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Abstract

We analyze collusion under demand uncertainty by cartels such as OPEC that
care about the utility derived from profits by citizens. When citizens are sufficiently
risk averse and fixed operating costs are non-trivial, it becomes difficult for cartels to
collusively restrict output both when demand is low and marginal dollars are highly-
valued, and when demand is high and potential defection profits are high: output
relative to monopoly levels becomes a U-shaped function of demand. Greater risk
aversion or higher fixed operating costs make collusion more difficult to support in
recessions, but easier in booms.
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1 Introduction

In their pioneering analysis of collusion under demand uncertainty, Rotemberg and Saloner

(1986) show that when demand is independently and identically distributed over time, and

firms observe demand before taking actions, collusion is harder to support when demand is

higher. The intuition is compelling: the period incentive to cheat on the cartel rises with de-

mand, but expected continuation payoffs are unchanged. While this setting is stark, Kandori

(1991) establishes that the essence of the Rotemberg and Saloner result extends to serially-

correlated demand—effectively, the period incentive to cheat on the cartel is more sensitive

to current market conditions than are continuation payoffs. Haltiwanger and Harrington

(1991) establish related results for deterministic cyclical demand—collusion is hardest to

support at the peak of a cycle.1 Bagwell (1997) generalize these results melding a Markov

demand growth process on top of the i.i.d. transitory shocks.

In contrast to this robust theoretical prediction, we have Scherer (1980)’s summary of his

empirical work: “Yet it is precisely when business conditions turn sour that price cutting runs

most rampant among oligopolistic firms with high fixed costs,” Staiger and Wolak (1992)’s as-

sertion that “the conventional empirical wisdom [is] that tacit collusion tends to break down

when business conditions turn sour,” and Aiginger et al. (1998)’s survey of 113 experts, which

found that most believed that price wars are more likely when demand is low. Empirical

studies providing support for the premise that collusion is harder to support in downturns

include Porter (1985), Scherer and Ross (1990), Suslow (2005), and Ellison (1994). How-

ever, Domowitz et al. (1987), Chevalier and Scharfstein (1996) and Borenstein and Shepard

(1996) provide empirical evidence consistent with cartels being more likely to breakdown in

booms. This empirical research primarily focuses on prices and price-cost margins, and with

output competition, procyclical price-cost margins remain consistent with collusion being

more difficult to support when demand is high. Still, even among commodity cartels, there

is evidence that collusion is difficult to support in downturns. For example, the two largest

production wars in OPEC occurred in 1986 and 1997 when demand was extremely low.

One approach to trying to reconcile these empirical findings is to argue that firms can

only imperfectly monitor collusion, for example, seeing equilibrium prices, but not demand

1This prediction need not hold if firms face capacity constraints (see Fabra (2006) which features
exogenous constraints or Knittel and Lepore (2010), which features endogenous constraints.)
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realizations. Green and Porter (1984) and the vast imperfect monitoring literature take this

approach. In this literature, low prices trigger price wars because cartel members cannot dis-

tinguish whether they are due to low demand or to cheating by a cartel member. However,

given the premised lack of observability of demand, the literature delivers a very limited

link between output and demand. Another approach is to introduce capacity constraints

for firms, which limit defection gains when demand is high, reducing incentives to cheat,

but also weaken the ability to punish in high demand states. Staiger and Wolak (1992)

add a capacity-building stage to the Rotemberg and Saloner model and predict (seemingly

inconsistent with the empirical evidence), that price wars are more likely in intermediate

demand states than in either low demand states or high demand states (see Fabra (2006) for

a related result in the Haltiwanger and Harrington (1991) cyclical demand model).

We take a different approach. We return to the insights implicit in Scherer (1980), and

explore collusion by risk-averse cartel members that face positive fixed operating costs. We

show that this can reconcile the mixed empirical findings in that collusively restricting output

toward monopoly levels can be more difficult both when demand is unusually low and when

it is unusually high. Our premise that cartel members are risk averse with CRRA preferences

captures the observation that many commodity cartels consist of “country cartels” that do

not care about profits per se, but rather about the utility their citizens derive from the profits.

In addition to OPEC, country cartels have existed in many manufacturing and commodity

cartels (natural resources such as minerals, chemicals, raw materials, metals, etc.; see Suslow

(2005) for a list).2 Because most commodity cartels choose output levels rather than prices,

we model output competition when defections from cartel quotas are deterred by threats

to revert to static Nash equilibrium output levels. We otherwise focus on the classical i.i.d.

demand, constant marginal cost setting studied by Rotemberg and Saloner. We measure the

extent of collusion by the ratio of output relative to monopoly levels that can be supported in

different demand states—a higher ratio indicates that collusion is more difficult to support.

Risk averse cartel members value a marginal dollar of profit by more when profits are

lower. This might lead one to conjecture that with power utility, cartels could find collusion

2Among non-country cartels, cartel members may inherit the risk aversion of managers, and financially-
constrained firms with large debt levels may also value a marginal dollar in bad times by more because it
may stave off liquidation. Consistent with this, many large commodity providers in the middle 20th century
were family-owned big companies/oligarchists (e.g., Brazilian coffee farmers); and Busse (2002) provides
evidence that price wars in airline industry wee unilaterally initiated by financially troubled firms.
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more difficult to support in low demand states. This conjecture is false: to overturn the

Rotemberg-Saloner result that higher demand always makes it more difficult for firms to

collusively restrain output, cartel members must not only be risk averse, but fixed operating

costs of production must be positive. Absent fixed costs, the extent of risk aversion just

scales the period incentive to cheat on the cartel, preserving monotonicity of the incentive in

demand. Fixed operating costs magnify the marginal utility derived from an additional dollar

of profit in bad times, sharply raising the incentive to cheat when demand is especially low.

More provocatively, we establish that collusion is easiest to support when demand is

intermediate, neither too low, nor too high. That is, risk aversion together with fixed op-

erating costs give rise to the opposite predictions of those in Staiger and Wolak (1992).

The fixed costs of production mean that preferences effectively exhibit decreasing relative

risk-aversion. Thus, when demand is especially low, the very high marginal valuation of an

additional dollar of profit induced by the fixed operating costs make the incentive to cheat on

the cartel very high; and when demand is much higher, the decreasing risk aversion implies

that the classical effect dominates—as demand increases, there are more dollars to be gained

from cheating on the cartel. We further establish that although the incentive to cheat on the

cartel is a U-shaped function of the level of demand, the incentive rises more sharply in low

demand states (as demand gets worse) than in higher demand states (as demand gets better).

