-stage environment where firms first choose product concentrations and then prices, our

results would take on the flavor of quality competition: ex-ante symmetric firms would prefer asymmetric
concentrations. This is similar to a result derived by Champsaur and Rochet [1989] that in an environment
where each firm offers a set of vertically differentiated products and then competes on prices, firms
maximally differentiate on quality. Similar considerations emerge in Bernhardt et al. [2007].
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Firm B’s spatial circle

lB3
lB2

lB1

dcB

lA2

lA4

lA3

lA1

Firm A’s spatial circle

dcA

Figure 1: Consumer c’s location shock, dcA for firm A is independent of his location shock
for B. lji is the location of firm j’s ith product.

space: for example, a consumer may prefer Diet Coke to Sprite, i.e., be closer to Diet Coke

than to Sprite in characteristic space, but be equally likely to prefer Pepsi or Diet Pepsi.

We define δcj(Sj, S−j) to be an indicator function that takes on the value 1 if consumer c

purchases from a firm j product line and is 0 otherwise. Consumer c maximizes utility when

δcj(Sj, S−j) =

1 if min
i∈Nj

{pji + T |lji − dcj|} < min
i∈N−j

{p−ji + T |l−ji − dc−j|}

0 if min
i∈Nj

{pji + T |lji − dcj|} > min
i∈N−j

{p−ji + T |l−ji − dc−j|},

where dcj is consumer c’s location shock for firm j.

Given franchise profiles (SA, SB), let yji(dj, SA, SB) be the conditional probability from

the perspective of firm j (i.e., integrating over d−j) that a consumer with location shock dj

purchases product ji and (integrating over dj) let Yji(SA, SB) be the expected measure of

consumers who purchase product ji. Explicit solutions for yji(dj, SA, SB) and Yji(SA, SB)

are in the Appendix. Then firm j’s profits are

πj(SA, SB) =

nj∑
i=1

pjiYji(SA, SB)− njF, j ∈ {A,B}.

Equilibrium. An equilibrium is a collection of (i) product line profiles, S∗j = [n∗j , {l∗ji , p
∗
ji
}nj

i=1],

j ∈ {A,B}, and (ii) a set of demand functions for each consumer c, δc∗j (SA, SB), such that

• Product line profiles maximize profit πj(S
∗
j , S

∗
−j) ≥ πj(Ŝj, S

∗
−j) ∀Ŝj ∈ Σj, j ∈ {A,B}

given the subsequent optimization by almost all consumers.
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We first characterize how a firm’s own products compete with each other for consumers.

To do this, we develop the notion of product ji’s service area—the set of optimizing con-

sumers who, if they purchase from firm j, will purchase product ji. In any equilibrium, each

of firm j’s products must be purchased by some customers (else the costly product ought

not be developed); however, among consumers who purchase from firm j, only those who are

sufficiently nearby product ji will purchase it. Accordingly, we let aji,i+1
(Sj) be the identity

of the consumer who is indifferent between purchasing product ji and ji+1 from firm j:

aji,i+1
(Sj) =

pji+1
− pji

2T
+
lji+1

+ lji
2

, ∀i ∈ Nj, j ∈ {A,B},

where lj1 = 0 and ljnj+1 = 1 (the position of the first product from the viewpoint of the last

product). Any optimizing consumer located outside of [aji−1,i
(Sj), aji,i+1

(Sj)] who purchases

from firm j can derive a higher payoff by purchasing a firm j product other than ji (in

particular, purchasing either product ji+1 or ji−1).

Definition 1. Product ji is isolated if

yji(aji−1,i
(Sj), SA, SB) = yji(aji,i+1

(Sj), SA, SB) = 0.

Definition 2. Product ji is connected if

min{yji(aji−1,i
(Sj), SA, SB), yji(aji,i+1

(Sj), SA, SB)} > 0.

Product ji is isolated if it does not compete for market share against other firm j prod-

ucts. In particular, if product ji is isolated, then an individual located at aji−1,i
(Sj), who

is indifferent between purchasing product ji and ji−1, prefers with probability one to pur-

chase from the rival firm. If a firm’s product is isolated, then the product only competes

for customers against the rival firm, and not against each other. In contrast, product ji is

connected if, in addition to competing against the rival firm, it competes for customers with

an adjacent product, ji−1 or ji+1. That is, product ji is connected if there is a strictly posi-

tive probability that a consumer who is indifferent between purchasing ji and a neighboring

product strictly prefers those alternatives to purchasing any of the rival’s products. We first

establish an important result for how a firm’s products compete against each other.

Lemma 1. In firm j’s best response, either all of its products are isolated or all of its

products are connected.
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The intuition for this result is that a firm with a mix of isolated and connected prod-

ucts could earn higher profits by bringing its isolated products marginally closer together

and spreading its other products marginally further apart, whilst keeping its prices fixed.

Bringing isolated products marginally closer does not affect their market shares because

these products do not compete against each other for customers; but the market shares of

the remaining products grow because their service areas increase. Thus, the firm’s profit

increases, implying that a mix of isolated and connected products cannot be optimal.4

Lemmas 2 and 3 characterize the implications of Lemma 1 for pricing and location.

Lemma 2. Suppose firm j’s best response to S−j has only isolated products. Then firm j’s

best response features identical pricing of each product and equal market shares.

If each firm j product is isolated, then each has the same demand. Therefore, charging

the same price for each product, and capturing the same market share, is a best response.

Now consider a firm with connected products. The analogous result to Lemma 2 is that

this firm does best to space its products equally, and set the same price for each product.

To establish this we first show that equal spacing and identical pricing solves the firm’s first-

order conditions for profit maximization; an exhaustive numerical analysis then indicates

that this strategy is the unique best response.

Lemma 3. Suppose firm j’s best response to S−j has only connected products. Then firm

j’s best response spaces products at equal distances and sets identical prices.

These lemmas reveal that our model is consistent with key empirical features of the data.

In particular, an optimizing firm sets the same price for each of its products, regardless of

the structure of the competing firm’s product network. Of course, the optimal level of this

price reflects the competing network. A corollary is that without loss of generality, we can

restrict attention to strategies that feature product line profiles with uniform pricing and

equidistant product spacing, and consider demand for a representative firm j product. We

now do this, treating the number of products as a continuous variable and focusing on a

firm’s choice of product concentration. Because we now focus on a representative firm j

product, we use dcj to measure the distance of consumer c from a firm j product.

4Uniformity of consumers over the circle is important since the mass of consumers served only depends
on the relative locations of the products to each other, not on their absolute location. However, the result
would continue to hold as long as the distribution function of consumers over the circle is sufficiently smooth.
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3 Continuous Model

Symmetric Duopoly. Without loss of generality, we can assume that pA ≥ pB. We first

prove that if pA ≥ pB, then, in equilibrium, firm B’s products are isolated, competing only

for the market share from firm A products, and not cannibalizing market share from its own

product line. In turn, this will imply that firm B cannot earn positive profits.

dA1
2nA

dB = dA + pA−pB
T

YA

YB

pA−pB
T

dB
1

2nB

2.1: Market shares when firm
B products are isolated.

dA1
2nA

dB = dA + pA−pB
T

YA

YB

pA−pB
T

dB
1

2nB

2.2: Market shares when firm
A products are isolated.

Figure 2: Market shares when pA ≥ pB. Area Yj denotes the expected market share for firm
j. The density of the area is 4nAnB.

Figure 2 illustrates the market shares captured by each firm under the two possible sce-

narios (under the maintained assumption that pA ≥ pB in equilibrium). In each graph, area

Yj captures firm j’s expected market share and from the firms’ perspectives, consumers are

uniformly distributed over the graph with a density of 4nAnB. Consider a consumer c who re-

ceives a location shock pair that puts him on the edge of each of the representative product’s

service areas, i.e., (dcA, d
c
B) = (1/(2nA), 1/(2nB)). Figure 2.1 illustrates the case where

1

2nB
>
pA − pB

T
+

1

2nA
. (1)

Then this marginal consumer prefers to purchase from firm A, implying that firm B products

are isolated. Figure 2.2 illustrates the other possibility, i.e., where

1

2nB
<
pA − pB

T
+

1

2nA
. (2)
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Then the marginal consumer prefers to purchase from firm B, implying that the firm A prod-

ucts are isolated. Hence, if firm B products are isolated, i.e., if inequality (1) holds, then

YA = 4nAnB

∫ 1
2nA

0

∫ 1
2nB

dA+
pA−pB

T

1 ddB ddA

= 1− nB
2nA
− 2nB

pA − pB
T

, and (3)

YB = 1− YA =
nB
2nA

+ 2nB
pA − pB

T
. (4)

If, instead, firm A products are isolated, i.e., if equation (2) holds, then

YA = 4nAnB

∫ 1
2nB
− pA−pB

T

0

∫ 1
2nB

dA+
pA−pB

T

1 ddB ddA

=
nA
2nB

(
1− 2nB

pA − pB
T

)2

(5)

YB = 1− YA = 1− nA
2nB

(
1− 2nB

pA − pB
T

)2

. (6)

Lemma 4 below shows that if p∗A ≥ p∗B, then, in equilibrium, we can restrict attention to

an environment where firm B products are isolated, the case illustrated in Figure 2.1.

