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Abstract

Implementation of optimal or near-optimal mechanisms with heterogeneous

bidders is informationally demanding for auctioneers, and such mechanisms in-

variably employ discriminatory winning and payment rules—creating legal and

moral hazard concerns. We show how an auctioneer can alleviate informational

burdens and avoid discrimination by exploiting information aggregation by cap-

ital markets, linking auction outcomes to post-auction market prices to obtain

high revenues even when arbitrarily heterogeneous bidders pay with different

securities. Our insight is that the market will collect information and respond

to details ex post when pricing the winner, so the selling mechanism can be

detail-free ex ante and informationally un-demanding for the auctioneer.
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1 Introduction

A common, fundamental critique of theoretically-derived optimal or near-optimal

mechanism designs with heterogeneous agents is that they are invariably complicated

and informationally demanding for auctioneers.1 When bidders in an auction are

ex-ante heterogeneous—as is the case in practice—the optimal design is sensitive to

the specific characteristics of all agents, requiring an auctioneer to know all features

of the environment in order to determine the winner and payments. Moreover, even

if an auctioneer knows everything, optimal auction rules are discriminatory, requiring

different rules for different bidders and favoring some bidders at the expense of others.

Such discriminatory designs give rise to legal and moral hazard concerns.2

Heterogeneous bidders impose even heavier demands for information and discrimi-

nation in security-bid auctions, where the winner pays the seller with securities rather

than cash. Unlike cash bids, the monetary values of security bids depend on the fine

details of the underlying cash flow distributions, and since bidder cash flows are pri-

vate information, a security bid’s monetary value is not transparent. Without intri-

cate discriminatory adjustments for bidder heterogeneities and the security used, the

“wrong” (lower valuation) winning bid is likely to be selected, and both the probability

and costs of such selections rise when a security’s value is more sensitive to cash flows.

Our paper develops a simple and nondiscriminatory mechanism for security-bid

auctions that imposes minimal information burdens on the seller and treats all bid-

ders identically, but yet—regardless of how bidders differ ex ante—it always generates

high revenues. Our insight is that a seller can alleviate informational burdens and

avoid discrimination by exploiting information aggregation by capital markets, link-

ing auction outcomes to prices set by the market post-auction.

Our “floating-parameter” securities auction consists of two stages. In the first

stage, bidders who are privately informed about their synergies—which add value to

the auctioned asset—submit cash bids in a second-price auction, and the winning

price is publicly announced. In the second stage, in lieu of cash, the winner pays

with securities (claims to future cash flows) priced by a competitive capital market

that incorporates all public information. The security paid is from a possibly bidder-

1See e.g., Hurwicz 1972, Wilson 1985, Dasgupta and Maskin 2000, Bergemann and Morris 2005.
2As a consequence, regulators may place restrictions on discriminatory designs. For example, in

takeovers, fiduciary duties may require a target to accept the “highest” bid.
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specific set of securities ordered by a parameter (e.g., the set of equities ordered by

share). This set is either pre-specified by a seller or exogenously determined. The

parameter paid is such that the security’s post-auction market value—its expected

payoff conditional on the second-highest cash bid (the auction’s winning price) and

the winner’s identity—equals that second-highest cash bid. That is, the parameter

paid floats after the first stage of the auction so as to deliver a guaranteed cash value.

We allow for arbitrary heterogeneity across bidders in (1) standalone values, (2)

distributions of expected synergies from acquisition, (3) conditional distributions of

future payoffs given expected synergies, and (4) the types of ordered securities used

by different bidders. Despite the bidder heterogeneity, we prove that with our nondis-

criminatory floating-parameter design, steeper securities—securities whose payoffs are

more sensitive to underlying cash flows—always generate greater seller revenues than

flatter securities, and flatter securities generate greater revenues than cash auctions,

regardless of how bidders differ. Specializing to equity securities, we show that the

revenues raised are close to those with the optimal design.

We contrast outcomes in our “floating-parameter” auction design with those in

the “fixed-parameter” securities auctions studied by the literature where the security

bids submitted in the auction determine the security parameter paid. To start, we

consider the benchmark setting of existing studies—ex-ante identical bidders who use

the same ordered set of securities. In such settings, DeMarzo, Kremer, and Skrzy-

pacz (2005, DKS) show that in standard (nondiscriminatory) fixed-parameter security

auctions, expected seller revenue is higher when the securities used for payment are

steeper, so that payments are tied more tightly to the winner’s valuation.

In this homogeneous bidder setting, we derive a revenue equivalence result for

nondiscriminatory fixed- and floating-parameter designs. In our floating-parameter

auction, a bidder breaks even when it barely wins, i.e., when the first and second

highest bids are equal so that the winner pays its own bid. When this happens, the

market does not know that the winner is just about to lose, inferring instead that

the winner’s synergies are at least as high as those associated with the bid, and likely

higher. As a result, at the break-even point, the market overestimates the winner’s

synergies, so the actual value of the security paid by the winner is less than the cash

bid. This provides bidders in floating-parameter auctions incentives to submit more

aggressive cash bids than in cash auctions, and we show this results in the floating- and
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fixed-parameter designs delivering exactly the same expected revenue to the seller.

Revenue equivalence breaks down once there is heterogeneity. As a first step,

we consider a setting with bidders who are ex-ante identical in all regards except

for stand-alone values, and stand-alone values are small relative to synergies. We

prove that when the stand-alone values of different bidders go to zero at different

rates, floating-parameter auctions always achieve first-best revenues (full surplus ex-

traction), whereas nondiscriminatory fixed-parameter security auctions earn strictly

less—and, of course, so do cash auctions.

We then consider the general case with heterogeneous bidders whose standalone

values need not be small. We prove that given any fixed set of reserves (including no

reserves), seller revenues in floating-parameter auctions are always higher with steeper

securities than with flatter securities, which, in turn, exceed revenues from cash auc-

tions, regardless of how bidders differ ex ante. This result holds even when different

bidders use different types of securities—for example, if some bidders use equity and

the others use debt. In particular, expected revenue is higher if some bidder switches

to steeper securities, as long as all other bidders use securities that are at least as steep

as those they had used before. Relatedly, we prove that revenues in floating-parameter

auctions always rise when the standalone value of any single bidder is reduced. These

results reflect that bidders are more concerned with the market’s inference about their

synergies when they use steeper securities—whose values are more sensitive to bidder

synergy types—or have lower standalone-values, so a bidder would pay out a larger

fraction of its total cash flows upon winning. Both scenarios incentivize bidders to

submit more aggressive cash bids. For perspective, with ex-ante identical bidders,

nondiscriminatory fixed-parameter auctions exhibit the same properties if all bidders

change together—revenues rise if all bidders switch to the same steeper security, or if

their standalone values are reduced by the same amount—but if only a single bidder’s

standalone value is reduced, revenues eventually fall below those in a cash auction.

It follows directly that a seller in a floating-parameter auction who can select the

set of ordered securities used by a given bidder would choose the steepest feasible set

of securities for that bidder—see DKS for why sets of particularly steep securities may

be infeasible (moral hazard, etc.), possibly for bidder-specific reasons.3 More subtly,

3Also, when bidders finance their cash bids by issuing securities to the market after the auction—
a scenario that our floating-parameter design incorporates—bidders may have exogenous reasons
for using different types of security: for example, institutional rigidities (e.g., tax, bankruptcy risk,
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we prove that a bidder’s payoff is always higher when it uses flatter securities that

are in the bidder’s feasible set—this result is not immediate because a bidder who

uses flatter securities retains a higher share of payoffs, but is also less likely to win.

The key distinction between the two designs is that bidders submit security bids in

fixed-parameter auctions, but they submit cash bids in floating-parameter auctions.

If bidders have different characteristics, some will bid more aggressively than others.

More aggressive bidding always benefits a seller in floating-parameter auctions—no

matter how bidders differ, more cash is always good—but not in fixed-parameter auc-

tions where the security bid with the highest face value may not have the highest mon-

etary value, as the bid could be from an incentivized bidder with a low valuation. Put

differently, bids in fixed-parameter auctions are made in different and non-transparent

units (e.g., the monetary values of equity claims depend on a firm’s specific features

and private information); to properly compare bids, a seller must solve each bidder’s

optimization problem. By contrast, floating-parameter designs convert all bids into a

common unit—cash. This makes it easy to evaluate bids even when bidders have

arbitrarily different characteristics and use different types of securities.

The ability of our nondiscriminatory mechanism to accommodate heterogeneous

bidders differentiates it from existing work in fundamental ways. Its virtues include:

1. It is simple, detail-free and invariant to the environment: a seller uses the same

mechanism no matter how bidders differ ex ante, or how their securities differ.

2. It removes legal and moral hazard concerns about discriminatory auctions. In

takeovers, it lets a seller satisfy its fiduciary duties to accept the “highest” bid

even if bidders have very different characteristics.

3. It alleviates information demands. Collectively, the market only needs to learn

about the winner, and it can acquire the information post-auction, after a win-

ner’s selection. By contrast, in a fixed-parameter auction, to discriminate prop-

erly, a seller must know all information about all bidders pre-auction.