We then show that greater fixed operating costs or risk aversion make it harder to support

collusion when demand is low, but easier to support collusion when demand is high. Greater

fixed costs or risk aversion raise the net continuation payoff from collusion by enhancing the

threatened Nash reversion punishment for cheating on the cartel. However, greater fixed

costs or risk aversion also raise the potential period utility gains from cheating on the car-

tel. The impact of higher operating costs on period incentives dominates when demand is

especially low, making collusion more difficult to support; but the higher net continuation

payoffs dominate when demand is especially high, making collusion easier to support.

In our model, the fixed operating costs together with the CRRA preferences induce cartel

members to behave as if they have decreasing absolute risk averse preferences. The literature

has long advocated decreasing absolute-risk-aversion utility functions as a more realistic way

to describe a firm’s behavior. Sandmo (1971), and Appelbaum and Katz (1986) are the

first to study firm behavior under uncertainty with absolute/relative risk averse preferences.
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Greenwald and Stiglitz (1990) propose micro-foundations for such preferences, arguing that

firm behavior resembles a risk-averse individual who maximizes the utility of profitability,

and that this utility function is likely to feature decreasing absolute risk aversion. Spag-

nolo (1999) argues that real world imperfections such as non-linearity of the corporate tax

schedule, convexity of external financing costs, and managers’ capped monetary incentives

together with their fear of loss of job and reputation make a firms static objective func-

tion strictly concave, and Asplund (2002) highlights the impact of costly financial distress,

liquidity constraints, and non-diversified owners. Using the intuition that “firms give rel-

atively greater weight to realizations with low profits, Aspland looks at how the degree of

risk aversion affects competition intensity. He shows that when a firms objective function

features decreasing absolute risk-aversion, “fixed costs will influence best-response strategies

by increasing firms risk aversion. Spagnolo (1999, 2005) shows that it is easier for firms to

support collusive outcomes when they are risk averse.

We next present the model and analysis. A conclusion follows. Proofs are in an appendix.

2 The Model

Our framework features an infinitely repeated output game played by two agents 1 and 2

(e.g., country members of OPEC) that sell a homogeneous good in a market where demand

evolves stochastically according to an i.i.d. process. Date t demand is given by

Pt = θt −Qt, (1)

where θt is identically and independently distributed, with associated distribution function

F (θ) on its positive support [a, b], with a > 0, and Qt = q1t + q2t is aggregate output.3 With-

out loss of generality, we normalize the constant marginal costs of production to zero. The

agents also incur fixed operating costs each period of c ≥ 0, where c ≤ a2

9
.

In the classical Rotemberg and Saloner (1986) framework, the agents are risk-neutral firms

whose period payoffs equal their period profits, U i(πit)) = πit. Thus, the marginal value that

a firm derives from a dollar of profit does not vary with the level of profit, and fixed operating

costs are irrelevant for a firm’s decision making (assuming that exit is not a strategic consid-

eration). We depart from this setting to investigate collusion by risk-averse agents that face

3Extensions to N > 2 agents are routine.
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positive fixed operating costs. Agent i derives period utility from profit πit of U i(πit) = (πit)
α,

where 0 < α ≤ 1. For simplicity, we assume that each period, a cartel member consumes its

period profits, i.e., there is no saving and borrowing. As a result, a cartel member values an

extra dollar of profit by more when profits are lower. Moreover, fixed operating costs enter

decision making non-trivially, as they especially magnify the marginal value of an additional

dollar in bad times. Firms use a common discount factor β ∈ (0, 1) to discount future payoffs.

The fixed operating costs induce a preference ordering over period income that is a subset

of the class of Hyperbolic Absolute Risk Averse utility functions, which has functional form

U(W ) = 1−γ
γ

(
a

1−γW + b
)γ

for which the risk tolerance (the reciprocal of absolute risk aver-

sion) is linear in wealth4. HARA utility nests constant absolute-risk-aversion (exponential),

constant relative-risk-aversion (power), quadratic and logarithmic utility functions.

We focus on the maximal period collusion profits that can be supported by threats to

revert to the non-cooperative static Nash equilibrium outputs forever if a cartel member ever

deviates from their collusive agreement. We do this because we want agents to be able to

provide their citizens positive consumption in all states of the world. Our focus on output

competition rather than price competition together with the assumption that c < a2

9
ensures

that the profits from Nash outputs always cover the period fixed operating costs, providing

citizens subsistence consumption. Harsher threats are unlikely to be credible (for instance,

failing to provide a minimal subsistence level might result in the state’s overthrow). More

fundamentally, output competition captures our real world motivating example of a country

commodity cartel, in which cartel members choose outputs rather than prices.

After observing period demand, cartel members simultaneously choose outputs. Define

qC(θ) to be the collusive firm output supported along the equilibrium path when the demand

shock is θ. Given that deviations from collusive outputs result in static Nash outputs in the

future, an agent that cheats on the cartel agreement will produce the qF (θ) that maximizes

period profit, and hence period utility, solving

max
q(θ)

(θ − qC(θ)− q(θ))q(θ)− c⇒ qF (θ) = (θ − qC(θ))/2.

Let πC(θ) = (θ − 2qC(θ))qC(θ) − c and πF (θ) = (θ − qC(θ))2/4 − c denote the respec-

tive period profits from cooperating and cheating on the cartel, and let qP (θ) = θ/3 be

4Substituting γ = α, a = (1 − α)( α
1−α )

1
α , and b = −ca

1−α = −c( α
1−α )

1
α into the HARA utility function

yields U(W ) = (W − c)α.
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the Nash output and πP (θ) = θ2/9 − c be the associated Nash period profit. Finally, let

UC ≡ E[U(πC(θ))] be the expected period utility from cooperation along the equilibrium

path, and let UP ≡ E[U(πP (θ))] be the expected period utility along the punishment path.