Lemma 4. If p∗A ≥ p∗B then Y ∗A ≥ Y ∗B and firm B products are isolated in equilibrium.

The intuition is that the marginal reduction in a firm’s market share due to raising its

price is the same for both firms. To see this, let pd = pA − pB. Then

∂YA
∂pA

=
∂YA
∂pd

=
∂(1− YB)

∂pd
= −∂YB

∂pd
=
∂YB
∂pB

.

The first-order conditions for profit maximization of each firm with respect to price gives

Y ∗A = −p∗A
∂Y ∗A
∂p∗A

and Y ∗B = −p∗B
∂Y ∗B
∂p∗B

.

Substituting for ∂YA
∂pA

= ∂YB
∂pB

yields
Y ∗A
Y ∗B

=
p∗A
p∗B
.

Therefore, p∗A ≥ p∗B implies Y ∗A ≥ Y ∗B. The proof reveals that a necessary condition for this

is that the extreme consumer, i.e., the consumer located 1
2nA

from product A and 1
2nB

from

product B, purchases from firm A; that is, firm B has isolated products.

We now derive the consequences for equilibrium firm profits.
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Proposition 1. In the unique equilibrium, the two firms earn zero profits, the product con-

centration for both firms is n∗j = 1
2

√
T
2F

and the price set at each product is p∗j =
√

FT
2

.

To understand why firms earn zero profits, first consider the weakly smaller firm B that

charges pB ≤ pA. Suppose its profit is positive. From Lemma 4, B’s products must be iso-

lated, so when B increases its product concentration marginally, B only attracts customers

away from firm A, and not from its own established products. Since customers served per

product is constant, if average profit per product is positive, B’s profit must rise linearly

with the number of its products, exhibiting “constant returns to scale” over the range where

its products are isolated. But then B could increase profits by increasing its product con-

centration, a contradiction of the premise that it is an equilibrium.

Next suppose the larger firm A earns strictly positive profits. But then if B set pB = p∗A, it

must generate strictly positive profits, because its market share per product strictly exceeds

A’s. But this is a contradiction, as we showed that the smaller firm earns zero profit.

Lastly, consider the possibility of a symmetric equilibrium in which firms earn strictly

positive profits. But then each firm has an incentive to increase product concentration

marginally: The within-firm cannibalization of market share from its other products due to

increasing product concentration slightly is arbitrarily small and second order, whereas the

“new product” gains a market share and profit that is first order. That is, a firm’s products

are “almost” isolated. It follows that firms compete away all profits: in equilibrium, firms fail

to exploit the ex-post heterogeneity in consumers that lead them to prefer one firm’s product

to another’s. Even though firms earn positive gross (of product development costs) profits

due to this heterogeneity, in equilibrium, the cost of developing products offsets these profits.

One can show that this zero-profit outcomes extends to a setting with N > 2 identical firms.

The constant returns to scale in franchise establishment underlie the stark result of zero

firm profit. However, the qualitative result extends: with diseconomies of scale in product

establishment, firms would still equate the marginal cost of a establishing an additional

product with the average profit of each product. Thus, any firm profit in such an environ-

ment would only come from the equilibrium difference between marginal and average product

establishment costs. We next establish the robustness of these results in other dimensions.

Asymmetric costs and preferences. We now relax the symmetrical properties of the
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economic environment to allow for

1. Firm-specific heterogeneity in costs of establishing products, FA 6= FB, or marginal

costs of production, ci ≥ 0.

2. Consumers with preferences for one firm’s product: consumers derive a common utility

V +a from firm A’s product and V from firm B, where a could be positive or negative.

Proposition 2. At least one firm earns zero profit in equilibrium.

To expand on this result, suppose that firm B is a clearly-identifiable disadvantaged firm:

Proposition 3. If FB ≥ FA, cB ≥ cA = 0, and a ≥ 0, with one inequality strict, then in the

unique equilibrium

• Disadvantaged firm B earns zero profits and advantaged firm A earns positive profits,

• Disadvantaged firm B sets a lower price: p∗B =
√

FBT
2

+ cB < p∗A − a.

In equilibrium, the disadvantaged firm’s products are isolated. This implies that the

disadvantaged firm scales up product concentration to the point where its profits are zero,

setting the price given in Proposition 3. The advantaged firm exploits its preferred product

and/or better technology to earn positive profits. A numerical analysis verifies the expected

comparative statics: firm A’s profits rise with a, cB, and FB, but fall with FA. More inter-

estingly, A’s profits fall with T : the reduction in price competition due to increased travel

costs is more than offset by the increase in product provision.

Social Planner. We now compare equilibrium outcomes with the solution to a social plan-

ner’s problem, in which the social planner maximizes total (consumer plus producer) surplus

by choosing product concentration; and then firms compete for customers by setting price.

Because the equilibrium features symmetric firm product concentrations, to make compar-

isons meaningful, we limit the social planner to symmetric firm product concentrations.5

Because V is large enough that all consumers purchase in equilibrium, prices just transfer

5Without this assumption we would need to consider the welfare associated with one firm, which would
necessarily imply an uncovered market.
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surplus from consumers to firms, and hence do not affect total social surplus. It follows that

the social planner seeks to minimize the sum of travel and product development costs,

4nAnB

∫ 1
2nA

0

(∫ dA+
pA−pB

T

0

TdB ddB +

∫ 1
2nB

dA+
pA−pB

T

TdA ddB

)
ddA + F (nA + nB).

Proposition 4. The equilibrium product concentration exceeds the social optimum.

It follows from Proposition 4 that at the social optimum, firms earn strictly positive prof-

its. Intuitively, the equilibrium over-provision of products results from the efforts of firms to

compete for greater market share. A social planner internalizes this externality: the social

planner does not care about the market share of individual firms, but firms do.

4 Additional Taste Heterogeneity

We now investigate how outcomes are affected when, in addition to the endogenous con-

testable spatial consumer heterogeneity, consumers also differ exogenously in their intrinsic

taste for each firm’s product. For example, some consumers may like Coca Cola’s soda more

than PepsiCo’s, while others may have the opposite preference. So, too, some consumers

may prefer the marketing or branding by one firm (e.g., Nike’s swoosh) that is common to

that firm’s product line, while other consumers prefer a rival’s branding.

Specifically, we suppose that in the population of consumers, the relative valuation z of

firm A is uniformly distributed on [−m,m], where m > 0. A consumer with relative valuation

z gains an additional value (in dollar terms) of z/2 from purchasing firm A’s good and loses

z/2 from purchasing firm B’s good. Thus, consumers differ due to both (i) the endogenous

spatial distance between a consumer’s location and a firm’s product locations, and (ii) the

heterogeneity in their relative tastes for firm A’s products. The magnitude of m captures the

importance of exogenous taste heterogeneity relative to endogenous spatial heterogeneity.

Now when consumers make their purchases they consider their relative preferences (or

dispreferences) for firm A: for almost every consumer, δcB(z, SA, SB) = 1 if and only if

V +
z

2
− pA − TdcA ≥ V − z

2
− pB − TdcB.

Ex ante, the probability a consumer shops at a firm A product is Prob(dcA−dcB− z
T
≤ pB−pA

T
).
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Proposition 5. In the symmetric equilibrium, firms earn strictly positive profits when con-

sumer tastes are heterogeneous. Equilibrium product concentration is always n∗ = 1
2

√
T
2F

regardless of the extent of taste heterogeneity.

• If taste heterogeneity is small, m ≤
√

2FT , the equilibrium price is p∗ = 2FT√
8FT−m and

firm profit is π∗ = m
√

2FT
4(
√

8FT−m)
.

• If taste heterogeneity is larger, m >
√

2FT , the equilibrium price is p∗ = m and firm

profit is π∗ = 1
2

(
m−

√
FT
2

)
.

The equilibrium product concentration does not depend on whether consumers have het-

erogeneous tastes. While increased taste heterogeneity leads to higher equilibrium prices and

thus to greater incentives to increase product concentrations (given positive firm profit), this

is exactly offset by the incentives to reduce concentration resulting from increased consumer

sensitivity to exogenous taste heterogeneity relative to endogenous spatial heterogeneity.

Why then do firms now earn strictly positive profits? The answer is that a consumer

located on the extreme of a firm j service area, i.e., dcj = 1/(2n), now prefers to purchase

from firm j with strictly positive probability, as the consumer may have a large relative taste

preference for firm j. Unlike in the base model, products are no longer isolated. Hence, were

firm j to increase its product concentration, it would now steal consumers from its other

products. Heterogeneous tastes create ‘decreasing net returns to scale’ in product concen-

trations. As a result, a firm’s incentive to increase concentration falls, and with weakened

product competition, firms earn strictly positive profits in equilibrium.