4. It always generates higher revenues than cash, and is robust to bidder hetero-

geneity, exhibiting the property that revenues rise when any single bidder uses

a steeper security, or has a lower standalone value.

or leverage concerns) can lead to the use of debt versus equities; see e.g., Faccio and Masulis (2005).
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The advantages of floating-parameter designs reflect that the market can do things

that a seller cannot : (i) a seller cannot discriminate ex ante due to legal/moral hazard

concerns about discriminatory auctions, while the market effectively discriminates via

its ex-post assessment of the winner; (ii) the market responds to details ex post, so the

selling mechanism can be detail-free ex ante and a seller doesn’t ever have to learn.

We specialize to equity auctions to establish ways in which revenues in our simple

floating-parameter design are close to those in the complicated optimal auction de-

sign with heterogeneous agents (Liu, 2016); optimal designs for securities other than

equity are currently unknown. In the optimal equity design, when bidders have the

same synergy distribution but differ in standalone values, those with lower standalone

values have higher winning probabilities.4 This reflects that a bidder’s informational

advantage in an equity auction grows with its standalone value, making it optimal to

reward smaller bidders that the seller can better exploit. Floating-parameter auctions

share this feature—in floating-parameter auctions, a smaller bidder has a greater in-

centive to signal high synergies because it pays a higher equity share when it wins,

and is thus more concerned with the exchange-rate set by the market. This leads

smaller bidders to submit more aggressive bids, making them more likely to win but

with no need for a seller to explicitly discriminate against larger bidders .

We establish that a floating-parameter auction with a common reserve price can

generate almost as much revenue as the optimal mechanism (which requires discrim-

inatory reserves as well as discriminatory selection for bids above reserves) when

bidders have the same synergy distribution but differ in standalone values. We show

that with uniformly-distributed synergies, as the standalone values of the target and

bidders grow large vis-à-vis the dispersion in synergies,5 the difference in expected

revenues between the optimal and floating-parameter designs goes to zero. Floating-

parameter auctions implement the optimal mechanism precisely: (1) both designs se-

lect the same winner; and (2) the heterogeneous reserves for different bidders in the op-

timal design correspond to the same cash bid with floating-parameter offers. It follows

that floating-parameter auctions can select the right bidder and achieve the optimum.

Thus, we prove that revenues in the floating-parameter design converge to those

4By way of contrast, standalone values are irrelevant in cash auctions.
5This scenario captures takeover settings—Betton et al.’s (2008) analysis of all control contests

for publicly-traded US targets between 1980 and 2005 finds that, on average, the combined
standalone values of the target and acquiring firm are over 50 times the size of the synergies.
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in the optimal mechanism both when standalone values grow very large or very small.

We also numerically analyze cases in which synergies are neither large nor small rel-

ative to standalone values, and find that revenue losses remain small.

Relation to Literature. Floating-parameter auctions were first analyzed in Liu

(2012). Liu studies an ascending-price format with equity payments, showing how

signaling incentives arise and interact with the multiple-bid nature of ascending-

price auctions. By contrast, we characterize the revenue properties of second-price,

floating-parameter auctions for general securities, allowing for arbitrary heterogeneity

in bidder characteristics and the types of securities they use.6

Researchers have stressed the desirability of robust mechanisms that do not de-

pend on agents’ common knowledge so as to work well in a range of settings (Hurwicz

1972, Wilson 1985, Dasgupta and Maskin 2000, Bergemann and Morris 2005). With

heterogeneous bidders, a seller in a fixed-parameter auction must know all details of

bidders ex-ante and discriminate accordingly, else the auction can generate lower rev-

enues than cash auctions. In contrast, floating parameter auctions are detail-free—the

high bid wins and pays the second-highest bid. Moreover, floating-parameter auctions

shift informational burdens from the seller to the capital market, also reducing total

informational demands as the market only needs to learn after the auction about the

winner—there is no need to learn about losing bidders. In addition, bidders have

weakly dominant strategies. Thus, not only does a seller need not know anything

about bidders, but bidders do not need to know anything about rival bidders.

Despite its modest informational demands and simple structure, our floating-

parameter design always generates higher revenues than cash auctions. Thus, our

paper also relates to research on robust auctions that obtain maximum revenue guar-

antees in worst case scenarios about unknown distributions of bidder valuations or

bidder beliefs and equilibrium selection (Bergemann, Brooks, and Morris (2016, 2017,

2019), Brooks and Du (2021), Du (2018)). Indeed, with our mechanism, revenues

when bidders have different standalone values and use different types of securities

6More generally, our paper also relates to a vast literature on security auction design that
includes Hansen (1985), Crémer (1987), Samuelson (1987), Dasgupta and Tsui (2004), Povel
and Singh (2010), Gorbenko and Malenko (2011), Abhishek, Hajek, and William (2015), Sogo,
Bernhardt and Liu (2016), Sogo (2017) and Cong (2020), among others. Dasgupta and Tsui
(2003), Gorbenko and Malenko (2014) and Boulatov and Severinov (2021) analyze auctions with
asymmetric bidders, and Biais et al. (2007), Ekmekci, Kos and Vohra (2016), Burkart and Lee
(2015), Lee and Rajan (2018), and Eckbo, Malenko and Thorburn (2020) analyze auction/security
design in financing and takeover settings.
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always exceed those in a homogeneous setting where bidders have the same (highest)

standalone value and use the same (flattest) set of securities.

The nondiscriminatory nature of floating-parameter designs also makes them ro-

bust to moral hazard concerns, as they treat the cash bids of all bidders identically,

precluding the possibility of rigging outcomes. In contrast, with discriminatory auc-

tions, a biased designer (e.g., a firm’s board) can favor its desired winner in ways that

are undetectable absent knowledge of its information.

Our auction design with market feedback closely relates to the two-stage mecha-

nism structure of Mezzetti (2004) in which outcomes (allocations) are determined first,

and then payments are determined, depending on the information revealed in the first

stage. In Mezzetti, as in our paper, agents may have heterogeneous characteristics

and transfers are contingent on the realized decision-outcome payoffs. In our auction

design, it is the market’s assessment of the value of merged entity in the second stage

that determines the security payment of the auction winner at the first stage.

Our paper relates to Dasgupta and Maskin (2000) in that they simplify auction

designs by making bids contingent on other bidders’ valuations, whereas we do so by

making bids contingent on post-auction market prices.7 Thus, we contribute to work

on the role of financial markets, in particular to how market feedback affects real out-

comes (Bond et al. 2012; Bond and Goldstein 2015; Goldstein and Yang 2019) and

how takeover bids affect stock prices (Bagnoli and Lipman 1996). To our knowledge,

we are the first to show how capital markets can be used to simplify auction designs.

2 Illustrative Example

We use an example with equity payments to illustrate outcomes for the different

auction designs. Suppose a seller’s standalone value is zero and bidders’ expected

synergies are independently distributed according to a uniform distribution on [0, 1].

Consider a bidder i with standalone value Xi > 0 and expected synergy θi. In a

second-price cash auction, i has a weakly dominant strategy to bid its true valuation,

7This relates our paper to work on the performance of “simple contracts” relative to the optimal
complex menu. McAfee, McMillan, and Reny (1989) derive conditions under which the optimal sell-
ing procedure in a multiple-bidder setting can be implemented via a simple mechanism where a seller
makes offers only to one bidder. Rogerson (2003) and Chu and Sappington (2007) identify conditions
in principal-agent settings under which limited menus extract over 70% of the surplus. See also Chu,
Leslie and Sorensen (2011), Bose, Pal and Sappington (2011), Chassang (2013), and Carroll (2015).
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βcashi (θi) = θi, just breaking even if it wins and pays its own bid. Similarly, in a

second-price fixed-parameter equity auction i bids the share βfixi (θi) = θi
Xi+θi

that

would break even in the event that i paid its bid.

In a floating-parameter equity auction, the equilibrium cash bid also breaks even

when it is the bid paid, i.e., when the two highest bids are equal; but when this hap-

pens, the market does not know that the winner is about to lose, inferring only that its

synergies are at least as high as those associated with the bid (and likely higher). This

logic pins down i’s bidding strategy to be βflti (θi) = θi(1 + 1−θi
2(Xi+θi)

), which strictly in-

creases in θi and exceeds βcashi (θi) = θi. To understand this bidding strategy, observe

that if i has expected synergy θ∗i and wins at a price that equals its bidding strategy

βflti (θ∗), then the market infers that βflti (θi) ≥ βflti (θ∗). This translates to θi ≥ θ∗, i.e.,

the market believes that θi is uniformly distributed over
[
θ∗, 1

]
. This corresponds to

an expected synergy of
1+θ∗i

2
, which exceeds i’s true type θ∗i . The market assesses the

value of the joint firm at Xi+
1+θ∗i

2
, so i pays equity share βflti (θ∗i )/

(
Xi+

1+θ∗i
2

)
=

θ∗i
Xi+θ∗i

,

which has dollar value
θ∗i

Xi+θ∗i
(Xi + θ∗i ) = θ∗i , i.e., i breaks even.

To illustrate our revenue equivalence result for ex-ante identical bidders, suppose

there are two bidders with the same standalone value, X1 = X2 ≡ X, that we let go

to zero to simplify algebra. In the fixed-parameter auction, both bidders bid close to

100%, regardless of their types. But since X is not quite zero, the higher-type bidder

will bid slightly more, hence winning the auction. Thus, expected seller revenue is

E[max {θ1, θ2} × 100%] = 2
3
, where max {θ1, θ2} is value of the combined firm under

the winner’s control, and 100% is the losing bid. In the analogous floating-parameter

auction, as X goes to zero, βflti (θi) reduces to 1
2

(1 + θi) for all θi ∈ (0, 1], so the higher-

type bidder still wins. The winner pays the lower-type bidder’s bid, so expected seller

revenue is 1
2

(1 + E [min {θ1, θ2}]) = 1+1/3
2

= 2
3
, just as in the fixed-parameter auction.