Then, for each given demand shock θ, incentive compatibility requires

U(πC(θt)) +

(
β

1− β

)
UC ≥ U(πF (θt)) +

(
β

1− β

)
UP . (2)

Equation (2) can be re-arranged in terms of the “incentive to cheat”:

U(πF (θt))− U(πC(θt)) ≤
(

β

1− β

)
(UC − UP ) ≡ v. (3)

That is, for a cartel production schedule to be incentive compatible, the net period util-

ity payoff from cheating when demand is θ, U(πF (θt)) − U(πC(θt)), cannot exceed the net

expected payoff from future cooperation rather than punishment, v.

Cartel’s Problem. The cartel’s objective is to find the incentive compatible production

schedule that maximizes their joint utility on the equilibrium path,
∑∞

t=1 β
t−1E[U(πCi (θt))+

U(πCj (θt))]. With power utility, we can write the cartel’s problem as

max
q(θ)

2

∫ b

a

(q(θ)(θ − 2q(θ))− c)α dF (θ) (4)

s.t. (
(θ − q(θ))2

4
− c)α − ((θ − 2q(θ))q(θ)− c)α ≤

(
β

1− β

)
(UC − UP ) ≡ v, ∀ θ ∈ [a, b].

We measure a cartel’s ability to support collusion in demand state θ by the ratio qC(θ)/qm(θ) ≥
1, i.e., by the ratio of output relative to monopoly levels. A higher ratio indicates that collu-

sion is more difficult to support. Most empirical researchers measure collusion in price-cost

margins (which, with constant marginal costs, is akin to measuring collusion in prices). Ob-

viously, if price-cost margins fall with θ, then qC(θ)/qm(θ) also rises with θ. However, with

output competition, qC(θ)/qm(θ) can rise with θ, indicating a reduced ability of the cartel

to support collusion in higher demand states, even though price-cost margins rise uniformly

with θ. Phrased differently, with output competition, the procyclical price-cost margins

found empirically do not imply that collusion is easier to support in high demand states.

For the special case of linear utility, U(πi(θt)) = πi(θt), the cartel’s objective reduces to

the output-competition variant of Rotemberg and Saloner (1986). In that setting, it imme-

diately follows that the incentive to cheat increases in θ, as with i.i.d. demand, expected
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continuation payoffs do not vary with θ, but the current payoffs from cheating on the cartel

rise when the stakes are higher. As a result, qC(θ)/qm(θ) is constant when demand is low

enough that monopoly profits can be supported, and it is strictly increasing once demand is

high enough that threats to deviate to Nash outputs cannot support monopoly profits.

One might conjecture that risk-aversion alone, i.e., α < 1, would be enough to reverse

the result that increases in demand make it more difficult for the cartel to collusively restrict

output toward monopoly levels, i.e., to reverse the result that qC(θ)/qm(θ) is non-decreasing

in θ. That is, one might conjecture that since the marginal utility derived from another

dollar of profit is higher when profits are lower, collusion might be more difficult to support

when demand is low and cartel members are sufficiently risk averse. This conjecture is false.

The following proposition establishes necessary conditions for it to be harder to support

collusion when demand is low than when it is high: not only must cartel members be risk

averse, α < 1, but they must also have positive fixed costs of operation, c > 0.

Proposition 1 Suppose that either c = 0 or α = 1. Then over-production relative to

monopoly levels rises with the level of demand, i.e., qC(θ)/qm(θ) is non-decreasing in θ.

Thus, both risk-aversion and positive fixed operating costs are necessary for overproduc-

tion not to rise with θ. Intuition for why more than risk aversion is required can be gleaned

from looking at those demand states θ where the net value of future cooperation v is high

enough that the IC constraint is slack. For such θ, the cartel’s optimization problem simpli-

fies to a pointwise maximization of its objective. The associated first-order condition is

(q(θ)(θ − 2q(θ))− c)α−1 (θ − 4q(θ)) = 0,

with solution qC(θ) = θ/4. The two agents jointly produce the monopoly output, θ/2, and

each earns half of the monopoly profits net of operating costs, θ2/8− c; and the associated

fink output is 3θ/8, which delivers profits of πF (θ) = 9θ2/64 − c. To see how incentives to

cheat on the cartel hinge on the level of demand, the extent of risk aversion and the fixed

operating costs, define the (period) incentive to cheat on monopoly output as

h(θ;α, c) = U(πF (θ))− U(πC(θ)) =

(
9θ2

64
− c
)α
−
(
θ2

8
− c
)α

. (5)
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When there are no fixed costs, h(θ, α, c = 0) simplifies to

h(θ;α, c = 0) =

(
9θ2

64

)α
−
(
θ2

8

)α
=

(
θ2

64

)α
(9α − 8α) .

Thus, without fixed costs, the extent of risk aversion scales the incentive to cheat, preserving

monotonicity in θ. A similar result holds when monopoly output cannot be supported.

We now show that for the incentive to cheat on the cartel not to rise monotonically with

the level of demand, the impact of risk aversion must be higher in low demand states than

high, i.e., the preferences induced by the fixed operating costs must exhibit decreasing relative

risk aversion. With positive fixed operating costs, preferences effectively take a subsistence

utility form, and the associated Arrow-Pratt measure of relative risk-aversion, RRA(W ) =

−WU ′′(W )/U ′(W ) = (1−α) W
W−c , decreases in W if and only if α < 1 and c > 0. Then, when

demand is low, the higher marginal valuation of an additional dollar of profit induced by the

fixed operating costs cause the incentives to cheat to rise further when demand drops lower,

and agents become more desperate for another marginal dollar of profit. In contrast, when

demand is much higher, the decreasing risk aversion implies that risk aversion matters less,

with the result that the standard effect dominates—as demand rises, there are more dollars to

be gained from cheating on the cartel. Putting these two observations together suggests that

the incentive to cheat on the cartel will be a U-shaped function of θ. We now formalize this

intuition and begin to address the question of exactly where the separation between good and

bad times occurs. The theorem shows that to deliver the U-shaped relationship, agents must

have intermediate levels of risk aversion: for the incentive to cheat on the cartel not to rise

monotonically with θ, for a given level of fixed costs, agents must be sufficiently risk averse;

and for the incentive not to fall monotonically with θ, they must not be too risk averse.