The comparative statics on F and m are natural. Profits rise with increased taste hetero-

geneity m. The higher equilibrium prices are not offset by any increase in firm concentrations.

Profits decrease with increased product establishment costs F . The direct effect of increased

costs is only partially offset by reduced product concentration and increased prices.

More interesting are the comparative statics on T . We use these to show how introducing

a contestable spatial dimension affects firm profits relative to an economy where consumer

only differ on an exogenous taste dimension. In particular, when T = 0, firm profits just

equal the equilibrium profits firms would receive if tastes only differed on this exogenous

dimension. One might conjecture that adding endogenous spatial heterogeneity would not
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alter firm profits, especially since equilibrium product concentration is unaffected by the

extent of consumer heterogeneity in tastes. This conjecture is false:

Proposition 6. Equilibrium firm profits fall monotonically with travel costs when there is

both exogenous taste heterogeneity and contestable consumer spatial heterogeneity.

As T rises, consumers become more sensitive to spatial heterogeneity. As a result, each

firm has an incentive to unilaterally increase product concentration, regardless of price.

When T is small relative to the extent of taste heterogeneity so that T < m2/(2F ), the equi-

librium price is completely insensitive to the endogenous spatial dimension, i.e., the equilib-

rium price does not vary with T or F . When T is small, some of the consumers located at

distances (dcA, d
c
B) from the closest respective products will purchase from A and some from

B. That is, consumers are never located so far from one firm’s product and so close to the

other that spatial considerations swamp taste preferences for all consumers at the location.

Thus, the impact on firm demand from a unilateral marginal increase in price is determined

solely by the density of consumers in the exogenous taste dimension. The consequence is

stark—price in the economy without the endogenous spatial dimension is the same as that

when the spatial dimension is present. It follows that for small T , the firms extract no benefits

from the products that they establish: all product development costs are completely wasted.

When transportation costs are greater relative to the extent of taste heterogeneity so

that T > m2/(2F ), some consumers will be located close enough to one firm’s product, and

far enough from its rival’s product, that they will purchase from the closer firm regardless of

their tastes for one firm’s product. As a result, pricing becomes sensitive to product concen-

tration and some product development costs are now recovered; however profits still decline

as transportation costs rise. In the limit, as T
m2 grows arbitrarily large, spatial heterogeneity

causes firms to compete away three-quarters of the potential marginal value of the taste

heterogeneity, m. Thus, in the (slightly abused) language of Cabral and Villas-Boas [2005],

spatial heterogeneity can be viewed as a Bertrand trap. The direct effect of increased spatial

heterogeneity on firm profits is zero, but the indirect effect through the strategic response,

particularly increased product concentration, reduces firm profit.
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5 Multi-Product Line Competition

We now introduce multiple product lines for each firm, allowing for both meaningful correla-

tion in consumer preferences across product lines, and for differences in the costs of creating

products across product lines. Concretely, we let a preference for Diet Coke reveal a likely

preference for soda drinks over fruit juices, and sodas can be less expensive to provide, but

we maintain the assumption that a preference for Diet Coke over Coke reveals nothing about

preferences for Diet Pepsi vs. Pepsi. So, too, a preference for a Honda Odyssey may suggest

a likely preference for vans, but a consumer’s preferred Toyota could turn out to be a Camry.

To model multiple product lines, we assume that firms A and B have products associated

with two spatial circles, each of unit length. Each consumer is located on one spatial circle

for each firm. The cost of traveling distance d on a circle is Td, and the disutility costs

between a firm’s circles are “high enough” that in equilibrium a consumer always purchases

a product on one of the circles on which he or she is located. The unconditional probability

that a consumer is located on a circle i is one-half, i = 1, 2. We introduce correlation in

preferences over products by supposing that if a consumer is located on circle i of firm A,

then the conditional probability that the consumer is located on circle i for firm B is λ (and

vice versa for a consumer located on circle i for firm B).6 We introduce heterogeneity be-

tween product lines by assuming that the cost F1 of introducing a product variety on circle 1

exceeds the cost F2 of a product variety on circle 2, i.e., F1 > F2. Introducing heterogeneity

along other dimensions (e.g., spatial distances) gives rise to analogous results; and relaxing

the assumption that, ex ante, a consumer is equally likely to be on each circle is routine. We

renormalize the measure of consumers to two.

The total profit function for firm j = A,B becomes

πj = pj1(λYj11 + (1− λ)Yj12) + pj2(λYj22 + (1− λ)Yj21)− (F1nj1 + F2nj2),

6Reisinger [2006] studies product bundling in a duopolistic multi-product environment with an ostensibly
similar preference structure. His model features two products x1 and x2, each with their own spatial circle,
both produced by two firms A and B, where firm A is located at 0 on both circles, while B is located
directly opposite at 1/2. A consumer located at x1 on circle 1 is located on x1 + δ on circle 2, where δ is
a parameter that provides a measure of how many consumers are most likely to prefer both of one firm’s
products. Thus, although his set up has a multi-product feature to address strategic bundling, Reisinger’s
model has more in common with standard spatial models than with our’s: in his model, firm locations are
exogenous, and given knowledge about a consumer’s preference for firm A’s first product, one can exactly
determine the consumer’s preference for all other products.
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where, for example, YAik
denotes the measure of consumers who purchase from firm A when

they are located on circle i of firm A and circle k of firm B, i, k = 1, 2, and we omit the

dependence of these measures on prices and numbers of products.

Proposition 7. In the unique symmetric equilibrium, firms earn zero profits from their high

cost product line, but strictly positive profits of at least (1 − λ)p2(Y21 − n1

2n2
) > 0 from their

low cost product line, as long as λ ∈ [0, 1). Firms stock their low cost line more extensively:

n2 > n1. Firms set a higher price for their high cost product line, i.e., p1 > p2, if and only

if λ > λ∗, where λ∗ =
√
F2
√

8F1+F2−3F2

2(F1−F2)
∈ (0, 2

3
), and at λ∗, n2

n1
= F1

F2
.

Intuition for this proposition can be gleaned by considering the extreme scenarios of

perfectly positive and negative correlation in consumer preferences, i.e., λ = 1 and λ = 0.

When λ = 1, a consumer on firm A’s circle 1 is also on circle 1 of firm B; and when λ = 0,

a consumer on firm A’s circle 1 is on firm B’s circle 2. When λ = 1, firm j’s profits become

2∑
k=1

pjkYjkk − Fknjk .

The separability of the profit function across product lines immediately implies that equilib-

rium is characterized by Proposition 1: the firms compete against each other on a circle-by-

circle basis, setting prices pk =
√

TFk

2
, earning zero profits. Further, F1 > F2 implies that

firms introduce fewer varieties of their costlier product, n1 < n2, and this means that there

is less competition, ex post, between the costlier products, so that firms charge higher prices

for the more costly to introduce products, i.e., p1 > p2.

Conversely, when λ = 0, a consumer who is on firm A’s circle 2 is on firm B’s circle 1,

where products are more expensive to introduce. Again profit functions are separable, with

each firm having an advantaged circle 2 competing against its rival’s disadvantage circle 1,

and a disadvantaged circle 1 competing against its rival’s advantaged circle 2. Therefore,

equilibrium is characterized by Proposition 3, with firms earning zero expected profits from

their disadvantaged circle 1, setting price p1 =
√

TF1

2
and earning strictly positive profits

from their advantaged circle 2, now charging higher prices for the less costly to introduce

products, i.e., p2 > p1, as firm exploit their more extensive product line. That is, firms inter-

nalize that because n2 > n1, more consumers will be closer to a type 2 product than a type

1 product—on average, consumers will prefer a type 2 product to a type 1 product—and the

firms exploit this in their pricing.
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The proof shows that these qualitative results extend to intermediate correlations, λ ∈
(0, 1). Which type of product is priced higher depends on how likely high cost products are

to compete against high cost products rather than low cost products. If λ > λ∗, then one

firm’s high cost product is sufficiently likely to compete against the other firm’s high cost

product that F1

F2
> n2

n1
, and hence the high cost product has a higher price, p1 > p2. If,

instead, λ < λ∗, then F1

F2
< n2

n1
, and hence the likely preference for the more available good 2

dominates in pricing, i.e., p2 > p1.

The intuition for why firms earn profits reflects that the cost differences induce firms to

provide more products on their less costly lines. Some consumers are located on one firm’s

less costly product line, but the rival’s costly product line. Because the less costly product

line is more extensively stocked, i.e., n2 > n1, it competes against itself for some consumers—

some consumers strictly prefer more than one product on one firm’s less costly line to any

of the rival’s products. Firms internalize this own product line competition reducing the

extent to which they expand their less costly product lines. This reduces the intensity of

price competition, allowing firms to extract strictly positive profits.