To see why and how revenue equivalence breaks down with heterogenous bidders,

suppose that while both X1 and X2 go to zero, they do so at different rates. To ease

calculations, suppose the ratioX1/X2 also goes to zero (e.g., X1 declines quadratically,

while X2 declines linearly). Then, in the fixed-parameter equity auction, while both

bidders’ equity offers pool toward 100%, bidder 1’s offer is slightly larger (when θ1 >

0), even if θ1 < θ2. Thus, bidder 1 wins with probability one, and pays 100% of the

combined firm (bidder 2’s bid). Hence, expected seller revenue is only E[θ1 × 100%] =
1
2
. By contrast, bidding strategies in the floating-parameter auction remain separating
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(rather than pooling as in the fixed-parameter auction); i.e., βflti (θi) = 1+θi
2

strictly

increases in θi. Thus the higher-type bidder still wins, regardless of differences in the

rates with which standalone values approach zero, so expected seller revenue remains
2
3
. Further, with more than two bidders, the advantages of floating-parameter auc-

tions grow even larger. If the standalone value of one bidder goes to zero much faster

than those of other bidders, expected revenue in a fixed-parameter auction remains
1
2

but revenue in the floating-parameter auction rises past 2
3
.

3 The Model

The asset being auctioned has a value of VT if the seller retains it. There are n bidders

who are risk neutral and possibly heterogeneous. Bidder i has a standalone value of

Xi > 0. If bidder i acquires the asset, then it yields a contractible stochastic payoff of

Zi that equals the sum of the combined standalone values of the seller and bidder plus

the synergies or value added by bidder i’s control. Bidder i receives an independently-

distributed signal Θi of the value added if i wins, where Θi ∼ Fi(·) with full support

over
[
θi, θi

]
and θi > θi ≥ 0. Conditional on Θi = θi, the expected value of Zi is

E(Zi|Θi = θi) = Xi + VT + θi.

Thus, the expected value added if bidder i wins is E(Zi|Θi = θi) − Xi − VT = θi.

Bidder i is privately informed about θi, which we refer to as bidder i’s private type or

expected synergy. Conditional on θi, Zi is distributed according to a density hi(·|θi)
with full support on [0,∞), where the family {hi(·|θi)} has the strict monotone like-

lihood ratio property (sMLRP): hi(z|θi)/hi(z|θ′i) is increasing in z for θi > θ′i, i.e.,

higher signals represent better news.

As in DKS, to simplify analysis, we make additional technical assumptions: (i) for

all i, the conditional density function hi(z|θ) is twice differentiable in z and θ; and (ii),

the functions zhi(z|θ), |z ∂hi(z|θ)∂z
|, and |z ∂

2hi(z|θ)
∂2z

| are integrable on z ∈ (0,∞). These as-

sumptions are weak and allow us to take derivatives “through” expectation operators.

Ordered sets of securities. The winner pays the seller with a security from an or-

dered set whose elements are indexed by a parameter s. Let S(s, z) denote the value of

security s when the cash flow is z. An ordered set of securities is a set S = {S(s, ·) : s ∈
[s, s]} such that (i) for all s, S(s, z) and z−S(s, z) are nonnegative and weakly increas-
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ing in z; (ii) for any given bidder i, ESi(s, θ) ≡ E(S(s, Zi)|Θi = θ), i.e., the expected

value of security S(s, ·) derived from cash flows generated by bidder i conditional on

Θi = θ, is differentiable and strictly increasing in both arguments; and (iii) there is

sufficient range in the index that ESi(s, θi) ≤ θi+VT and ESi(s, θi) > VT+θi for all i.

For example, if the base security is equity, then S(s, z) = sz, and if it is debt,

then S(s, z) = min{s, z}. Note that, with heterogeneous bidders, ESi(s, θ) depends

on the identity i of a bidder.

We use the notion of steepness introduced in DKS: an ordered set of securities SA
is steeper than SB if for all sA ∈ [sA, sA], sB ∈ [sB, sB] and bidders i, ESiA (sA, θ

∗) =

ESiB (sB, θ
∗) implies that ∂ESiA(sA, θ

∗)/∂θ > ∂ESiB(sB, θ
∗)/∂θ. Thus, if a bidder

with type θ∗ expects to pay the same amount with the two securities, then when that

bidder has a higher type θ > θ∗, it expects to pay strictly more with the steeper

security than with the flatter security. That is, the payment of the steeper security

is tied more tightly to the bidder’s valuation.

We depart from existing theories on security-bid auctions to consider bidders who

pay with securities from (possibly) different sets. We use S i to denote the ordered set

of securities used by bidder i and use si and s̄i to denote the corresponding bounds

on the security parameter. S i could be determined exogenously prior to the auction.

Alternatively, S i could be specified prior to the auction by the seller, who—in light

of the result that revenues are higher when any bidder uses a steeper set of ordered

securities—would select for a given bidder the steepest set of feasible ordered securi-

ties (the feasible sets of securities may differ across bidders due to heterogeneities in

the nature of bidders’ moral hazard concerns or institutional rigidities; see footnote 3).

Bidders maximize long-run (i.e., after all information is revealed) expected prof-

its. If the asset is not sold, all agents receive zero profit. If the asset is sold, then

a losing bidder’s profit is zero. When winner i pays the seller with security s, the

seller’s expected revenue is ESi(s, θi), i.e., seller’s expected profit is ESi(s, θi)− V T ,

and the winner’s expected profit is

πi = VT + θi − ESi(s, θi), (1)

where VT + θi is the expected value of the asset under the bidder’s control.

Our floating parameter auction differs from a standard fixed-parameter auction

in how the winner i and the parameter s of the security paid are determined.
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Fixed-parameter auctions. In a fixed-parameter auction, each bidder i submits

a bid si ∈ [si, s̄i], which is a parameter from its ordered set S i. The seller com-

mits to an evaluation rule for selecting the winner and for determining the parameter

of the security that the winner pays. The evaluation rule is a function of all bids

{si}ni=1, the sets of securities that bidders use {S i}ni=1, and it may also depend on any

characteristics of bidders, (Xi, Fi(·), hi(·|·)), that are in the seller’s information set.

When bidders have the same characteristics and pay with the same type of security,

standard first- or second-price formats are sensible ways to conduct a fixed-parameter

auction. For example, in a second-price auction, the highest s bid wins and the winner

pays the second-highest s bid. In contrast, when bidders have different characteristics

or use different securities, the literature (e.g., Hansen 1985; DKS) has long recognized

that the evaluation rule must explicitly account for the heterogeneities, else security-

bid auctions can generate even lower revenues than cash auctions. A seller must know

the details of Xi, Fi(·), hi(·|·) for all i, and its evaluation rule must discriminate—

treating bidders differently—according to both these details and the security types

used. The optimal design is sufficiently complicated that it is only known for equities,

and no one has studied settings where bidders pay with different types of securities.

Floating-parameter auctions. In a floating-parameter second-price auction bid-

ders submit monetary bids, the highest bid wins and the cash price p equals the

second-highest bid, which is publicly announced. However, the winner pays this price

not with cash, but rather with a security whose parameter is determined after the auc-

tion by a competitive capital market that incorporates all relevant public information.

We allow for cash reserve prices, {rj}nj=1, set by the seller. Let βi be the highest bid

made. If βi ≥ ri, then bidder i wins with a cash price of p = max {maxj 6=i {βj} , ri}.
The asset is not sold if βi < ri. Ties are broken uniformly. After the auction, the cash

price p becomes public information. The market forms beliefs about winner i’s type

θi based on p, i’s characteristics (Xi, Fi, and hi (·|·)), and the type of security used.

Winner i pays with a security from S i. The parameter s of the security paid (e.g., the

face value of a debt; the share of equity; the strike price of a call option) is such that

the security’s value, as determined by the capital market, equals the winning price:

E
[
ESi(s, θi)|i wins at price p

]
= p, (2)

where the left-hand side is the expected value of security s given the market’s beliefs
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about the winner’s type based on the winning price and the winner’s identity.8

Discussion. In both standard and floating-parameter security-bid auctions, bidders

pay with securities from a pre-specified set. The key difference is that bidders in

standard security-bid auctions offer securities whose parameters are fixed, whereas

bidders in our mechanism offer securities whose cash values are fixed (guaranteed).

That is, bidders offer securities whose parameters float so as to deliver that cash value,

as determined by the market. Thus, in contrast to fixed-parameter offers where the

bid is an index s from an ordered set of securities, with floating-parameter offers, the

bid is a cash amount, but the ultimate payment is a security whose index (e.g., equity

share) is such that the post-auction market value of the security equals the winning

cash price. Alternatively and equivalently, the bid could be a cash payment that the

winner must fully finance by issuing securities from the specified set to the market.