Proposition 2 There exist critical levels of risk aversion, α(c) and ᾱ(c), indexed by the

fixed costs c, such that if and only if cartel members have intermediate levels of risk aver-

sion, α(c) < α < ᾱ(c) < 1, then h is a U-shaped function of θ, achieving a minimum at

θ̂(α, c) ∈ (a, b). That is, h′(θ) < 0 for θ < θ̂(α, c), and h′(θ) > 0 for θ > θ̂(α, c). Further,

α(c), ᾱ(c) and θ̂(α, c) rise with the fixed cost c, and θ̂(α, c) increases in risk aversion α.

The proof shows that, as in Figure 1, there is a unique intermediate demand level θ̂ that

minimizes the incentive to cheat. As demand falls below θ̂, the incentive to cheat rises due to
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Figure 1: Incentive to cheat h(θ;α, c) as a function of θ. Parameters are: α = 1/3 and c = 1/9.

the high marginal valuation of another dollar of profit; and as demand rises above θ̂, so too

does the incentive to cheat due to the greater profit that can be gained. The comparative

statics reveal that when agents are more risk averse or fixed costs are greater, demand does

not have to be as bad for the incentive to cheat to begin to rise as demand drops lower.

Monopoly outputs are supportable when the period benefit from cheating, h, is less than

the expected net value of future cooperation, v, which is independent of θ. When h is a

U-shaped function of θ, it directly follows that monopoly outputs can only be sustained for

intermediate values of demand whenever cartel members are neither so patient that they can

support monopoly outputs in every state, nor so impatient that they can support monopoly

outputs in no state (see Figure 1). Corollary 1 formalizes the necessary conditions.

Corollary 1 There exist β, β̄ with β < β̄ such that if and only if β ∈ [β, β̄] the cartel

can support monopoly profits only if demand is neither too low nor too high: If and only if

β ∈ [β, β̄], there exist θ(β), θ̄(β) with a < θ(β) < θ̄(β) < b such that monopoly profits can

be supported if and only if θ ∈ [θ(β), θ̄(β)].

We have identified two forces that can drive the cartel away from supporting monopoly

outputs: temptations rooting from the larger potential profit gain when times are good, and
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desperateness for an extra dollar of profits when times are bad. But, which force is stronger?

In Proposition 3, we show that the ability to support collusion drops off more quickly when

demand falls below θ̂ than when it rises past θ̂.

Proposition 3 The incentive to cheat on monopoly output rises more quickly as low demand

states become worse than as high demand states improve: h(θ̂ − δ) > h(θ̂ + δ) for all δ > 0.

The intuition for Proposition 3 devolves from the increasing desperation to obtain an-

other dollar of profit when its marginal valuation is high that is implicit in Scherer (1980)’s

summary that “Yet it is precisely when business conditions turn sour that price cutting runs

most rampant among oligopolistic firms with high fixed costs.” Proposition 3 goes beyond

Proposition 2. Proposition 2 showed that the incentive to cheat on monopoly output rises

not only when demand is larger, but also when market conditions turn sour. Proposition 3

documents an asymmetry in the incentive to cheat function: monopoly can be supported in

a narrower range of bad states than good ones. Put differently, θ̂ is closer to θ than to θ̄.

We now characterize output levels following demand realizations—both high and low—

that are sufficiently extreme that the cartel cannot support monopoly outputs. To prevent

agents from cheating, cartel output must be increased to a level that makes agents indif-

ferent between cheating and cooperation. More formally, at each θ ∈ [a, θ]
⋃

[θ̄, b] incentive

compatible quotas, q(θ), solve

(
(θ − q(θ))2

4
− c)α − ((θ − 2q(θ))q(θ)− c)α =

(
β

1− β

)
(UC − UP ) ≡ v. (6)

Define the normalized production level z ≡ q(θ)/θ: z is an index for overproduction relative

to monopoly output, as 4z = q(θ)/(θ/4) = q(θ)/qm(θ). When monopoly output can be

supported, there is no overproduction, so that z = 1/4; and when the cartel breaks down

and agents revert to Nash outputs, then z = 1/3. That is, outside the monopoly support

region, we have z ∈ (1/4, 1/3), and profits decrease in z.

We rewrite the left-hand side of equation (6) in terms of z and define H(z, θ) to be this

period incentive to cheat:

H(z, θ) =

(
θ2

(1− z)2

4
− c
)α
−
(
θ2(1− 2z)z − c

)α
. (7)
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When z = 1/4, then H(1/4, θ;α, c) reduces to the period incentive to cheat on monopoly

output, h(θ;α, c). As in Proposition 2, one can show that H(z, θ) is a U-shaped function of θ

for every z ∈ (1/4, 1/3). Proposition 4 shows that when demand realizations make it more at-

tractive to cheat on the cartel, members must reduce this attraction by increasing output rela-

tive to the monopoly level, but that output increases become less and less effective at reducing

this incentive. Further, collusion is harder to sustain both for more extreme low demand re-

alizations and for more extreme high demand realizations, requiring greater overproduction:

Proposition 4 Outside the monopoly support region [θ, θ̄], the period incentive to cheat is

a continuously decreasing, convex function of output relative to monopoly levels: ∂H(z,θ)
∂z

< 0,

and ∂2H(z,θ)
∂z2

> 0. Overproduction relative to monopoly output rises when demand is further

from the monopoly support region: ∂
(

q(θ)
qm(θ)

)
/∂(θ − θ) > 0 for θ < θ, and ∂

(
q(θ)
qm(θ)

)
/∂(θ −

θ̄) > 0 for θ > θ̄.

One might conjecture that when fixed operating costs, c, are higher, or cartel members

are more risk averse (lower α), it becomes more difficult to support collusion in every demand

state. The intuition underlying such a conjecture is that such changes raise the period util-

ity gain from cheating on any given level of output. However, the intuition underlying this

conjecture is incomplete. The conjecture that greater fixed costs or increased risk aversion

make collusion harder to support would follow directly if the net continuation payoffs from

collusion versus punishment did not rise. However, as c is increased (or agents become more

risk averse), the threat to punish cheating on the cartel by reverting to Nash equilibrium

outputs becomes harsher relative to the gain from a given level of cooperation. If, as a result,

v rises by enough with greater operating costs or risk aversion to offset the increased period

incentive to cheat on the cartel, then greater collusion may be facilitated.