The analysis makes clear that profits vanish when the correlation in preferences is high,

i.e., when λ→ 1, or when cost heterogeneity is modest, i.e., when F1 → F2. What is less clear

is how intermediate levels of correlation affect profits when cost heterogeneity is nontrivial.

0

π

λ
1

3.1: Firm profits as a function of λ.

0

n2

n1

λ
1

3.2: n2

n1
as a function of λ.

Figure 3: Firm profits and product ratios. Parameters: F1 = 1, F2 = 1
2
, T = 10000.

To provide insight into the qualitative effects of intermediate levels of correlations in

preferences across product lines, Figure 3 graphs how λ affects equilibrium profits and n2

n1

when F1 = 1 and F2 = 1
2
, so that products on circle 1 are twice as expensive to produce,
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and T is normalized to 10000. As λ is reduced below 1, profits initially increase sharply

(convexly) from zero, but then the rate of increase slows down, and profits are maximized

when λ ∼ 0.126. In particular, maximizing the probability 1 − λ that less costly products

compete against a rival’s costlier products does not maximize firm profits. The direct effect

on profits of reducing λ is always positive. However, at λ ∼ 0.39, n1 reaches a minimum and

n2 reaches a maximum, implying that n2

n1
begins to fall as λ is reduced further below 0.39.

The intuition is that as λ falls, a firm’s less costly product line increasingly competes against

itself for customers who are located on its rival’s costlier line. This increased own-product

line competition eventually causes firms to reduce n2. Once λ falls below 0.126, the decrease

in n2

n1
swamps the direct increase in (1− λ), and profits begin to fall.
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4.1: Firm profits as a function of λ.
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4.2: n2

n1
as a function of λ.

Figure 4: Firm profits and product ratios. Parameters: F2 = 1
2
, T = 10000.

Figure 4 shows that greater heterogeneity in product development costs (a) sharply raise

firm profits and n2

n1
and (b) magnify the single-peaked relationship with λ. The economics

underlying these patterns is the same—as λ falls, a firm’s low cost line increasingly com-

petes against itself for customers on the rival’s high cost line, eventually causing n2

n1
and then

profits to fall. Quite generally, the qualitative property that firm profits and n2

n1
are single

peaked functions of λ is robust. However, it is also important to note that these peaks occur

at low values of λ, and plausible parameterizations would seem to be where a consumer who

prefers one firm’s soda to its juices is more likely to prefer the rival’s sodas to its juices. This

suggests that for plausible parameterizations, both n2

n1
and firm profits rise as λ is reduced,

i.e., as less costly-to-produce products become more likely to compete against costlier ones.
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6 Conclusion

We develop a novel spatial model in which consumers receive firm-specific location shocks.

We endogenize both firm pricing and product/franchise locations, establishing a stark result:

when the sole source of heterogeneity is the endogenous spatial heterogeneity, firms earn zero

profits in equilibrium. That is, while the ex-post endogenous consumer heterogeneity that

firms create ensures positive gross profits, competition for market share via greater product

provision drives net profits down to zero. This qualitative result extends when firms differ in

product creation costs or a firm has a better product: the “disadvantaged” firm earns zero

net profits. The equilibrium level of product provision is socially excessive—a social planner

internalizes the competition for market share and chooses a lesser concentration. It follows

that in equilibrium, firm compete profits below those associated with the social optimum.

We then introduce additional exogenous heterogeneity in consumer tastes. Firms profit

from this exogenous taste heterogeneity. However, the contestable spatial dimension inter-

acts with the heterogeneity in tastes, enhancing price competition, actually causing firms to

compete profits below those that would obtain without the endogenous spatial heterogeneity.

Our model remains tractable even in the presence of significant heterogeneity across

aspects of firms. As such, our model can be used as the foundation for the analyses of

competition between networks in other settings. In particular, we can analyze competition

between firms with multiple product lines, where a preference for a good from one firm’s

product line contains information about likely preferences over a rival’s product lines. Con-

cretely, a preference for Coke can convey a likely preference for sodas over juices. When we

introduce such correlation in consumer preferences, and integrate the possibility that some

products are more costly to produce, we find that firms earn strictly positive profits as long

as preferences are not perfectly positively correlated. In this situation, sometimes a firm’s

inexpensive product line competes against itself for some consumers, rather than against the

rival’s expensive product line; this reduces the incentives to over-provide products, reducing

the intensity of price competition, and allowing firms to earn strictly positive profits.
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7 Appendix: Proofs

Calculating yji(dj, SA, SB): Define

aji(Sj) = min{lji − aji−1,i
(Sj), aji,i+1

(Sj)− lji},

aji(Sj) = max{lji − aji−1,i
(Sj), aji,i+1

(Sj)− lji},

for i ∈ Nj, j ∈ {A,B}. aji(Sj) and aji(Sj) are the shortest and longest distances from

product ji’s i location to the edge of their service area.

Given strategies (SA, SB) and location shock dj in product ji’s service area, the condi-

tional expected demand yji(dj, SA, SB) is the measure of firm −j’s circle for which the total

delivery cost of the product is lower if purchased from product ji than from the lowest com-

peting alternative. Let aji−jk(dj, SA, SB) represent the distance from l−jk at which a consumer

with location shock dj is indifferent between purchasing product ji and product −jk, i.e.,

aji−jk(dj, SA, SB) =
pji − p−jk

T
+ |dj − lji |

We partition N−j into four sets by comparing this distance to the length of each product

−jk’s service area.

Lji(dj, SA, SB) = {k ∈ N−j : aji−jk(dj, SA, SB) > a−jk(S−j)},

Mji(dj, SA, SB) = {k ∈ N−j : a−jk(S−j) < aji−jk(dj, SA, SB) ≤ a−jk(S−j)},

Hji(dj, SA, SB) = {k ∈ N−j : 0 < aji−jk(dj, SA, SB) ≤ a−jk(S−j)},

Vji(dj, SA, SB) = {k ∈ N−j : aji−jk(dj, SA, SB) ≤ 0}.

Total delivery cost of product −jk ∈ Lji(dj, SA, SB) to any point in its service area is lower

than total delivery cost of product ji to dj. Total delivery cost of −jk ∈ Vji(dj, SA, SB) to

any point in its service area is higher than the total delivery cost of product ji to dj. The

remaining −jk products ’split’ their service area. For distances close to l−jk total delivery

cost of −jk is lower than product ji to dj, while for distances far away, the total delivery

cost of −jk is higher than product ji to dj. We use this notation to calculate yji(dA, SA, SB):

yji(dj, SA, SB) = min{0, 1−
∑
k∈Hji

2aji−jk(dj, SA, SB)−
∑
k∈Mji

aji−jk(dj, SA, SB) + a−ji(S−j)

−
∑
k∈Lji

a−jk(S−j) + a−jk(S−j)}.
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Calculating Yji(SA, SB): By definition,

Yji(SA, SB) =

∫ aji,i+1
(Sj)

aji−1,i
(Sj)

yji(dj, SA, SB) ddj.

To prove some results we use a more explicit decomposition of Yji(SA, SB) that exploits the

fact that Yji(SA, SB) is the sum of trapezoids. Define

Aji = {0 ≤ a ≤ aji(Sj) : a ∈ ∪k∈N−j
{a−jkji

(l−jk , SA, SB), a−jkji
(a−jk,k+1

, SA, SB)}}

∪ {0, aji(Sj), aji(Sj)}.

The first set that defines Aji are the distances from lji within franchise ji’s service area at

which a consumer located at either l−jk or a−jk,k+1
is indifferent between purchasing product

ji or −jk. Let kji = |Aji | and kji = |{a ∈ Aji : a ≤ aji(Sj)}| and order the elements of Aji

from 1 to kji so that ak ≤ ak+1.

Yji(SA, SB) =

kji
−1∑

k=1

2T (ak, ak+1, yji(lji + ak, SA, SB), yji(lji + ak+1, SA, SB))

+

kji−1∑
k=kji

T (ak, ak+1, yji(lji + ak, SA, SB), yji(lji + ak+1, SA, SB)) (7)

where T (a, b, c, d) = (a− b)(c+ d)/2. Figure 5 is a graphical depiction of Yji . Yji is equal to

the area under yji(dj, SA, SB) from aji−1,i
to aji,i+1

.

Proof of Lemma 1: Consider two firm j products, ji and jk, i < k, where

yji(aji,i+1
(Sj), SA, SB) = 0 and yjk(ajk−1,k

(Sj), SA, SB) > 0. Then fixing prices and shift-

ing {ljm}k−1
m=i+1 marginally by the same amount counterclockwise, no product experiences a

fall in market share (at least to a first order effect), but the market shares (sales) of products

jk−1 and jk both strictly increase. Hence, firm j’s profits must increase.

Suppose instead, yji(aji,i+1
(Sj), SA, SB) > 0 and yjk(ajk−1,k

(Sj), SA, SB) = 0. Then fixing

prices and shifting {ljm}k−1
m=i+1 marginally by the same amount clockwise, no product experi-

ences a fall in market share, but the market shares of products ji and ji+1 strictly increase.