The market’s post-auction pricing of the winning firm’s securities, which reflects

the market’s post-auction beliefs about the winner’s type, can be used to determine

the security index for the winner’s payment. For example, suppose the ordered set of

securities for bidder i (i.e., S i) is the set of equities, and the parameter s is the fraction

of the combined firm. If θ∗ is the market’s post-auction belief about the expected syn-

ergy generated by bidder i when i wins at price p, then bidder i pays the seller share

s =
p

VT + Vi + θ∗
(3)

of the joint firm. In a takeover with equity payments,9 the process works as follows:

Suppose prior to the takeover, bidder i has N shares outstanding; and that after i

wins but before it pays the seller by issuing new shares, the capital market prices i’s

existing shares at

ppost =
VT + Vi + θ∗ − p

N
. (4)

Then bidder i issues new shares to target shareholders priced at ppost and the total

value of new shares equals p. That is, i issues p/ppost new shares to pay target share-

holders. Thus, after the payment, target shareholders hold a share p/ppost
N+p/ppost

of the

8For completeness of description, we assume that in the event that the left-hand side of (2) is
less than p even when s = s̄i, then the solution to (2) is s = s̄i (i.e., the winner pays the seller with
s̄i). We prove that this will not happen; Proposition 1 shows that, in equilibrium, s ∈ [si, s̄

i).
9The use of equity is common in takeover settings: Andrade, Mitchell, and Stafford (2001) report

that 58% of mergers and acquisitions are paid entirely in equity, and 70% involve at least some equity.
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joint firm. This share, by (4), equals p
VT+Vi+θ∗

, which is identical to (3).

This floating-parameter offer design corresponds to “collars” in equity payments

that are often used in takeovers. Officer (2004) finds that two-thirds of collars guar-

antee a dollar value if a bidder’s stock price stays within specified bounds around

the effective merger date, and the other third details a constant exchange ratio over

a range of bidder stock prices, with adjustment outside the bounds. Floating-rate

offers correspond to an infinite range for the first type of collar and a zero range for

the second. In this regard, our analysis of floating parameter auctions helps provide

theoretical foundations for takeovers with collars.

Floating-rate offers also correspond to settings where bidders bid with cash but

finance the cash bids by issuing securities after the auction. In such settings, bidders

bid more aggressively than in cash auctions in order to induce better post-auction

financing terms—the financing terms at the time of bidding “float”. For instance, with

debt financing,10 the winner pays a seller with cash, but finances the cash payment

(the winning price) by issuing debt after the auction. In such a case, bidding strategies

and expected seller revenue are exactly the same as in a floating-parameter auction

in which the winner pays with debt whose value, as determined by the market post

auction, equals the winning price. In practice, cash acquisitions often involve external

financing with debt or equity issuance.11 Our model also applies to hybrid settings,

for example where some bidders pay with collared equities and others make cash bids

that are subsequently financed with a debt issue, or even settings where some bidders

pay with internal cash and others pay with securities. Our model’s general nature

reflects that floating-parameter designs convert security bids to cash bids, allowing

security bids of any type, as well as cash bids, to be evaluated on the same footing.

4 Analysis of bidding with general securities

Denote bidder i’s bidding strategy in the floating-parameter security auction by βi(θi).

We now impose mild conditions under which βi(θi) is uniquely determined.

10An example is a leveraged buyout in which the acquirer pays the cash price by issuing bonds
(see Shleifer and Vishny (1990) for the widespread use of leveraged buyouts in takeover waves). See
footnote 3 for other scenarios where institutional rigidities lead to debt financing.

11Martynova and Renneboog (2009) report that one-third of such cash acquisitions are subse-
quently financed with securities, of which about 30% are financed with equity and 70% with debt.
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Assumption 1: In equilibrium bidders do not play weakly dominated strategies.

As long as bidders do not play weakly dominated strategies, any equilibrium bid-

ding strategy must be weakly increasing (for bids above the reserve):

Lemma 1 Under Assumption 1, the bidding strategy in any equilibrium is weakly

increasing: if θai > θbi and βi(θ
b
i ) ≥ ri, then βi(θ

a
i ) ≥ βi(θ

b
i ).

The market forms beliefs about the winner’s type based on the winning price

and winner identity. Without loss of generality, we denote the market’s belief about

winner i’s expected synergy θi by a cumulative density function, M(θi; p, i), which

has support over
[
θi, θ̄i

]
. We impose weak restrictions on the market’s beliefs. In

our setting, all p ∈
[
minθi∈[θ,θ̄] βi(θi),maxθi∈[θ,θ̄] βi(θi)

]
are on the equilibrium path,

whereas any p outside that interval is off the equilibrium path. For any p on the

equilibrium path, the market’s belief must be consistent with the bidder’s strategy.

That is, Bayes’ rule must hold: the market’s belief about winner i’s type θi is such

that θi is in the set {θi : βi(θi) ≥ p}. By Lemma 1, the market’s belief reduces to

θi ≥ θ̂i(p), where θ̂i(p) is the minimum value of θi that satisfies βi(θi) ≥ p. Thus,

M (·; p, i) corresponds to the original distribution Fi(·) truncated at θ̂i(p).

By Lemma 1, for any p1 > p2 on the equilibrium path, M(·; p1, i) first-order

stochastically dominates M(·; p2, i). We also require this property to hold for p off

the equilibrium path.

Assumption 2: The market’s belief about winner i’s type weakly increases in the

winning price: for any prices p1 > p2, M(·; p1, i) weakly first-order stochastically

dominates M(·; p2, i).

Under Assumptions 1 and 2, bidding strategies are strictly increasing and the

equilibrium is unique:12

Proposition 1 Under Assumptions 1 and 2, bidding strategies are uniquely deter-

mined. Bidder i’s bidding strategy is strictly increasing, given by

βi(θi) = Eθ;i[ES
i(s, θ)|θ ≥ θi], (5)

12More precisely, bidding strategies are uniquely determined for bids above the reserve. Define θ∗i
to be βi(θ

∗
i ) ≡ ri, where ri is the cash reserve price for i. Then (5) applies to all θi ≥ θ∗i . A bid for θi <

θ∗i will be below ri so its exact value is inconsequential. Thus, we can regard (5) as applying to all θi.
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where Eθ;i denotes the expectation over θ given θ ∼ Fi, and s solves

ESi(s, θi) = θi + VT , (6)

which has a unique solution for s ∈ [si, s̄
i). The market’s belief about winner i’s type,

conditional on the winning price p, is that
θi = θ̄i if p > βi(θ̄i)

θi ≥ β
(−1)
i (p) if p ∈

[
βi(θi), βi

(
θ̄i
)]

θi ≥ θi if p < βi(θi)

. (7)

Proof: See the appendix. �

To convey the intuition for Proposition 1, we provide a heuristic derivation of the

optimal bidding strategy in the absence of reserve prices (a complete proof is in the

appendix). Suppose bidder i wins at p. Then the index s of the security paid, as

subsequently determined by the market, solves

Eθ;i[ES
i(s, θ)|i wins at p] = p,

where Eθ;i is the expectation over bidder i’s expected synergy given Fi(·). This is

equivalent to

Eθ;i[ES
i(s, θ)|βi(θ) ≥ p] = p. (8)

Winner i’s expected profit is given by (1), in which s solves (8). Standard reasoning

yields that, as in any second-price auction, the optimal bid leaves a bidder indifferent

between winning and paying that bid and losing. Consider the scenario in which bid-

der i with synergy θi wins at a price that equals his strategy βi(θi) (i.e., the highest los-

ing bid ties with i’s winning bid of βi(θi)). Then the condition βi(θ) ≥ p in (8) becomes

βi(θ) ≥ βi(θi), which reduces to θ ≥ θi (the strictly increasing strategy is invertible).

Replacing p with βi(θi) on the right-hand side of (8) yields (5), and the winner’s indif-

ference condition (setting (1) to zero) yields (6), which pins down the index s in (5).

Even though the winner pays with a security in the floating-parameter design, the

seller’s expected revenue is exactly the same as if the bidder paid the winning cash

price. This reflects the law of iterated expectations and the fact that the market’s

expected value of the security payment equals the cash price. Thus, the expected rev-
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enue in the floating-parameter design is the same as in a hypothetical cash auction in

which bidders bid according to Proposition 1. However, bidding in floating-parameter

designs is more aggressive than in standard second-price pure-cash auctions—bidders

bid more than their true values, as Eθ;i[ES
i(s, θ)|θ ≥ θi] ≥ ESi(s, θi). Therefore,

βi(θi) ≥ θi + VT , and this inequality is strict for θi < θ̄i.

Intuitively, bidder i’s strategy in a second-price auction is determined by outcomes

at the point where i barely wins (i.e., where its bid equals the highest losing bid). At

this point the market does not know that i is about to lose, inferring only that i is

some type θ ≥ θi. This means that if bidder i barely wins, it would profit from being

grouped with higher types (i.e., the market overestimates i’s type and hence assigns a

lower security for it to pay), incentivizing i to bid above its true valuation. Note also

that bidders employ weakly-dominant strategies in Proposition 1. This implies that a

bidder does not need to know anything about other bidders or the securities they use.

To establish a benchmark we compare revenues from floating- and fixed-parameter

auctions in a setting with ex-ante identical bidders who use the same set of securities.

Definition 1 (heterogeneity) Bidders are ex-ante identical if and only if they have

the same standalone value, distribution of expected synergy, distribution of future cash

flows conditional on the expected synergy, and use the same set of securities: Xi = Xj,

Fi = Fj, hi(·|θ) = hj(·|θ), and S i = Sj for all i, j, and θ. Bidders are heterogeneous

if they are not ex-ante identical.