We next characterize how the extent of risk aversion or fixed costs affect the ability to

support collusion in different demand states. We establish a single-crossing property char-

acterizing which states collusion is easier to support. We show that provided that increases

in operating costs c or in risk aversion (reductions in α) do not uniformly raise or lower

the incentive to cheat on the cartel, then greater fixed costs and greater risk aversion make

collusion harder to support when demand is low, but easier when demand is high.
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Figure 2: Dashed (solid) line presents the ratio of cartel-to-monopoly output for more (less) risk averse
agents (α2 = 2/5 < α1 = 1/2). Other parameters: c = 1

9 , β = 0.43, θ ∈ [1, 5].

Proposition 5 Consider α2 < α1. Suppose there exists a θ∗ such that z1(θ
∗) = z2(θ

∗) > 1
4
.

Then outside the monopoly support region, more risk averse agents find it harder to support

collusion in bad times, but easier in good times: For α2 < α1, for all θ < θ∗, if z2(θ) > 1/4,

then z2(θ) > z1(θ); and for all θ > θ∗, if z1(θ) > 1/4 then z2(θ) < z1(θ).

Proposition 6 Consider fixed operating costs, c2 > c1. Suppose there exists a θ∗ such that

z1(θ
∗) = z2(θ

∗) > 1
4
. Then outside the monopoly support region, greater fixed costs make it

harder to support collusion in bad times, but easier in good times: For c2 > c1, for all θ < θ∗,

if z2(θ) > 1/4, then z2(θ) > z1(θ); and for all θ > θ∗, if z1(θ) > 1/4 then z2(θ) < z1(θ).

The key to these proofs is to show that the impact of an increase in c or in risk aversion on

the period gain from cheating, H(z, θ) falls with θ for a fixed z = q(θ)/θ, i.e., that ∂2H(z,θ;c)
∂c∂θ

<

0 and ∂2H(z,θ;α)
∂α∂θ

> 0. Hence, if we ever have z1(θ
∗) = z2(θ

∗), then holds at a unique θ∗.

An exhaustive numerical analysis indicates that whenever demand is uniformly dis-

tributed, and agents are sufficiently risk averse with high enough operating costs that the

monopoly support region is interior, then continuation payoffs always rise with c or with risk

aversion by amounts that, consistent with Figures 2 and 3 and the two propositions, give rise

to asymmetric effects on the cartel’s ability to support collusion. That is, with uniform de-
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c1

c2

Θ

zHΘ;Α,cL

Figure 3: Dashed (solid) line presents the ratio of cartel-to-monopoly output for lower (higher) fixed costs
(c2 = 1/9 > c1 = 1/13). Other parameters: α = .5, β = .4, θ ∈ [1, 5].

mand shocks, the single-crossing property always holds. Indeed, numerically we find that the

“crossing point” is always at a high demand state.5 That is, the effect of an increase in c or

reduction in α on the increased incentive to cheat dominates the impact on net continuation

payoffs for sufficiently low demand shocks where agents are especially desperate for another

dollar of profit. However, net continuation payoffs rise with increased operating costs and

increased risk aversion, and this effect dominates once demand is sufficiently high, making

collusion easier to sustain. These results reflect the induced decreasing relative risk aver-

sion in preferences—the effect of an increase in operating costs or risk aversion on the period

utility gain from cheating on a given level of collusion falls as demand, and hence profits, rise.

Asymmetric cartels. Although we do not analyze it formally, Propositions 5 and 6 have

suggestive implications for how heterogeneous agents with different levels of fixed operating

costs or risk aversion should collude. For example, in practice, OPEC countries do not rely

solely on oil revenues, and higher non-oil revenues effectively imply lower fixed operating

costs. From this perspective Saudi Arabia with $1,789 per capita in non-oil export revenues

may effectively have lower fixed operating costs than OPEC member such as Venezuel which

only has $127 per capita in non-oil export revenues.6. Then the propositions would suggest

5Not surprisingly, one can construct very asymmetric distributions such that on some parameter range,
changes in parameters have uniform effects in all demand states on the incentives to cheat on the cartel.

6Data source: 2013 OPEC Statistical Bulletin and 2013 IMF World Economic Outlook
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that Saudi Arabia should have a lower share of output in low demand states (where high

operating cost cartel members find collusion more difficult to sustain), but a higher share

of output when demand is high (and high operating cost cartel members mind ceding share

by less, and are willing to do so in order to obtain a greater share in low demand states

where they care more about their share). In particular, high operating cost countries gain

relatively more utility from a marginal dollar when demand is low, and their incentive to

cheat on the cartel in low demand states is higher; so that a cartel that seeks to maximize

a weighted sum of the uitilities of each caretel member will allocate relatively greater shares

to high operating cost/more risk-averse countries when demand is low, and relatively lower

shares when demand is high. Consequently, the low operating cost or less risk averse cartel

member’s output should be more sensitive to the level of demand than is the output of higher

operating cost or more risk-averse cartel members. Thus, Saudi Arabia should be the swing

producer, with relatively lower outputs in bad times, and relatively higher outputs in good

times, so that its output would appear to be the primary driver determining cartel outcomes.
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Figure 4: Production shares of selected OPEC countries as a function of price, 1965-2009, excluding Iraq’s
production.
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Venezuela Iran Kuwait Libya Nigeria UAE Saudi
Oil Price -0.085*** -0.070*** -0.066*** -0.043** 0.025** 0.030** 0.158***

(0.00) (0.00) (0.00) (0.02) (0.03) (0.02) (0.00)
Constant 0.151*** 0.179*** 0.113*** 0.089*** 0.063*** 0.066*** 0.250***

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
R2 0.29 0.24 0.23 0.13 0.11 0.11 0.36
N 44 44 44 44 44 44 44

Table 1: Price sensitivity of production shares
1965-2009: In each regression the dependent variable is the
share of OPEC production for each country. The independent
variable is the lag of 2009 real oil price. The numbers in parenthesis
are p-values. ***, ** denote significance at 5%, and 10% levels.

Figure 4 offers evidence consistent with such a premise.7 It reveals that production shares

are very asymmetric, with four countries—Iran, Kuwait, Libya and Venezuela—consistently

having sharply higher shares when oil prices are very low; and three countries—Saudi Ara-

bia, United Arab Emirates and Nigeria—consistently having sharply lower production shares

when oil prices are very low, and higher shares when oil prices are at their highest. 8 Table 1

summarizes this figure by measuring the slope of the price-share relationship using regression

analysis. It shows that Saudi Arabia among the pro-cyclical producers and Venezuela among

the counter-cylycal producers have the highest (absolute) price sensitivity. On average, for

every dollar drop in real oil price, in the following year Saudi Arabia cuts back on its share by

0.158%, whereas Venezuela increases its share by 0.0805%. Obviously, conclusions about why

these patterns obtain are speculative in nature. Nonetheless, the patterns are suggestive.