Hence, firm j’s profits must increase. �

Proof of Lemma 2: Because each firm j product is isolated, each firm j product faces

the same demand curve. It follows that charging the same price at each product, and hence
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aji,i+1lji

yji(·)
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l̂ji

∆
2 ∆

Figure 5: Effect of a marginal shift in the location of product ji by ∆ from lji to l̂ji . The dark
gray trapezoids on the left represent the increased demand for products ji−1 and ji. The
light gray trapezoids on the right represent the decreased demand for products ji and ji+1.

capturing the same market share is a best response. To prove uniqueness, we show that

Πj(SA, SB) is strictly quasi-concave in pji ∀i ∈ Nj, implying that this best response is unique.

Note that yji(dj, SA, SB) is a continuous, piecewise linear function of pji and lji ; since

Yji(SA, SB) is the integral of yji(dj, SA, SB), Yji(SA, SB) is C1 as a function of {pji , lj1}
nj

i=1.

The marginal profit function of firm j is differentiable with respect to pji and lji every-

where except at prices and locations where the partition of firm −j products defined by L(.),

M(.), H(.) and V (.) changes. At these points the number of firm −j products against which

product ji competes changes discontinuously.

Because product ji is isolated, yji(aji−1,i
(Sj), SA, SB) = 0. If pji ≤ min{p−jk}, then

yji(lji , SA, SB) = 1 and marginal profit decreases linearly—the coefficient on pji is −4/(T ).

Hence, marginal profit is strictly decreasing over this range. If pji > min{p−jk}, then

yji(lji , SA, SB) < 1 and the marginal profit function is a series of piecewise quadratic con-

vex functions of pji over this range—the leading term coefficient is (2|Hji(lji , SA, SB)| +

|Mji(lji , SA, SB)|)/(2T 2). Within each section, the number of competing −j products re-

mains constant. Each section of the piecewise quadratic function has two real solutions over

the domain of R+ (else profit can increase without bound). The larger root of the quadratic

in each section is where the implied product ji market share is zero. Hence, the marginal
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profit function has only one root associated with a maximum. �

Proof of Lemma 3: Fix an arbitrary product line profile, S−j for the rival, and consider

a product line profile for firm j with nj products. By fixing the prices and locations of the

other firm j products we can analyze the impact of a marginal shift in lji and pji . Using

equation (7),
∂πj
∂lji

= pji−1

∂Yji−1

∂lji
+ pji

∂Yji
∂lji

+ pji+1

∂Yji+1

∂lji
.

As Figure 5 shows, this is equal to

yji(aji−1,i
(Sj), SA, SB)(pji + pji−1

)− yji(aji,i+1
(Sj), SA, SB)(pji + pji+1

)

2
. (8)

Similarly,
∂πj
∂pji

= Yji + pji−1

∂Yji−1

∂pji
+ pji

∂Yji
∂pji

+ pji+1

∂Yji+1

∂pji
.

As Figure 6 shows, this is equal to

Yji(SA, SB)− 2pji
yji(lji , SA, SB)

T

+
yji(aji−1,i

(Sj), SA, SB)(pji−1
+ pji) + yji(aji,i+1

(Sj), SA, SB)(pji+1
+ pji)

2T
. (9)

For Sj to be a best response to S−j (fixing nj), equations (8) and (9) evaluated at (Sj, S−j)

must be zero. Since by assumption no firm j product is isolated, this gives 2nj−1 equations

in 2nj − 1 unknowns.7 Inspection reveals that uniform product pricing and equal distances

between products solves this system of equations.

An extensive numerical analysis indicates that this symmetric solution is the globally opti-

mal best response. We compute firm j’s best response of location and price given the strategy

of firm −j and the number of firm j products. Using Lemma 2, we restrict firm −j strate-

gies to those that charge a uniform price p−j for each product, where p−j ∈ [0, 0.1, . . . , 100].

Without loss of generality we assume firm −j spaces its products equally (expected sales of

the rival do not depend on the spacing of local monopolies).

Best responses are calculated for nj ∈ {2, . . . , 25} and n−j ∈ {2, . . . , 25} using the nu-

merical optimization algorithm “fmincon” in Matlab. The constraints associated with the

algorithm are set to ensure that firm locations are sequentially ordered, each product serves

7lj1 is normalized to 0.
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dj

yjk
1

yji−1
(·)

yji(·) yji(·)

yji+1
(·)

aji−1,i
aji,i+1ljiâji−1,i

âji,i+1

∆
2T

∆
T

Figure 6: The effect of a marginal increase in the price charged for product ji by ∆ from pji
to p̂ji . The light gray rectangles represent a loss in demand for product ji. The darker gray
trapezoids represent a gain in demand for product ji. The lighter gray trapezoids represent
a gain in demand for products ji−1 and ji+1.

a non-negative measure of consumers and prices are non-negative. We normalize
√
T to

100. For each nj, for each competing firm strategy, equidistant product spacing and equal

product pricing are always the unique best response. �

Proof of Lemma 4: First note that the marginal change in demand for firm B due to a

change in pB is the same as the marginal change in demand for firm A due to a change in

pA. To see this, let pd = pA − pB. Then

∂YA
∂pA

=
∂YA
∂pd

=
∂(1− YB)

∂pd
= −∂YB

∂pd
=
∂YB
∂pB

. (10)

The first-order conditions for profit maximization of each firm with respect to its price gives

Y ∗A = −p∗A
∂Y ∗A
∂p∗A

and Y ∗B = −p∗B
∂Y ∗B
∂p∗B

. (11)

Combining equations (10) and (11) gives

Y ∗A
Y ∗B

=
p∗A
p∗B
.

Hence, p∗A ≥ p∗B ⇔ Y ∗A ≥ Y ∗B. It remains to show that in equilibrium firm B products are

isolated. In contradiction to the hypothesis, suppose that firm B products are not isolated,

26



i.e., 1/(2n∗B) < (p∗A − p∗B)/T + 1/(2n∗A). Then equation (5) and Y ∗B = 1− Y ∗A implies

Y ∗A =
n∗A
2n∗B

(
1− 2n∗B

p∗A − p∗B
T

)2

<
n∗A
2n∗B

min
{

1,
n∗

2

B

n∗
2

A

}
= min

{ n∗A
2n∗B

,
n∗B
2n∗A

}
≤ 1/2 < Y ∗B. �

Proof of Proposition 1: The first-order condition for firm A profit maximization with

respect to nA is
∂πA
∂nA

=
pAnB
2n2

A

− F = 0.

Hence,

p∗A =
2Fn∗

2

A

n∗B
. (12)

The first-order condition for firm B profit maximization with respect to pB is

∂πB
∂pB

= YB −
2pBnB
T

=
nB
2nA

+ 2nB
pA − 2pB

T
= 0,

where we substitute for YB using equation (4). Substituting for p∗A using equation (12) yields

p∗B =
Fn∗

2

A

n∗B
+

T

8n∗A
. (13)

The first-order condition for firm A profit maximization with respect to pA is

∂πA
∂pA

= YA −
2pAnB
T

= 1− nB
2nA
− 2nB

2pA − pB
T

= 0, (14)

where we have substituted for YA using equation (3). Substituting for pA and pB using

equations (12) and (13) into equation (14) then yields

n∗B = 4n∗A(T − 6Fn∗
2

A )/T. (15)

The first-order condition for firm B profit maximization with respect to nB is

∂πB
∂nB

=
pBYB
nB

− F = 0. (16)

Hence, equations (12), (13), (15) and (16) imply that in equilibrium

(T − 8Fn∗
2

A )(144F 2n∗
4

A − 32Fn∗
2

A T + T 2)

32n∗
2

A (T − 6Fn∗
2

A )
= 0.

Solving yields

n∗A = n∗B =
1

2

√
T

2F
,
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which implies that

p∗A = p∗B =

√
FT

2
.

Hence, in the unique equilibrium π∗A = π∗B = 0.8 The equilibrium is unique because firm

profit is continuously differentiable everywhere in price and product concentration and the

above analysis shows there is only one solution to the first-order conditions. �

Proof of Proposition 2: In equilibrium either 1/(2n∗B) ≥ 1/(2n∗A) + (p∗A − p∗B − a)/T or

1/(2n∗B) < 1/(2n∗A) + (p∗A − p∗B − a)/T . This implies that in equilibrium at least one firm’s

representative product is an isolated product (if we have equality then all products are iso-

lated). As in the previous proof, the scalability of product concentration then immediately

implies that this firm’s profits must be zero. �

Proof of Proposition 3: As in a symmetric firm setting, letting pd = pA − pB, we have

∂YA
∂pA

=
∂(1− YB)

∂pd
= −∂YB

∂pd
=
∂YB
∂pB

. (17)

Profit maximization implies

Y ∗A = −p∗A
∂Y ∗A
∂p∗A

and Y ∗B = −(p∗B − cB)
∂Y ∗B
∂p∗B

. (18)

Combining equations (17) and (18) gives

Y ∗A
Y ∗B

=
p∗A

p∗B − cB

Hence, p∗A ≥ p∗B − cB ⇔ Y ∗A ≥ Y ∗B.