Proposition 2 With ex-ante identical bidders and a common ordered set of securi-

ties, floating- and fixed-parameter second-price auctions yield the same expected rev-

enue.

Proof: Abusing notation, let θ1 and θ2 denote the highest and second highest sig-

nals, respectively. Because bidders are ex-ante identical, we suppress the superscript

i in ES and subscript i in Eθ;i. In standard fixed-parameter auctions, the bid “sfix”

by bidder 2 satisfies (6) with i = 2. The expected value of the winner’s payment is

ES(sfix, θ1). Hence, conditional on the second-highest signal being θ2, the expected

revenue is Eθ[ES(sflt, θ)|θ ≥ θ2]. In the floating-parameter auction, conditional on

the second-highest signal being θ2, the expected revenue is the cash bid of bidder 2.

By Proposition 1, this cash bid of bidder 2 is Eθ[ES(sflt, θ)|θ ≥ θ2], where sflt satisfies

the same (6) with i = 2. By the law of iterated expectation, the result follows. �
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The proposition establishes a revenue equivalence between second-price fixed- and

floating-parameter auctions when bidders are ex-ante identical. One can also prove

an analogous result for first-price auctions: With ex-ante identical bidders and any

common ordered set of securities, floating- and fixed-parameter first-price auctions

generate the same expected revenue.13

The proof of Proposition 2 reveals how and where this revenue equivalence breaks

down when bidders are heterogeneous: the proof’s logic uses the fact that with ex-

ante identical bidders, (i) the winner is the same (highest-signal bidder) in both fixed-

and floating-parameter formats, and (ii) the expectations of the synergies Eθ;i and

security values ESi are independent of the bidder’s identity i. With heterogeneous

bidders, these features no longer hold, so revenue equivalence breaks down.

This breakdown turns out to be desirable. The literature has long recognized that

fixed-parameter auction designs must incorporate discriminatory adjustments when

bidders are ex-ante heterogeneous, else they could generate even lower revenues than

cash auctions (see e.g., Hansen 1985; DKS). This contrasts with our nondiscrimi-

natory floating-parameter design, which, as we will show, always generates higher

revenues than cash auctions, regardless of how bidders differ ex ante.

To benchmark comparisons with our nondiscriminatory floating-parameter de-

sign, we first provide sufficient conditions under which nondiscriminatory second-price

fixed-parameter auctions (henceforth “nondiscriminatory fixed-parameter auctions”)

generate low revenues. For general securities, a security’s value depends on the dis-

tribution of cash flows conditional on a bidder type, hi (·|θi). To ease presentation,

we assume that the cash flow distribution scales with the total valuation:

Assumption 3: For each bidder i, the final cash flow is given by τ (θi +Xi + VT ),

where τ is a random variable over (0,∞) with a mean of 1.

Proposition 3 Consider two bidders 1 and 2 with identical synergy distributions on

support
[
θ, θ
]
. Suppose the difference in bidder standalone values is large enough that

X2 −X1 > max

{
θ̄ − θ
θ + VT

X1,
E [θ]− θ
θ + VT

(X1 + E [θ] + VT )

}
.

Then, under Assumption 3, for nondiscriminatory fixed-parameter auctions,

13Proof available upon request. For the first-price format, as with the second-price format, we
assume that the winning price—the highest bid with a first-price format—is publicly announced.
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(i) equity generates less revenues than cash.

(ii) steeper-than-equity securities generate less revenue than equities, and the rev-

enue strictly decreases as securities grow even steeper.

Proof: See the appendix. �

In contrast to Proposition 3, we now establish that floating-parameter auctions are

robust to bidder heterogeneities even when bidders differ arbitrarily in their character-

istics and use different types of securities. We first show that when any bidder i uses a

steeper set of securities, its cash bids are more aggressive, reflecting that steeper secu-

rities extract relatively more revenues from types with higher valuations than bidder i.

Proposition 4 Suppose the ordered set of securities S iA is steeper than S iB for bidder

i. Then i bids more aggressively in floating-parameter auctions with S iA than with S iB:

β(A)i(θi) ≥ β(B)i(θi),

for all θi, with strict inequality for all θi < θ̄i.

Proof. Proposition 1 yields that (i)

β(A)i(θi) = Eθ;i[ES
i(sA, θ)|θ ≥ θi], (9)

where sA solves

ESi(sA, θi) = θi + VT , (10)

and (ii)

β(B)i(θi) = Eθ;i[ES
i(sB, θ)|θ ≥ θi], (11)

where sB solves

ESi(sB, θi) = θi + VT . (12)

Here sA and sB denote the corresponding security in sets S iA and S iB. By (10) and (12),

ESA(sA, θi) = ESB(sB, θi). (13)

By the property of steeper securities, a bidder who expects to pay the same amount

with a steeper security as with a flatter security for a given private valuation expects
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to pay strictly more with the steeper security than the flatter security if its private val-

uation is higher. Thus, (13) yields ESA(sA, θ) > ESB(sB, θ) for all θ > θi, and hence

Eθ;i [ESA(sA, θ)|θ ≥ θi] ≥ Eθ;i [ESB(sB, θ)|θ ≥ θi] ,

where the inequality is strict for θi < θ̄i. Noting that reserve prices do not affect bid-

ding strategies, it follows that the proposition holds for any given reserve prices. �

Definition 2 (profile of security sets) Let {S i}ni=1 denote the profile of ordered sets

of securities used by the n bidders. We say profile A is steeper than B if SjA is weakly

steeper than SjB for all j ∈ {1, ..., n}, with strict inequality for at least one j.

Thus, the profile of the security sets is steeper if at least one bidder switches to

using a steeper set of securities, while all other bidders use the same set of securities as

before. We now derive our central characterization result, showing how the steepness

of the (possibly heterogeneous) sets of securities used by bidders affects seller revenues.

Theorem 1 Suppose the profile of ordered sets of securities A is steeper than B.

Then, regardless of how bidders differ in their characteristics or the types of securi-

ties used, expected revenue is higher with A than with B given any fixed set of reserve

prices {rj}nj=1 (or no reserves).

Proof. The proof of Proposition 4 shows that for any set of reserve prices (or no

reserves), when the profile of security sets is steeper, some bidders place more aggres-

sive cash bids and the cash bids of all other bidders are weakly higher. Because the

expected value of the security payment equals the winning cash price, the theorem

follows by the law of iterated expectations. �

Corollary 1 Under the conditions of Proposition 3, nondiscriminatory floating-parameter

auctions deliver higher revenues than nondiscriminatory fixed-parameter auctions.

The corollary is immediate since seller revenues in floating-parameter auctions

always exceed those in cash auctions.

Since Theorem 1 holds when the reserve prices are optimal for security profile B,

the revenue dominance result is only reinforced if a seller uses the optimal reserves
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for A. Importantly, while an auctioneer needs to know bidder attributes to set opti-

mal reserves, Theorem 1 does not require the auctioneer to know how to set optimal

reserves: the revenue ranking holds for any set of reserve prices. Thus, an auctioneer

can ensure that steeper securities generate higher expected revenues just by setting

the same reserves as with less-steep securities or cash auctions.

The performance of security auctions is more sensitive to bidder heterogeneity than

is the performance of cash auctions, and the literature has made little progress in iden-

tifying optimal designs, much less their revenue properties, for general sets of securi-

ties, especially when bidders pay with different types of securities. In this regard, our

floating-parameter design suggests a simple yet sensible way to conduct security-bid

auctions with heterogeneous bidders. As Theorem 1 shows, the insights in DKS that

steeper securities generate greater revenues extend from their homogeneous bidder set-

ting to our floating-parameter auction design with arbitrarily heterogeneous bidders.

Our floating-parameter mechanism is nondiscriminatory and detail-free. The in-

tuition for the revenue superiority and simple design reflects that floating-parameter

offers have (1) cash-like properties that allow for simple auction rules, but (2) unlike

cash payments, these cash-equivalent payments induce signaling incentives. Steeper

securities increase signaling incentives, leading to more aggressive cash bids. More ag-

gressive bidding by any bidder always benefits a seller in floating-parameter auctions—

no matter how bidders differ, more cash is always good—but not in fixed-parameter

auctions where winner selection depends only on the face values of bids, and the win-

ner could be an incentivized (small) bidder with a low valuation—possibly leading to

significantly sub-optimal allocations that sharply reduce revenue.

The auction design shifts information acquisition burdens from the auctioneer to

the market, exploiting the market’s inferences about bidders’ types based on the ob-

served bidding process. Indeed, because information acquisition occurs post-auction,

the market only needs to gather information about the winning bidder, as the at-

tributes of other bidders are not relevant for assessing the winner’s type.

We next numerically illustrate Theorem 1 and its implications.

Example 1: The target’s market value is 3. There are two bidders, 1 and 2, with

market values X1 and X2, that can create synergies from a merger. Each bidder i’s

expected synergy, θi, is drawn from a uniform distribution on [1, 2]. The cash flow

distribution conditional on θi is the same as in the lead example from DKS: the final
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cash flow is distributed according to τi (θi +Xi + VT ), where τi is a lognormal distri-

bution with a mean of 1 and standard deviation of 0.5. The second-price auction has

no reserve price, and bidders use the same type of securities. We examine four types

of securities (cash, debt, equity, and call) for different combinations of X1 and X2.