3 Conclusion

A robust prediction of the theoretical literature on collusion under demand uncertainty when

cartel members observe demand and can monitor each other’s actions is that collusion is more

difficult when demand is higher. In contrast to this theoretical prediction, most empirical

7The pattern is robust to including year-fixed effects to control for events in this period that can impact
all OPEC members such as Iraq war, Gulf war, Iran revolution, etc.

8We omit Algeria, Indonesia and Qatar from Figure 4 because their shares of production do not
systematically vary with price. We exclude Iraq’s share due to the impact of the war and the fact that Iraq
did not fully participate in OPEC’s production agreements in this period.
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researchers have concluded that price wars are more common when demand is low.

We provide a simple theory of collusion by risk averse agents that face positive fixed oper-

ating costs that can reconcile these literatures by providing conditions under which it is most

difficult to collusively restrict output when demand is especially low, but that it also becomes

difficult to support collusion when demand is high. The idea that cartel members are risk

averse captures the observation that many effective cartels are comprised of countries that

collusively restrict output of various commodities. Such cartels do not care directly about

profits, per se, but rather about the utility derived by their risk-averse citizens who receive

those profits. As a result, the marginal value of a dollar of profit is greater when demand,

and hence profits, are lower; and this high marginal valuation is magnified by the large fixed

operating costs that Scherer (1980) cites as playing a vital role in making collusion difficult.

We show that for aggregate cartel output relative to monopoly levels to be a U-shaped

function of the level of demand, both ingredients are necessary—cartel members must be risk

averse, and operating costs must be positive. We further establish that when cartel members

are more risk averse or fixed operating costs are higher, then it becomes more difficult to

support collusion in bad demand states, but easier in good ones.
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Appendix

Proof of Proposition 1 : When α = 1, it is immediate from Rotemberg and Saloner

(1986) that q(θ)/qm(θ) is non-decreasing in θ.

If c = 0, and the IC constraint does not bind, then qC(θ)/qm(θ) = 1. Now suppose that

the IC constraint binds, and let θ1 < θ2 be two arbitrary values of θ outside the monopoly

support region. Since qm(θ) = θ/4, to show that q(θ)/qm(θ) increases in θ we must show

that q(θ2)/θ2 > q(θ1)/θ1, where q(θi)/θi ≡ zi ∈ (1/4, 1/3). To prove that z2 > z1, suppose

instead that z1 ≥ z2. Rewrite the IC constraint in terms of zi when c = 0 as:(
θ2i

(1− zi)2

4

)α
−
(
θ2i (1− 2zi)zi

)α
= v.

Since v is independent of θ,(
θ21

(1− z1)2

4

)α
−
(
θ21(1− 2z1)z1

)α
=
(
θ22

(1− z2)2

4

)α
−
(
θ22(1− 2z2)z2

)α
.

Since θ1 < θ2, it follows that((1− z1)2

4

)α
−
(

(1− 2z1)z1

)α
>
((1− z2)2

4

)α
−
(

(1− 2z2)z2

)α
.

Calling the four terms in this inequality from left to right as A,B,C and D, rewrite the in-

equality as: A−B > C −D. Under the assumption z1 > z2, and recalling that cooperation

profits decrease in z, i.e., (1 − 2z)z decreases in z > 1/4, we have B/D < 1. Therefore,

A−B > C −D implies that A−B
B

> C−D
B

> C−D
B

B
D

= C−D
D

. Therefore, A
B
> C

D
, i.e.,( (1−z1)2

4

(1− 2z1)z1

)α
>
( (1−z2)2

4

(1− 2z2)z2

)α
,

or equivalently, (1−z1)2
(1−2z1)z1 >

(1−z2)2
(1−2z2)z2 for z2 ≥ z1. But g(z) = (1−z)2

(1−2z)z is a decreasing function

of z, i.e., g′(z) < 0, a contradiction. �

Proof of Proposition 2: The first-order condition is

h′(θ) =2αθ

(
9

64
(
9θ2

64
− c)α−1 − 1

8
(
θ2

8
− c)α−1

)
= 0.

Solving yields

θ2

8
− c

9θ2

64
− c

= (
8

9
)

1
1−α ≡ k ⇒ θ̂ = 8

√
(1− k)c

8− 9k
.
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Notice that k = (8
9
)

1
1−α < 8

9
< 1. Clearly, θ < θ̂ implies that

θ2

8
− c

9θ2

64
− c

< (
8

9
)

1
1−α ⇒ 9(

9θ2

64
− c)α−1 < 8(

θ2

8
− c)α−1.

Therefore, h′(θ) < 0. A similar argument holds for θ > θ̂.

The requirement that a < θ̂ < b imposes bounds on the range of α. We require

a < θ̂ = 8

√
(1− k(α))c

8− 9k(α)
< b.

Solving yields the upper and lower bounds:

ᾱ(c) = 1 +
log(9/8)

log(8a
2−64c

9a2−64c)
and α(c) = 1 +

log(9/8)

log(8b
2−64c

9b2−64c)
.

Since α(x; c) = 1 + log(9/8)/ log(8x
2−64c

9x2−64c) is a decreasing function of x, with a limit of zero

as x goes to infinity, θ̂ ∈ (a, b) exists as long as α(c) < α < ᾱ(c).

Finally, differentiating α̂(c) and θ̂(α, c) with respect to c and α delivers the comparative

statics results:

∂α̂(c)

∂c
=

8a2 log(9/8)

(9a2 − 64c)(a2 − 8c)
(
log(1− a2

9a2−64c)
)2 ≥ 0,

which is non-negative since c < a2

9
; and

∂θ̂(α, c)

∂α
= −

2
2α−1
α−1 9

1
1−α log

[
9
8

]
c

(α− 1)2
(

2
3α
α−1 9

1
1−α − 9

)2√(
( 9
8)

1
1−α−1

)
c

2
3α
α−1 9

1
1−α−9

< 0;
∂θ̂(α, c)

∂c
=

4

c

√√√√((89) 1
1−α − 1

)
c

8
1

1−α9
α
α−1 − 8

> 0. �

Proof of Corollary 1: Let θ < θ̄ be the two roots of h(θ;α, c) = v when it has two roots

for a ≤ θ ≤ b. Note that v is independent of θ. Since h(θ;α, c) is a U-shaped function of

θ (Proposition 2), for intermediate values of θ where h(θ;α, c) < v the IC constraint (3) is

slack. Therefore, monopoly profits can be supported for θ ∈ [θ, θ̄].