Assume that p∗A > p∗B + a and 1/(2n∗B) > 1/(2n∗A) + (p∗A− p∗B − a)/T (we show later that

these assumptions hold in equilibrium). Firm profits are

πA = pAYA − nAFA = pA

(
1− nB

2nA
+ 2nB

pB − pA + a

T

)
− nAFA

πB = (pB − cB)YB − nBFB = (pB − cB)

(
nB
2nA
− 2nB

pB − pA + a

T

)
− nBFB.

8The assumption that all consumers purchase the good implies that V ≥
√

9FT
2 .
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The four first-order conditions are

∂πA
∂pA

= YA −
2nBpA
T

= 0 (19)

∂πA
∂nA

=
nBpA
2n2

A

− FA = 0 (20)

∂πB
∂pB

= YB − 2nB
pB − cB

T
= 0 (21)

∂πB
∂nB

= YB
pB − cB
nB

− FB = 0. (22)

The first-order condition for firm B profit maximization with respect to its product con-

centration immediately implies that firm B earns zero profits. Solving equation (22) for

Y ∗B =
n∗
BFB

p∗B−cB
and substituting into equation (21), yields

p∗B =

√
FBT

2
+ cB. (23)

From equation (20) we get

p∗A =
2FAn

∗2
A

n∗B
. (24)

Substituting Y ∗A = 1− Y ∗B = 1− n∗
BFB

p∗B−cB
into equation (19), gives

1− n∗BFB
p∗B − cB

=
2n∗Bp

∗
A

T
.

Substituting for p∗A using equation (24) and p∗B using equation (23), we solve for

n∗B =
T − 4FAn

∗2
A√

2FBT
. (25)

Substituting equations (23), (24) and (25) into equation (19), reveals that nA is given by the

solution to a cubic equation,

G(nA) = −8FA(2α + 3β)n3
A + 4FATn

2
A + 4T (α + β)nA − T 2,

where α = a+cB and β =
√

2FBT . Because the discriminant of G(nA) is positive, G(nA) has

3 real roots. Also, since the leading term coefficient is negative and G(0) = −2T 2 < 0, G has

at least one negative root. To be consistent with our initial premise that 1/(2n∗B) > 1/(2n∗A)+

(p∗A − p∗B − a)/T , we must have n∗A > T/(2(α+ β)). G(nA) evaluated at this lower bound is

positive, implying that such a solution exists and n∗A is the largest root of G(nA). Define

nA =

√
T (2α + β)

8FA(α + β)
and nA =

√
T (α + β)

2FA(2α + 3β)
.
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Evaluating G at these points yields

G(nA) =
T 2β(

√
FB
√

2α + β −
√
FA
√
α + β)

2
√
FA
√

(α + β)3
> 0 and G(nA) = − T 2β

2α + 3β
< 0.

Hence, nA < n∗A < nA. We now show that p∗A > p∗B + a. Using equations (23), (24) and (25)

this is equivalent to showing

8FA(n∗A)2(α + β)− T (2α + β)

2(T − 4FA(n∗A)2)
> 0,

which holds since nA < n∗A < nA.

Uniqueness is assured by showing that p∗A > p∗B + a and 1/(2n∗B) > 1/(2n∗A) + (p∗A− p∗B −
a)/T must hold in equilibrium. To see this consider the three other possible outcomes.

Case 1: p∗A > p∗B + a, 1/(2n∗B) ≤ 1/(2n∗A) + (p∗A − p∗B − a)/T . Let

X∗ =
1

2n∗B
−
(
p∗A − p∗B − a

T

)
< min

{
1

2n∗A
,

1

2n∗B

}
.

Y ∗A = 2n∗An
∗
BX

∗2 < 2n∗An
∗
B

(
min

{
1

2n∗A
,

1

2n∗B

})2

= min

{
n∗B
2n∗A

,
n∗A
2n∗B

}
< 1/2 < Y ∗B.

but this implies p∗A < (p∗B − cB) which contradicts p∗A > p∗B + a.

Case 2: p∗A ≤ p∗B + a, 1/(2n∗B) ≥ 1/(2n∗A) + (p∗A − p∗B − a)/T . Let

X∗ =
1

2n∗A
+

(
p∗A − p∗B − a

T

)
< min

{
1

2n∗A
,

1

2n∗B

}
.

Demand for firm B is

Y ∗B = 2n∗An
∗
BX

∗2 < 2n∗An
∗
B

(
min

{
1

2n∗A
,

1

2n∗B

})2

= min

{
n∗B
2n∗A

,
n∗A
2n∗B

}
< 1/2 < Y ∗A .

Hence, from lemma 4, p∗A > p∗B − cB. The four first-order conditions are

∂πA
∂pA

= 1− YB −
2pAYB
XT

= 0 (26)

∂πB
∂pB

= YB

(
1− 2(pB − cB)

XT

)
= 0 (27)

∂πA
∂nA

=
pAYB
nA

(
1

nAX
− 1

)
− FA = 0 (28)

∂πB
∂nB

=
(pB − cB)YB

nB
− FB = 0. (29)
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Combining equations (26), (27) and YA = 1− YB yields

Y ∗A =
p∗A

p∗A + p∗B − cB
and Y ∗B =

p∗B − cB
p∗A + p∗B − cB

. (30)

The first-order condition for firm B profit maximization with respect to its price implies

X∗ =
2(p∗B − cB)

T
. (31)

Substituting equation (31) into Y ∗B gives

Y ∗B =
8n∗An

∗
B(p∗B − cB)2

T 2
. (32)

Substituting for Y ∗B using equation (32) into equation (29) we solve for

n∗A =
FBT

2

8(p∗B − cB)3
. (33)

Using the definition of X∗ and equation (31) gives

1/(2n∗A) + (p∗A − p∗B − a)/T =
2(p∗B − cB)

T
.

Because p∗A ≤ p∗B + a this further implies that p∗B ≥ cB +
√

FBT
2

. Finally, substituting

equations (30), (31) and (33) into equation (28) implies

8p∗A(p∗B − cB)4(4(p∗B − cB)2 − FBT )− (p∗A + p∗B − cB)FAF
2
BT

3 = 0.

This equality can never be satisfied since p∗A > p∗B − cB and p∗B ≥ cB +
√

FBT
2

.

Case 3: p∗A ≤ p∗B +a, 1/(2n∗B) ≤ 1/(2n∗A) + (p∗A−p∗B−a)/T The second assumption implies

that firm A products are isolated, so that firm A makes zero profit. This combined with the

first assumption imply that n∗A < n∗B. If Y ∗A ≥ 1/2 ≥ Y ∗B then p∗A > p∗B − cB, which implies

firm B makes negative profit. Conversely if, instead, Y ∗A < 1/2 < Y ∗B, then there exists a

deviation by firm A that gives it positive profit, contradicting the posited equilibrium. To

see this, observe that firm A’s demand is

Y ∗A =
n∗A
2n∗B

+ 2n∗A
p∗B + a− p∗A

T
< 1/2 implying that

n∗A
n∗B

< 1. (34)

Profit maximization by firm B requires that in equilibrium

∂πB
∂nB

= (pB − cB)
nA
2n2

B

− FB = 0. (35)
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Substituting the inequality in equation (34) into (35) reveals that
p∗B−cB

2
> n∗BFB. If firm A

deviates and sets pA = p∗B+a and nA = n∗B, then YA = 1/2 and its profit is strictly positive. �

Proof of Proposition 4: In the second stage, firm i maximizes πi given product concen-

trations, nA = nB = n and the prices of its rival j. With nA = nB, it is straightforward to

show that firms choose pA = pB. But then prices drop out of the social planner’s objective,

SS = V − 4n2

∫ 1
2n

0

(∫ 1
2n

dA

TdA ddB +

∫ dA

0

TdB ddB

)
ddA − 2nF

= V − T

6n
− 2nF.

Differentiating SS with respect to n gives the social planner’s first-order condition:9

∂SS

∂n
=

T

6n2
SP

− 2F = 0.