Table 1: Floating Parameter Auction Revenues When Bidders Use the Same Security

Market Capitalization Cash Debt Equity Call

X1 = 3, X2 = 3 4.33 4.36 4.53 4.66

X1 = 3, X2 = 4 4.33 4.36 4.52 4.66

X1 = 3, X2 = 6 4.33 4.35 4.50 4.65

X1 = 6, X2 = 6 4.33 4.34 4.47 4.63

Table 1 illustrates that, consistent with Theorem 1, with a floating-parameter de-

sign, steeper securities always generate more revenues, even with heterogeneous bid-

ders. Thus, call options generate the highest revenues, and cash generates the lowest.

Table 1 also illustrates that given any common security used by bidders, the

floating-parameter design exhibits the property that revenues decrease monotonically

and slowly in Xi for any single bidder i. This monotonicity property with respect to

a single bidder implies that revenues with X1 6= X2 always exceed those in a homo-

geneous setting when X1 and X2 are replaced by max(X1, X2). We will prove that

this property holds in more general setting where bidders use different securities.

Using a fine grid, Figure 1 illustrates the revenue advantages of floating-parameter

designs when bidders use equities and have different standalone values. In the setting

of Example 1, we fix bidder 1’s market capitalization at 3 and vary bidder 2’s market

capitalization from 2 to 4. Even with no reserve, revenues from floating-parameter eq-

uity auctions decline very slowly as bidder 2’s market capitalization rises. In contrast,

revenues from the analogous nondiscriminatory fixed-parameter design are sensitive

to differences in bidders’ market capitalizations, and are notably lower than those

from the floating-parameter design once market capitalizations differ by more than

tiny amounts. Figure 1 also plots payoffs from the optimal equity auction, showing

that revenue losses from using the floating-parameter auction rather than the optimal

design are negligible, almost visually indistinguishable from zero.
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Figure 1: Revenue Comparisons of Floating, Fixed and Optimal Equity Auctions

Notes: This figure plots expected revenues in floating-parameter, nondiscriminatory fixed-

parameter, and optimal equity auctions as a function of bidder 2’s market value. The

target’s market value is 3, as is bidder 1’s market value. Each bidder’s expected synergy is

drawn from a uniform distribution on [1, 2].

In both floating- and fixed-parameter designs when bidders have the same stand-

alone value, seller revenues always rise if we reduce this value uniformly. However,

sharp differences emerge if only one bidder’s standalone value is reduced: Proposition

3 shows that with a nondiscriminatory fixed-parameter design, fixing one bidder’s

standalone value and reducing the other bidder’s standalone value sufficiently, can

cause revenues to fall even below those in cash auctions. In contrast, for standard

securities in nondiscriminatory floating-parameter auctions, decreasing any single bid-

der’s standalone value always increases seller revenues:

Proposition 5 Suppose a bidder i uses equity, call options or debt securities. Then,

under Assumption 3, reductions in i’s standalone value increase i’s bidding strategy,

which strictly increases expected seller revenue in a floating-parameter auction.

Proof: See the appendix.

A bidder with a smaller standalone value pays a larger fraction of its cash flows

upon winning. In turn, this raises the value of being perceived by the market as a

higher type, increasing the bidder’s signaling incentives, and hence its cash bid.
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We next illustrate how the steepness of securities affects revenues in floating-

parameter auctions when different bidders may use different types of securities.

Example 2: The target’s market value is 3. The bidders, 1 and 2, have market

values X1 = 3 and X2 = 6. The expected synergy θi that a bidder i can create is

drawn from a uniform distribution on [1, 2]. Conditional on θi, the final cash flow is

distributed according to τi (θi +Xi + VT ), where τi is a lognormal distribution with

a mean of 1 and standard deviation of 0.5. We consider seller revenues when bidders

use different combinations of cash, debt, equity and call securities.

Table 2: Floating-Parameter Auction Revenues when Bidders Use Different Securities

Securities Used Expected Revenues Securities Used Expected Revenues

(S1=Cash, S2=Cash) 4.333

(S1=Cash, S2=Debt) 4.336 (S1=Debt, S2=Cash) 4.348

(S1=Debt, S2=Debt) 4.351

(S1=Equity, S2=Debt) 4.42 (S1=Debt, S2=Equity) 4.41

(S1=Equity, S2=Equity) 4.50

(S1=Equity, S2=Call) 4.58 (S1=Call, S2=Equity) 4.55

(S1=Call, S2=Call) 4.65

Notes: Market capitalizations of the two bidders are (X1 = 3, X2 = 6).

Table 2 illustrates the result in Theorem 1 that even when bidders differ ex ante,

seller revenues are always higher when (at least) one bidder switches to using a steeper

set of securities, regardless of which bidder switches. More subtly, while revenue al-

ways increases when a bidder switches to steeper securities, which bidder switches

matters for the size of the increase: whether revenues are higher when the smaller bid-

der uses the steeper security hinges on the steepness of the securities. When switching

from cash to debt, revenues are higher if the smaller bidder switches due to the greater

reduction in its informational advantage (i.e., a bidder’s standalone value affects its

informational advantage when it uses debt, but not when it uses cash); in contrast

when switching from equity to call options, revenues are higher if the larger bidder
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2 switches, because bidder 1’s informational advantage with equity is already small

(due to its smaller standalone value and the feature that equities are not too flat).

Collectively, the results in Theorem 1, Proposition 5 and the examples highlight

the robustness of floating-parameter designs to bidder heterogeneity: revenues ex-

hibit a monotonicity property with respect to any single bidder both in terms of the

bidder’s standalone value and the type of security used. Thus, revenues when bidders

have different standalone values and use different types of securities always exceed

those in a homogeneous setting in which bidders have the same largest standalone

value and use the same flattest set of securities.

Theorem 1 establishes that when a seller can select the type of security that each

bidder pays, seller revenue is maximized when a bidder uses the steepest set that is

feasible for that bidder. But what about the converse? Suppose that prior to receiving

information each bidder can commit to the type of securities that it uses: will a bidder

always want to use the flattest set that is feasible for itself? Existing studies of fixed-

parameter securities auctions with ex-ante identical bidders can give a partial answer

by imposing the constraint that all bidders use the same set of securities. Specifically,

when bidders collectively decide on the same set of securities, they are best off with the

flattest set that is feasible. This follows directly: flatter securities reduce seller profit,

and a seller’s loss translates to the collective gain of bidders, which, with ex-ante

identical bidders who use the same set of securities, is equally divided among bidders.

Now consider floating-parameter designs with heterogeneous bidders who make

choices individually and may use different types of securities. The question becomes:

given the security sets of other bidders, would a bidder always gain from unilaterally

switching to flatter securities? The answer is less direct, as there are opposing forces:

with a flatter set, a bidder’s expected profit if it wins is higher, but the bidder is less

likely to win. Nonetheless, we find that on balance, a bidder benefits from a flatter set:

Proposition 6 Consider any bidder i, and fix the (possibly different) ordered sets of

securities of the other bidders. Suppose that S iA is steeper than S iB and that both sets

are feasible for bidder i. Then for any given set of reserve prices {rj}nj=1, bidder i’s

expected profit in the floating-parameter auction with S iB exceeds that with S iA.

Proof: See the appendix. �

We next specialize to equity securities. We use of the fact that the optimal
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(revenue-maximizing) equity mechanism that adjusts for bidder heterogeneities is

known (Liu 2016) to identify conditions under which expected revenues in second-

price floating-parameter equity auctions approach the theoretical optimum.

5 Equity Auctions

We compare revenues from optimal and floating-parameter equity auctions when bid-

ders share the same distribution of synergies but differ in standalone values.

We first derive the bidding strategy for the floating-parameter format with equity

securities. With equity payments, only expected cash flows matter. Let si denote the

equity share of the joint firm that bidder i pays. Then

ESi(si, θi) =si(VT +Xi + θi).

Substituting this into (6) yields

si =
VT + θi

VT +Xi + θi
.

Then Proposition 1 yields

βi(θi) = (VT + θi)
VT +Xi + Eθ;i[θ|θ ≥ θi]

VT +Xi + θi
. (14)

Now consider the optimal equity mechanism. Its construction depends on the virtual

valuation of each bidder:

φi(θi) ≡ θi −
Xi (1− Fi(θi))

(Xi + θi + VT ) fi(θi)
−

Xi

∫ θ̄i
θi

(1− Fi(t)) dt

(Xi + θi + VT )2 fi(θi)
, (15)

where fi(·) is the pdf of Fi(·). The virtual valuation (15) represents the rent in terms

of seller profit—revenue minus the seller’s standalone value VT—that the seller can

extract from a bidder who pays with equities.14

Under the standard regularity condition that φi(·) strictly increases over
[
θi, θ̄i

]
for all i, it is optimal to select the bidder with the highest virtual valuation as

14Equation (15) is equation (19) of Liu (2016) minus VT . This subtraction eases exposition by
effectively changing the seller’s reservation value from VT to 0.
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the winner, as long as this valuation is nonnegative: the winner i is such that

φi(θi) ≥ maxj 6=i {φj(θj)} and φi(θi) ≥ 0. The equity share si that the winner i pays is

si = 1− Xi

Xi + φ−1
i (max {maxj 6=i {φj(θj)} , 0})

. (16)

φ−1
i (max {maxj 6=i {φj(θj)} , 0}) is the smallest value of θi that corresponds to a non-

negative virtual valuation that lets i win against bidders with signals (θ1...θi−1,θi+1...θn):

φ−1
i (·) is the truncated inverse of φi(·) with φ−1

i (x) ≡ θi if x < φi(θi) and φ−1
i (x) ≡ θ̄i

if x > φi(θ̄i).