For h(θ;α, c) = v to have two roots, v can be neither too small nor too large. Since
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v ≡
(

β
1−β

)
(UC − UP ), there is one-to-one mapping between v and β 9. Thus, we must

bound β appropriately: β must exceed the β that solves

h(θ̂;α, c) =

(
β

1− β

)
(UC − UP ),

and be less than the β̄ that solves

Min{h(a;α, c), h(b;α, c)} =

(
β̄

1− β̄

)
(UC − UP ).

Hence, h(θ;α, c) = v has two roots for θ ∈ [a, b] if and only if β ∈ [β, β̄]. �

Proof of Proposition 3: We must show that h(θ̂ − δ) > h(θ̂ + δ), i.e.,(
9

64
(θ̂ − δ)2 − c

)α
−
(

1

8
(θ̂ − δ)2 − c

)α
>

(
9

64
(θ̂ + δ)2 − c

)α
−
(

1

8
(θ̂ + δ)2 − c

)α
.

Let m1 = 1
8
(θ̂2 + δ2)− c, and m2 = 9

64
(θ̂2 + δ2)− c. Also let n1 = 1

8
(2θ̂δ), and n2 = 9

64
(2θ̂δ).

Now rewrite the inequality to be established as

(m1 + n1)
α − (m1 − n1)

α > (m2 + n2)
α − (m2 − n2)

α .

Given that m2 > m1 and n2 > n1, to prove the above inequality it suffices to show that the

cross-derivative of L = (m+ n)α−(m− n)α with respect to m and n is negative, and we have:

∂2L

∂m∂n
= −α(1− α)

(
(m+ n)α−2 + (m− n)α−2

)
< 0. �

Proof of Proposition 4:

∂H(z, θ)

∂z
=

1

2
αθ2

(
2(4z − 1)(θ2(1− 2z)z − c)α−1 − (1− z)(

θ2

4
(1− z)2 − c)α−1

)
.

9We ignore the endogeneity of q with respect to β and its effect on UC . As β rises there is an indirect
effect on v via changes in UC . That is, UC is a function of q(θ) at each state θ, but its effect is reinforcing:

(i) from v ≡
(

β
1−β

)
(UC − UP ), we see that fixing q state-by-state, increasing β raises v, i.e., dv/dβ > 0

for fixed q’s, and (ii) from the constrained optimization in (4), increasing v relaxes the IC constraint,
weakly increasing period payoffs, i.e., dUC/dv ≥ 0. It follows from (i) and (ii) that dUC/dβ ≥ 0. Since
UP = E[U(θ2/9− c)] is independent of q and therefore of β, the indirect effect of β on v must be reinforcing,
i.e., d(UC − UP )/dβ > 0. Therefore, there is a one-to-one relationship between β and v.
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To show ∂H(z,θ)
∂z

is negative, equivalently we must prove:

1− z
2(4z − 1)

>

(
θ2 1

4
(1− z)2 − c

θ2z(1− 2z)− c

)1−α

.

Since the cheat payoff, (1 − z)2/4 always exceeds the cooperation payoff, z(1 − 2z), the

right-hand side exceeds one. Therefore, it suffices to show that

1− z
2(4z − 1)

>
θ2 1

4
(1− z)2 − c

θ2z(1− 2z)− c
.

Define c′ ≡ c/θ2 and rearrange the above inequality as

1− z
2(4z − 1)

−
1
4
(1− z)2 − c′

z(1− 2z)− c′
=

1
2
(3z − 1)(z − 1 + 6c′)

2(4z − 1)(z(1− 2z)− c′)
>

1
6
(3z − 1)2

2(4z − 1)(z(1− 2z)− c′)
> 0,

for 1/4 ≤ z < 1/3. The next to the last inequality follows since the above expression

decreases in c′ and thus is minimized when c′ equals its upper bound of Max(c/θ2) =

(a2/9)/a2 = 1/9, implying that 3(z − 1 + 6c′) > (3z − 1).

To prove convexity of H, we bound the second derivative of H/α strictly away from zero

(we divide by α because the derivative of H goes to zero as α goes to zero). We also write

H/α in terms of c′ = c/θ2 ∈ [0, 1
9
] to make the domain compact:

1

α
H(z;α, c′) =

1

α

[(
(1− z)2

4
− c′

)α
− ((1− 2z)z − c′)α

]
,

with associated second derivative

1

α

d2H

dz2
=

1

4
(1− α)

[
4(4z − 1)2 ((1− 2z)z − c′)α−2 − (1− z)2

(
1

4
(1− z)2 − c′

)α−2]
(8)

+
1

2

[(
1

4
(1− z)2 − c′

)α−1
+ 16 ((1− 2z)z − c′)α−1

]
.

The compact domain has z ∈ [1/4, 1/3], α ∈ [0, 1] and c′ ∈ [0, 1/9]. Further, 1
α
d2H
dz2

is contin-

uous and twice differentiable on its domain, with derivatives bounded from below, so that

in an ε ball around any point (z, α, c′), 1
α
d2H
dz2

cannot drop too far below its value at (z, α, c′).

Therefore, to establish convexity, it suffices to bound 1
α
d2H
dz2

strictly away from zero on an

appropriately fine grid. An exhaustive search on a grid with increments of 0.001 for z, α

and c′ reveals that it achieves a lower bound of 9/2 when α = 1. See Figure 5.
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Figure 5: 3-dimensional plot of the second derivative of H/α; (a) the left panel shows H/α as a function
of α and c at z = 1/4, and (b) the right panel shows H/α as a function of α and z at c = 0.