Denoting the optimal level of product concentration per firm as n∗SP , we solve for

n∗SP =

√
T

12F
<

√
T

8F
= n∗,

SS∗SP = V −
√

4FT

3
> V −

√
25FT

18
= SS∗. �

Proof of Proposition 5: Case 1 (small m). We first consider the possibility that m

is small enough that in equilibrium no consumer with location shocks {dj, d−j} = { 1
2nj
, 0},

j ∈ {A,B} purchases from firm j, i.e., m < |p∗A − p∗B| + T max{ 1
2n∗

A
, 1

2n∗
B
}. That is, m is

small enough that, in equilibrium, any consumer who is located at the same point as one

firm’s product and at the edge of the rival’s product service area will patronize the former

firm regardless of their taste preference. Under this assumption, firm market shares are

YA =
2nAnB
m

[∫ 1
2nA

0

∫ 1
2nB

0

(∫ T
2nA

+pA−pB

(dA−dB)T+pA−pB
1 dz −

∫ T
2nA

+pA−pB

m

1 dz

)
ddB ddA

+

∫ 1
2nA

pB−pA+m

T

∫ dA+
pA−pB−m

T

0

∫ (dA−dB)T+pA−pB

m

1 dz ddB ddA

−
∫ 1

2nB
+

pB−pA−m

T

0

∫ 1
2nB

dA+
pA−pB+m

T

∫ −m
(dA−dB)T+pA−pB

1 dz ddA ddB

]
9Second-order conditions are clearly satisfied.
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YB =
2nAnB
m

[∫ 1
2nA

0

∫ 1
2nB

0

(∫ (dA−dB)T+pA−pB

− T
2nB

+pB−pA
1 dz −

∫ −m
− T

2nB
+pB−pA

1 dz

)
ddB ddA

+

∫ 1
2nB

+
pB−pA−m

T

0

∫ 1
2nB

dA+
pA−pB+m

T

∫ −m
(dA−dB)T+pA−pB

1 dz ddA ddB

−
∫ 1

2nA

pB−pA+m

T

∫ dA+
pA−pB−m

T

0

∫ (dA−dB)T+pA−pB

m

1 dz ddB ddA

]
.

Simplifying yields

YA =
nAnB
24m

{
3T (nA + nB)

n2
An

2
B

+
12nA(pB − pA +m)− 6T

n2
AnB

+
1

T 2

[(
2nB(pA − pB +m)− T

nB

)3

−
(

2nA(pB − pA +m)− T
nA

)3
]}

YB =
nAnB
24m

{
3T (nA + nB)

n2
An

2
B

+
12nB(pA − pB +m)− 6T

nAn2
B

− 1

T 2

[(
2nB(pA − pB +m)− T

nB

)3

−
(

2nA(pB − pA +m)− T
nA

)3
]}

.

Differentiating firm profit and applying symmetry yields the equilibrium outcomes:

p∗A = p∗B = p∗mS
=

2FT√
8FT −m

and n∗A = n∗B = n∗mS
=

1

2

√
T

2F
.

Our initial assumption that m < |p∗A−p∗B|+T max{ 1
2n∗

A
, 1

2n∗
B
} holds if and only if m <

√
2FT .

In equilibrium,

π∗A = π∗B =
m
√

2FT

4(
√

8FT −m)
> 0. (36)

The second-order conditions when m is small are[
∂2πi
∂p2i

∂2πi
∂pi∂ni

∂2πi
∂pi∂ni

∂2πi
∂n2

i

]∣∣∣∣∣nA=nB=n∗
mS

pA=pB=p∗mS

=

[
m−2β
β2

2mβ−m2−2β2

2T (m−2β)
2mβ−m2−2β2

2T (m−2β)
8F 2

m−2β

]
,

where β =
√

2FT . This matrix is negative definite, implying a maximum.

Case 2 (large m). If m >
√

2FT , then in equilibrium some consumers who realize location

shocks {dj, d−j} = { 1
2nj
, 0}, j ∈ {A,B} still purchase from firm j. In this case the market
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shares and profits of the two firms are given by

YA =
2nAnB
m

∫ 1
2nA

0

∫ 1
2nB

0

∫ m

T (dA−dB)+pA−pB
1 dz ddB ddA

=
1

2
+
pB − pA

2m
+
T

m

(
1

8nB
− 1

8nA

)
YB =

2nAnB
m

∫ 1
2nA

0

∫ 1
2nB

0

∫ T (dA−dB)+pA−pB

−m
1 dz ddB ddA

=
1

2
+
pA − pB

2m
+
T

m

(
1

8nA
− 1

8nB

)

πA(SA, SB) =

(
1

2
+
pB − pA

2m
+
T

m

[
1

8nB
− 1

8nA

])
pA − nAF

πB(SA, SB) =

(
1

2
+
pA − pB

2m
+
T

m

[
1

8nA
− 1

8nB

])
pB − nBF.

Differentiating firm profit and applying symmetry yields the equilibrium outcomes:

p∗A = p∗B = p∗mL
= m and n∗A = n∗B = n∗mL

=
1

2

√
T

2F
, so that

π∗A = π∗B =
1

2

(
m−

√
FT

2

)
> 0. (37)

The second-order conditions are[
∂2πi
∂p2i

∂2πi
∂pi∂ni

∂2πi
∂pi∂ni

∂2πi
∂n2

i

]∣∣∣∣∣nA=nB=n∗
mL

pA=pB=p∗mL

=

[
− 1
m

F
m

F
m
−4
√

2F 3

T

]
.

Hence, we have a maximum since the matrix is negative definite. �

Proof of Proposition 6: Let π∗(m,F, T ) denote equilibrium firm profit as a function of

heterogeneous taste parameter m, product establishment cost F and transportation cost T .

Note that profit is continuous in the parameters since

lim
m→
√

2FT
−
π∗(m,F, T ) =

√
FT

2
= lim

m→
√

2FT
+
π∗(m,F, T ).

Differentiating firm profit directly with respect to T gives the result:

∂π∗(m,F, T )

∂T
=

−
m2F

4
√

2FT (
√

8FT−m)2
if m <

√
2FT

−2F (m−
√

2FT )

(
√

8FT−m)2
if m >

√
2FT

,
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which is strictly negative for all T 6= m2/(2F ). �

Proof of Proposition 7: First we assume that λ, F1 and F2 are such that Y12 > 0. There

are four possible cases:

1. p1 ≤ p2 and ( 1
2n2
− p1−p2

T
)− 1

2n1
≤ 0.

2. p1 ≥ p2 and ( 1
2n2
− p1−p2

T
)− 1

2n1
≤ 0.

3. p1 ≤ p2 and ( 1
2n2
− p1−p2

T
)− 1

2n1
> 0.

4. p1 ≥ p2 and ( 1
2n2
− p1−p2

T
)− 1

2n1
> 0.

We will rule out the latter two possibilities (which would imply that even though F1 > F2,

firms make zero profits from circle 2, but positive profits from circle 1). We present case 1

in detail; analyses of the other three cases are similar.

Case 1: In the neighborhood of an equilibrium with pAi
≥ pBi

, i = 1, 2, we have

πB =pB1

(
λ

(
1− 4nA1nB1

∫ 1
2nA1

0

∫ 1
2nB1

dA1
+

pA1
−pB1
T

1 ddB1 ddA1

)

+ (1− λ)

(
1− 4nA2nB1

∫ 1
2nA2

0

∫ 1
2nB1

dA2
+

pA2
−pB1
T

1 ddB1 ddA2

))

+ pB2

(
(1− λ)4nA1nB2

∫ 1
2nB2

0

∫ 1
2nA1

dB2
+

pB2
−pA1
T

1 ddA1 ddB2

+ λ

(
1− 4nA2nB2

∫ 1
2nA2

0

∫ 1
2nB2

dA2
+

pA2
−pB2
T

1 ddB2 ddA2

))
− (F1nB1 + F2nB2) .

The first-order conditions for firm B are

∂πB
∂pB1

= λ

(
YB11 −

2pB1nB1

T

)
+ (1− λ)

(
YB12 −

2pB1nB1

T

)
= 0

∂πB
∂pB2

= λ

(
YB22 −

2pB2nB2

T

)
+ (1− λ)

(
YB21 −

2pB2nA1

T

)
= 0

∂πB
∂nB1

= λYB11

pB1

nB1

+ (1− λ)YB12

pB1

nB1

− F1 = 0

∂πB
∂nB2

=
(1− λ)nA1pB2

2n2
B2

+ λYB22

pB2

nB2

− F2 = 0.

35



where we have substituted
nA1

2nB2
= YB21 +

(
pB2

−pA1
T

)
+ 1

2nB2
− 1

2nA1
1

2nA1

in ∂πB
∂nB2

. Imposing symmetry,

substituting Yjj = 1
2

and rearranging the first-order conditions yields:

0 =
λ

2
+ (1− λ)Y12 −

2p1n1

T
(38)

0 =
λ

2
+ (1− λ)Y21 −

2p2

T
(λn2 + (1− λ)n1) (39)

0 = p1

(
λ

2
+ (1− λ)Y12

)
− F1n1 (40)

0 = p2

(
(1− λ)

n1

2n2

+
λ

2

)
− F2n2. (41)

We see immediately from equation (40) that firms earn zero profits on circle 1, and from

equation (41) that firms earn strictly positive profits on circle 2 when (p2−p1
T

) + 1
2n2
− 1

2n1
< 0

(which implies that n1

2n2
< Y21). Using equation (40) to substitute for

λ

2
+ (1− λ)Y12 =

F1n1

p1

into (38) and solving for p1 yields

p1 =

√
TF1

2
.