The construction of the optimal equity mechanism underscores the undesirable

features highlighted earlier about general security auctions that generate high rev-

enues in the presence of bidder heterogeneities: the optimal rules are complicated,

bidder-specific, and informationally demanding for an auctioneer to determine. There

are three bidder-specific aspects of the optimal equity mechanism. First, the optimal

reserves are heterogeneous when φ−1
i (0) differs across i, and φi is especially sensitive

to Xi. Second, when multiple bidder types are above their respective reserves, the

optimal winner selection rule is discriminatory in nature. In particular, when the dis-

tribution of synergies is the same for all bidders, the optimal mechanism favors bidders

with lower standalone values, i.e., φi in equation (15) typically decreases in Xi. This

reflects that a bidder’s informational advantage in an equity auction grows with its

standalone value,15 making it optimal for a seller to reward smaller bidders that the

seller can better exploit. Third, determination of the winner’s payment (equation 16)

is also discriminatory in nature as it depends on the bid and identity of the highest

losing bidder. These features underscore that with any bidder heterogeneity, the op-

timal fixed-parameter mechanism ceases to be a standard nondiscriminatory auction.

We now compare seller profits in optimal equity and floating-parameter equity

auctions. With heterogeneous bidders, fixed-parameter designs require discriminatory

reserves. To facilitate comparisons, we impose a reserve price for floating parameter

15Bidders derive informational advantages from their private information about their synergies.
The impacts of synergies on a winner’s payoffs differ in cash and equity auctions. At the margin,
a bidder in a cash auction is the residual claimant: for a given bid, a $1 increase in the synergy
translates to a $1 increase in the winning payoff. By contrast, for a given equity bid, the benefit of an
increase in the synergy is shared in proportion to the fraction of equity surrendered. Thus, a bidder’s
informational advantage in an equity auction is reduced and is scaled by the equity stake the bidder
would retain upon winning. When bidders have different standalone values, lower-standalone-value
bidders have smaller informational advantages because they retain smaller equity stakes.
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auctions, using a common reserve to preserve the auction’s non-discriminatory nature:

Definition 3 With a floating-parameter equity auction design, we impose the follow-

ing common reserve price for all bidders:

rflt = max
i

{
βi(max

{
φ−1
i (0) , θi

}
)
}

+ VT . (17)

With this common reserve,16 the auction design remains simple and nondiscrim-

inatory in its reserve, winner selection, and determination of the winner’s payment.

We next prove that with uniformly distributed synergies, seller profits with floating-

parameter offers and common reserve price rflt are identical to those in the optimal

mechanism both when the standalone values of bidders and the seller are far larger

than the extent of synergies (as Betton et al. (2008) find is the norm in takeovers), or

far smaller. In these two limiting scenarios, virtual valuations and bidding strategies

in floating-parameter auctions take simpler forms, facilitating comparisons.

We use πopt;equitys , πopt;cashs and πflts respectively to denote a seller’s expected profit

under (i) the optimal equity mechanism, (ii) the optimal cash mechanism, and (iii)

floating-parameter offers with common reserve price rflt. Note that when VT goes to

infinity, expected profit (i.e., expected revenue minus VT ) remains bounded (it cannot

exceed θ̄, the highest possible NPV). Note also that πopt,cashs is independent of k since

the standalone values of bidders and seller do not affect seller profit in cash auctions.

Proposition 7 Suppose that the synergies of all bidders are drawn from a uniform

distribution over
[
θ, θ̄
]
. Let VT = kV ∗T and Xi = kX∗i (i = 1, ..., n), where k is a

scaling factor and V ∗T > 0 and X∗i > 0 (i = 1, ..., n) are constants. Then

lim
k→∞

πflts = lim
k→∞

πopt,equitys (18)

> πopt,cashs (19)

16None of our earlier results requires a seller to know anything about bidders. In this section,
when we compare revenues with the optimal mechanism to determine the optimal common reserve
for the floating parameter design, a seller only needs to know who has the highest value of
βi(max

{
φ−1i (0) , θi

}
) and what that value is.
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and

lim
k→0

πflts = lim
k→0

πopt,equitys (20)

> πopt,cashs . (21)

Proof: See the appendix. �

When synergies are drawn from uniform distributions, the virtual valuation in

equation (15) becomes

φi(θi) = θi −
Xi

(VT +Xi + θi)

(
θ̄ − θi

)
− 1

2

Xi

(VT +Xi + θi)
2

(
θ̄ − θi

)2
, (22)

and in the floating-parameter equity auction, strategies (equation 14) become

βi(θi) = VT +
1

2
θ̄ +

1

2

[
θi −

Xi

VT +Xi + θi

(
θ̄ − θi

)]
. (23)

First, consider the case where k goes to infinity. Defining

∆i(θi) ≡ θi −
Xi

VT +Xi + θi

(
θ̄ − θi

)
, (24)

equation (23) becomes βi(θi) = VT + 1
2
θ̄+ 1

2
∆(θi). This implies that βi(θi) and ∆(θi)

have the same ordering: βi (θi) > βj (θj) if and only if ∆(θi) > ∆(θj).

Comparing equations (24) and (22) shows that ∆i(θi) is precisely the first two

terms in φi(θi). Moreover, the third term in φi(θi) is typically far smaller than the

second term, so that ∆i(θi) and φi(θi) tend to be very close. Under the condition of

Proposition 7 that standalone values are far larger than synergies, the third term in the

virtual valuation goes to zero, so that ∆i(θi) equals φi(θi). Thus, floating-parameter

and optimal mechanisms select the same winner, leading to identical allocations.

Now consider the case where k goes to zero. The virtual valuation (equation (22))

becomes

φi(θi) = θi. (25)

The bidding strategy in floating-parameter auction becomes βi(θi) = VT + 1
2
θ̄+ 1

2
θi =

VT + 1
2
θ̄+ 1

2
φi(θi). Thus, βi(θi) and φi(θi) have the same ordering: floating-parameter

and optimal mechanisms select the same winner, leading to identical allocations.
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We can similarly see why a common reserve in floating-parameter auctions achieves

optimality. In the optimal equity mechanism, the reserve types for bidders i and j

are such that φi(θ
∗
i ) = φj(θ

∗
j ) = 0. Because virtual valuations depend on standalone

values, when Xi 6= Xj, we have θ∗i 6= θ∗j . In particular, in Proposition 7 when k

goes to infinity (standalone values are large relative to possible synergies), the virtual

valuation in (22) reduces to

φi(θi) = θi −
X∗i

V ∗T +X∗i

(
θ̄ − θi

)
, (26)

which decreases in X∗i . Thus, if X∗i < X∗j , then φi(θ
∗
i ) = φj(θ

∗
j ) = 0 implies θ∗i < θ∗j

(i.e., allocations favor smaller bidders). It follows that when stand-alone values dif-

fer across i, the optimal mechanism features discriminatory reserves. Now consider

floating-parameter auctions. When k grows arbitrarily large, φi(θ
∗
i ) = φj(θ

∗
j ) = 0

leads to ∆(θ∗i ) = ∆(θ∗j ) and hence βi(θ
∗
i ) = βj(θ

∗
j ). Thus, a common reserve price

of βi(θ
∗
i ) (which equals βj(θ

∗
j )) in floating-parameter auctions selects the same set of

heterogeneous reserve types (where θ∗i 6= θ∗j ) as the optimal mechanism. Similarly,

when k goes to 0, φi(θ
∗
i ) = φj(θ

∗
j ) = 0 leads to βi(θ

∗
i ) = βj(θ

∗
j ), so a common reserve

price of βi(θ
∗
i ) again implements the reserve in the optimal mechanism.

To understand (19) and (21), note that the virtual valuation for cash auctions

(Myerson (1981)) is

φcashi (θi) = θi − (θ̄ − θi),

which is independent of k. Direct comparison with (26) and (25) shows that φcashi (θi)

is strictly less than the virtual valuation for equities (for all θi < θ̄).17 Thus, the op-

timal equity mechanism generates strictly higher seller profits than the optimal cash

mechanism, regardless of how bidders differ ex ante. As floating-parameter auctions

generate the same revenues as the optimal equity mechanism when k is arbitrarily

large or arbitrarily small, inequalities (19) and (21) follow.