We now establish that over-production relative to monopoly increases in θ− θ̄ for θ > θ̄;

and in θ − θ, for θ < θ. First consider any θ2 > θ1 ∈ (θ̄, b]. To establish that q(θ)/qm(θ)

increases in (θ − θ̄), we show that z2 > z1. Suppose instead that z1 > z2. We have:

H(zi, θi) =
(
θ2i

(1− zi)2

4
− c
)α
−
(
θ2i (1− 2zi)zi − c

)α
= v for i = 1, 2.

Consider the two functions H(., θ1) and H(., θ2). From Proposition 2 for θ > θ̄, h increases

in θ, so

h(θ2;α, c) > h(θ1;α, c)⇒ H(1/4, θ2) > H(1/4, θ1).

Also from incentive compatibility,

H(z2, θ2) = H(z1, θ1) = v,

at the premised z1 > z2, and since H(z, θ) is decreasing in z for any θ, this implies

that H(z2, θ1) > H(z2, θ2). But if H(1/4, θ2) > H(1/4, θ1) and H(z2, θ2) < H(z2, θ1)

then by the intermediate value theorem there exists a z′ with 1/4 < z′ < z2 such that

H(z′, θ2) = H(z′, θ1), a contradiction of θ2 > θ1 and z′ < 1/3.

An identical proof by contradiction establishes that if θ1 < θ2 < θ, then z1 > z2. That

is, z1 < z2 would imply H(z2, θ2) = H(z1, θ1) at z1 < z2 (by incentive compatibility), and

hence H(z1, θ2) > H(z1, θ1), but here, H(1/4, θ1) > H(1/4, θ2) yields a contradiction via the

intermediate value theorem. �
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Proof of Proposition 5: Let H1(z, θ) ≡ H(z, θ;α1, c) and H2(z, θ) ≡ H(z, θ;α2, c) for

α1 > α2. We prove that if there exists a θ such that z1(θ) = z2(θ), then it is unique. Call

these values θ∗ and z∗. To establish this single-crossing result, we prove that for a fixed

z, H1 − H2 increases in θ by showing that ∂H
∂θ

increases in α. Therefore, there exists a

neighborhood of θ∗ and z∗, such that for a fixed z, H1 is a steeper function of θ than H2.

When both IC constraints bind (i.e., Hi = vi for i = 1, 2) then H1 −H2 = v1 − v2 does

not vary with θ, i.e., ∂H
∂θ

= ∂v
∂θ

= 0.

H(z, θ) =

(
θ2

(1− z)2

4
− c
)α
−
(
θ2(1− 2z)z − c

)α
= v ≡ v(α, c), (9)

∂H

∂θ
=

1

2
θα

(
(1− z)2

(
θ2

(1− z)2

4
− c
)α−1

− 4z(1− 2z)
(
θ2(1− 2z)z − c

)α−1)
= 0.

Defining γF ≡ (1− z)2
(
θ2 (1−z)

2

4
− c
)α−1

and γC ≡ 4z(1− 2z) (θ2(1− 2z)z − c)α−1, we must

have γF = γC ≡ γ. We now prove that ∂H
∂θ

increases in α, i.e., ∂2H
∂θ∂α

> 0:

∂2H

∂θ∂α
=

1

2
θ
(

(1− z)2
(
θ2

(1− z)2

4
− c
)α−1

− 4z(1− 2z)
(
θ2(1− 2z)z − c

)α−1
+ α

(
(1− z)2

(
θ2

(1− z)2

4
− c
)α−1

log
(
θ2

(1− z)2

4
− c
)
− 4z(1− 2z)

(
θ2(1− 2z)z − c

)α−1
log
(
θ2(1− 2z)z − c

)))
.

Substituting γF and γC , and using γF = γC ≡ γ, rewrite this as:

∂2H

∂θ∂α
=

1

2
θ
(
γF − γC + α

(
γF log

(
θ2

(1− z)2

4
− c
)
− γC log

(
θ2(1− 2z)z − c

)))
=

1

2
θαγ

(
log
(
θ2

(1− z)2

4
− c
)
− log

(
θ2(1− 2z)z − c

))
> 0.

The inequality holds since (1−z)2
4

> (1 − 2z)z for z ∈ [1/4, 1/3). When monopoly output

cannot be supported in both environments, then ∂2H
∂θ∂α

> 0, implies that for θ > θ∗, we need

z1(θ) > z2(θ) to retrieve H1 = v1 and H2 = v2; and θ < θ∗ demands z1(θ) < z2(θ). �

Proof of Proposition 6: Let H1(z, θ) ≡ H(z, θ;α1, c) and H2(z, θ) ≡ H(z, θ;α2, c) for

c1 < c2. We prove that if there exists a θ such that z1(θ) = z2(θ), then it is unique. Call

these values θ∗ and z∗. To establish this single-crossing result, we prove that for a fixed

z, H1 − H2 increases in θ by showing that ∂H
∂θ

decreases in c. Therefore, there exists a

neighborhood of θ∗ and z∗, such that for a fixed z, H1 is a steeper function of θ than H2.

When both IC constraints bind then ∂H
∂θ

= ∂v
∂θ

= 0. We have

∂H

∂θ
=

1

2
θα

(
(1− z)2

(
θ2

(1− z)2

4
− c
)α−1

− 4z(1− 2z)
(
θ2(1− 2z)z − c

)α−1)
= 0.
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We now prove that ∂H
∂θ

decreases in c, i.e., ∂2H
∂θ∂c

< 0:

∂2H

∂θ∂c
=

1

2
α(1− α)θ

(
(1− z)2

(
θ2

(1− z)2

4
− c
)α−2

− 4z(1− 2z)
(
θ2(1− 2z)z − c

)α−2)
.

Substituting γF and γC , and using γF = γC ≡ γ, rewrite this as:

∂2H

∂θ∂c
=

1

2
α(1− α)θ

(
γF

θ2 (1−z)
2

4
− c
− γC
θ2(1− 2z)z − c

)

=
1

2
α(1− α)θγ

(
1

θ2 (1−z)
2

4
− c
− 1

θ2(1− 2z)z − c

)
< 0.

The inequality holds since (1−z)2
4

> (1 − 2z)z for z ∈ [1/4, 1/3), and hence its reciprocal is

smaller. When monopoly output cannot be supported in both environments, then ∂2H
∂θ∂c

> 0,

implies that for θ > θ∗ we need z1(θ) > z2(θ) to retrieve H1 = v1 and H2 = v2, and θ < θ∗

demands z1(θ) < z2(θ). �
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