Also, n1 and n2 solve

2
√

2
√
TF1n1 − Tλ
(1− λ)

=
n1

n2

(
T + 4n2

(
4F2n

2
2

2[(1− λ)n1 + λn2]
−
√
TF1√

2

))
(42)

T −
√

2
√
TF1n1 = 4F2n

2
2. (43)

Solving equation (43) for n1 and substituting into equation (42) yields

2T (1− λ
2
)− 8F2n

2
2

(1− λ)
=

(
T − 4F2n

2
2

)
√

2
√

(TF1)n2

(
T + 4n2

(
4F2n

2
2

2λn2 +
√

2(1−λ)
(
T−4F2n2

2

)
√
TF1

−
√
TF1√

2

))
,

which can be reduced to the following fifth-degree polynomial equation, where η =
√

2F1T :

64F 2
2F1(1− λ)(3− λ)n5

2 + 16F2η((F2 − F1)(2− λ)λ− F2)n4
2 − 8F2η

2(1− λ)(5− 3λ)n3
2

+ 2Tη(4F2(1− λ)2 + λF1(4− 3λ))n2
2 + 4Tη2(1− λ)2n2 − T 2η(1− λ)2 = 0.

Analogously, one can solve for the first-order conditions for the other three cases:
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Case 2. p1 ≥ p2 and ( 1
2n2
− p1−p2

T
)− 1

2n1
≤ 0

λ

2
+ (1− λ)Y12 =

2p1

T

(
λn1 + (1− λ)n2

( 1
2n2
− p1−p2

T
)

1
2n1

)
(44)

λ

2
+ (1− λ)Y21 =

2p2n2

T

(
λ+ (1− λ)

( 1
2n2
− p1−p2

T
)

1
2n1

)
(45)

λp1

2
+ (1− λ)p1Y12 − F1n1 = 0 (46)

λp2

2
+ (1− λ)p2Y21 − F2n2 = (1− λ)p2

( 1
2n1
− ( 1

2n2
− p1−p2

T
))

1
2n1

. (47)

Case 3. p1 ≤ p2 and ( 1
2n2
− p1−p2

T
)− 1

2n1
≥ 0.

λ

2
+ (1− λ)Y12 =

2p1n1

T

(
λ+ (1− λ)

( 1
2n1
− p2−p1

T
)

1
2n2

)
(48)

λ

2
+ (1− λ)Y21 =

2p2

T

(
λn2 + (1− λ)n1

( 1
2n1
− p2−p1

T
)

1
2n2

)
(49)

λp1

2
+ (1− λ)p1Y12 − F1n1 = (1− λ)p1

( 1
2n2
− ( 1

2n1
− p2−p1

T
t))

1
2n2

(50)

λp2

2
+ (1− λ)p2Y21 − F2n2 = 0. (51)

Case 4. p1 ≥ p2 and ( 1
2n2
− p1−p2

T
)− 1

2n1
≥ 0.

λ

2
+ (1− λ)Y12 =

2p1

T
(λn1 + (1− λ)n2) (52)

λ

2
+ (1− λ)Y21 =

2p2n2

T
(53)

λp1

2
+ (1− λ)p1Y12 − F1n1 = (1− λ)p1

((
1

2n2
− (p1−p2)

T

)
− 1

2n1

)
1

2n2

(54)

λp2

2
+ (1− λ)p2Y21 − F2n2 = 0. (55)

Cases 1 and 4 are “symmetric”, as are Cases 2 and 3: relabeling p1 as p2, p2 as p1, n1 as

n2 and n2 as n1 in Case 1, the sets of first-order conditions in Case 4 correspond to those in 1.

To rule out cases 3 and 4, we first characterize p1 relative to p2. We know that p1 > p2

at λ = 1. As p1 =
√

F1T
2

for p1 ≥ p2, the critical λ that determines which price is higher
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sets p1 = p2 =
√

F1T
2

. At p1 = p2, the first order conditions (46) and (47) simplify to:

λp1

2
+ (1− λ)

n1

2n2

p1 − F1n1 = 0

(1− λ)p1
n1

2n2

+
λp1

2
− F2n2 = 0.

Therefore, at p1 = p2, we have F1n1 = F2n2 ⇔ F1

F2
= n2

n1
.

In addition, the first-order conditions (44) and (45) are,

λ

2
+ (1− λ)

n1

2n2

= p1
2n1

T
(56)

λ

2
+ (1− λ)

(
1− n1

2n2

)
=

2p1

T
(λn2 + (1− λ)n1), (57)

where p1 = p2 =
√

F1T
2

. Substituting n2 = n1
F1

F2
and solving (56) for n1 yields

n1 =

√
T (λF1 + F2 − λF2)

2
√

2F
3/2
1

,

and solving (57) for n1 yields

n1 =

√
TF2 (2F1 − λF1 − F2 + λF2)

2
√

2F
3/2
1 (λF1 + F2 − λF2)

.

Equating these two solutions, we solve for

λ∗ =

√
F2

√
8F1 + F2 − 3F2

2 (F1 − F2)
.

Differentiation establishes that λ∗ is decreasing in F1, and an application of L’Hospital’s rule

shows that λ∗ → 2
3

as F2 → F1.

We are now in a position to rule out Cases 3 and 4. First note that if F1 > F2, then

when λ = 0 or λ = 1, ( 1
2n1
− p2−p1

T
)− 1

2n2
> 0. Further, ( 1

2n1
− p2−p1

T
)− 1

2n2
is continuous in λ,

so suppose there were a λ such that ( 1
2n1
− p2−p1

T
)− 1

2n2
= 0. If p1 ≤ p2, as in Cases 1 and 3

then n2 ≥ n1 and Y12 ≥ Y21 = n1

2n2
. From the first-order equations (48) and (49) for Case 3,

2p1n1

T
≥ 1

2
≥ 2p2

T
(λn2 + (1− λ)n1) ≥ 2p2n1

T
.

But this implies that p1 = p2. By the assumption that ( 1
2n1
− p2−p1

T
) − 1

2n2
= 0, we have

n1 = n2, thus F1 = F2 by F1

F2
= n2

n1
at p1 = p2, a contradiction. The analysis for Case 4 is
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similar. If p2 ≤ p1, as in Cases 2 and 4 then n1 ≥ n2 and Y21 ≥ Y12. From the Case 4 first

order equations (52) and (53),

2p2n2

T
≥ 1

2
≥ 2p1

T
(λn1 + (1− λ)n2) ≥ 2p1n2

T
.

Again this implies that p1 = p2, and a contradiction obtains as above. Thus, we have that

equilibrium is characterized by Cases 1 and 2.

To show that n1 < n2, we show that n1 ≥ n2 implies a contradiction in Case 2. Under

Case 2, p1 ≥ p2 and Y21 ≥ Y12. If n1 ≥ n2 then from equations (44) and (45)

2p2n2

T
(λ+ (1− λ)γ) ≥ 1

2
≥ 2p1

T
(λn1 + (1− λ)n2γ) ≥ 2p1n2

T
(λ+ (1− λ)γ),

where

γ = 2n1

(
1

2n2

− (p1 − p2)

T

)
.

Again this implies that p1 = p2. Thus, we have n1 > n2 and F1 > F2 at p1 = p2, which

contradicts our finding that F1

F2
= n2

n1
at p1 = p2.

From (47), firm profit in Case 2 is

π2 = (1− λ)p2

(
1

2n1
−
(

1
2n2
− (p1−p2)

T

))
1

2n1

= (1− λ)p2

(
1− n1

n2

+
2n1 (p1 − p2)

T

)
= (1− λ)p2

(
1− n1

2n2

(
1− 4n2 (p1 − p2)

T
+

4n2
2 (p1 − p2)2

T 2

)
− n1

2n2

+
2n1n2(p1 − p2)2

T 2

)

= (1− λ)p2

(
Y21 −

n1

2n2

+
2n1n2(p1 − p2)2

T 2

)
> (1− λ)p2

(
Y21 −

n1

2n2

)
,

where the third equality follows from rearranging, which allows us to write it in the form of

the fourth equality, as in equation (6) (where 1 replaces A and 2 replaces B).

Finally, we characterize equilibrium when Y12 = 0 and Y21 = 1. This is a special case of

Case 2. From the first-order conditions, one can solve explicitly for the equilibrium values:

n1 =

√
λT

8F1

, p1 =

√
F1T

2λ
, n2 =

√
(2− λ)T

8F2

, p2 =

√
(2− λ)F2T

2λ2
and
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π1 = π2 = (1− λ)

√
(2− λ)F2T

2λ2
.

Equilibrium is characterized by Y12 = 0 if F1 > 8F2 and

λ ∈

[
F1 − 2F2 −

√
F 2

1 − 8F1F2

F1 + F2

,
F1 − 2F2 +

√
F 2

1 − 8F1F2

F1 + F2

]
.

Note that all results of Proposition 7 hold: n2 > n1, p1 > p2 for λ > λ∗ and π2 = (1−λ)p2. �
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