To illustrate Proposition 7 for the case where k goes to infinity, we consider a two-

bidder example in which synergies are uniformly distributed on [0, 1]. The optimal

17Note that if we were to have V ∗T = 0 (ruled out by the premise in Proposition 7), then the
virtual valuation for equity auctions, (26), becomes 2θi − θ̄, which is same as the virtual valuation
for cash auctions. Hence we would have limk→∞ πopt,equity

s = πopt,cash
s . Intuitively, a bidder’s

informational advantage in equity auctions rises as its standalone value increases; in the limit where
a bidder’s standalone value is arbitrarily larger than the seller’s standalone value and the extent of
synergies, a bidder’s informational advantages approach those in cash auctions.
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cash mechanism features a reserve of 1
2

+ VT , and seller profit is 5
12

. Now consider

equity mechanisms with V ∗T = X∗1 = 2X∗2 . With large k, (26) yields φ1(θ1) = 3
2
θ1 − 1

2

and φ2(θ2) = 4
3
θ2 − 1

3
. Hence, in the optimal equity mechanism, the reserve types,

which solve φ1(θ∗1) = φ2(θ∗2) = 0, are θ∗1 = 1
3

and θ∗2 = 1
4
. Here θ∗1 6= θ∗2 re-

flects the discriminatory nature of the optimal equity mechanism. Seller profit is

E[max {φ1(θ1), φ2(θ2), 0}] = 13
24

. Next consider the floating-parameter auction, where

the bidding strategy is given by (23). Taking the limit as k goes to infinity yields

β1(θ∗1) = β2(θ∗2) (i.e., β1(1/3) = β2(1/4)), which equals VT + 1
2
. Direct calculation

shows that with a uniform reserve price of this value (VT + 1
2
), the floating-parameter

auction generates a seller profit of 13
24

, just as with the optimal equity mechanism,

which exceeds the profit of 5
12

in optimal cash auctions by thirty percent.

It follows that the ratio πopt,eqitys −πflts
πopt,equitys −πopt,cashs

, which measures how close revenues in

floating-parameter auctions are to those in the optimal equity mechanism, goes to

zero both when k goes to infinity and when k goes to zero. Unreported numerical

calculations suggest that for intermediate values of k, differences in revenues between

floating-parameter and optimal mechanisms remain negligible. Even when valuations

are not large relative to synergies, the common distribution of synergies is not uniform,

and bidders’ standalone values differ by several multiples, the ratio πopt,eqitys −πflts
πopt,equitys −πopt,cashs

is tiny (less than 10−3 for very large bidder differences).

We next establish that the results in Proposition 7 extend quite generally: when

the standalone values of bidders go to zero so that their standalone values are much

smaller than the sum of the seller’s standalone value and expected synergies—e.g.,

bidders could be private equity firms that are far smaller than a target and pay the

cash price by issuing debt—then floating parameter auctions yield the same revenues

as the optimal auction, even if (1) the rates at which standalone values go to zero

vary across bidders, (2) the common distribution for expected synergies is arbitrary

(not necessarily uniform), (3) bidders offer general securities (not necessarily equity),

or (4) different bidders use different types of securities.

Proposition 8 Suppose that the expected synergies of all bidders are drawn from the

same distribution F (·), conditional cash flow distributions follow Assumption 3, and

bidders offer general securities that can differ across bidders. Then, when Xi goes to
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zero for all i, possibly at different rates, the following holds:

lim
Xi→0 for all i

πflts = lim
Xi→0 for all i

πopt,fixeds (27)

> πopt,cashs , (28)

where πopt,fixeds is seller profit in an optimal fixed-parameter security auction.

To prove this, we show that under the proposition’s premise, floating-parameter

auctions deliver first-best seller profit (full rent extraction). We first show that for any

security set S i that bidder i uses, the solution s to (6) must approach the “full secu-

rity” (a security that pays S(z) = z for all z, i.e., paying out all cash flows) as Xi goes

to 0. To see this, note that under Assumption 3, for any given s, the left-hand-side of

(6) decreases as Xi decreases. To maintain equality, the solution s to (6) must increase

as Xi decreases, and hence must reach a limit as Xi goes to 0. Next, note that if this

limit did not correspond to a full security, then asXi gets arbitrarily close to 0, the left-

hand side would be strictly less than the right-hand side, leading to a contradiction.

Next, observe that when Xi goes to zero and s is a full security, the term ESi(s, θ)

on the right-hand side of (5) becomes VT +θ, for any security set S i. Hence (5) yields

lim
Xi→0

βi(θi) = VT + Eθ[θ|θ ≥ θi], (29)

where Eθ is the expectation over θ ∼ F (·). The bidding strategy is strictly increas-

ing, so the highest-type bidder wins and pays the second-highest bid. The seller’s

expected profit is

lim
Xi→0 for all i

πflts = E [Eθ[θ|θ ≥ Y 2]] , (30)

where Y2 denotes the second-highest value among the n random draws {θ1, θ2, ..., θn},
and E is the expectation over the realizations of these n random draws. Further,

Eθ[θ|θ ≥ Y 2] = E[Y1|Y 2],

where Y1 is the highest of the n random draws {θ1, θ2, ..., θn}, and E is the expectation

over the realizations of {θ1, θ2, ..., θn} (which differs from Eθ). Here, E[Y1|Y 2] is the
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expected value of Y1 conditional on a given value of Y2. Plugging this into (30) yields

lim
Xi→0 for all i

πflts = E [E[Y1|Y 2]] = E [Y1] ,

where the second equality follows from the law of iterated expectations. This means

that the floating-parameter auction extracts the full NPVs (highest expected syner-

gies). Equation (28) follows because cash auctions cannot extract full rents.

To understand (27), note that although the optimal fixed-parameter mechanism

is unknown for general securities, it cannot do better than full extraction. However,

it can do no worse than floating-parameter auctions, so (27) holds.

Nondiscriminatory fixed-parameter auctions also extract full rents if all Xi’s go

to zero at the same rate and bidders pay with the same type of securities. However,

if the rates at which Xi’s go to zero vary with i, fixed-parameter auctions must in-

corporate discriminatory adjustments to select the right winner. By contrast, our

floating-parameter auction extracts full rents regardless of the rates at which Xi’s go

to zero. This difference reflects that when Xi goes to 0, the bidding strategy in fixed-

parameter auctions approaches pooling: all bidder types offer the full security (i.e.,

bids are insensitive to bidder types so that even small differences in standalone values

of bidders can lead to selection of low types), whereas the bidding strategy in the

floating-parameter auction (equation (29)) remains strictly increasing (separating).

Fixed-parameter auctions similarly need adjustments when bidders pay with differ-

ent types of securities even when bidders have the same standalone value,18 whereas

floating-parameter auctions do not.

These features highlight the simple and robust virtues of our floating-parameter

design. The floating-parameter design circumvents the need for ex-ante discrimina-

tion by the seller by shifting the burden of discrimination to the market via the

market’s post-auction inferences. A seller uses the same mechanism regardless of how

bidders differ ex ante, or how their securities differ. This invariance reflects that

floating-parameter designs convert bids of heterogeneous bidders that are measured

18For instance, consider three bidders with the same standalone value, X1 = X2 = X3 ≡ X,
but bidder 1 offers debt, bidder 2 offers equity and bidder 3 offers call options. As X goes to zero,
then regardless of their types, bidder 1’s offer of the face value of debt approaches infinity, bidder
2’s offer of equity fraction approaches one, and the strike price in bidder 3’s offer approaches zero.
This means that winner selection requires delicate adjustments, which will depend sensitively on
the precise value of X and the details of the conditional cash flow distributions h (·|·).
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in different units (e.g., equity claims whose monetary values depend on a firm’s spe-

cific attribute) into a common unit—cash—at the outset; whereas fixed-parameter

auctions do the conversion ex post—after bids are made.

We end this section by thinking beyond Proposition 8 to settings where bidders’

standalone values are not close to zero and they pay with general securities. We make

two observations. First, when bidders use the same type of security (e,g., they all

use debt or they all use call options), smaller bidders in floating-parameter auctions

are more likely to win (Proposition 5). This reflects that smaller bidders in floating-

parameter auctions have greater incentives to signal because they would pay a larger

fraction of cash flows upon winning, and thus are more concerned with the market’s

beliefs. As a result, smaller bidders bid more aggressively and hence are more likely

to win. Second, if bidders use different types of securities, bidders who use steeper

securities in floating-parameter auctions are more likely to win, reflecting that steeper

securities induce more aggressive bidding (Proposition 4; a point not previously high-

lighted). Both features raise seller profits in floating parameter mechanisms, and we

conjecture that the optimal mechanism for general securities shares these features.19

6 Conclusions

A serious drawback of optimal mechanisms with heterogeneous bidders is that they in-

variably require complex discriminatory winner selection and payment rules, and they

impose implausible information demands on the auctioneer, as the optimal design is

sensitive to the features of each bidder. These concerns especially manifest themselves

in security-bid auctions, where the monetary values of bids depend on the fine details

of the underlying cash flow distributions, and nondiscriminatory designs risk selecting

the wrong winning bidder and lower expected seller revenue than cash auctions.

We identify a simple mechanism that imposes minimal information burdens on

the auctioneer and is invariant to the environment, yet generates high revenues re-

gardless of how bidders differ in their ex-ante attributes or the securities they use.

In our second-price floating-parameter auction, bidders submit cash bids, the high

19Intuitively, bidders’ informational advantages decline with reductions in standalone values
and with the use of steeper securities because both increase the tying of security payments to the
winner’s type. This makes it optimal for a seller to favor smaller bidders and bidders who use
steeper securities.
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bid wins and pays with securities priced in a competitive capital market that sees

the winning price. That is, bidders offer securities with guaranteed cash equivalent

values, and the market determines the security parameter paid so that the security’s

expected value equals the winning cash price. Key virtues of the design include:

1. It is detail-free and nondiscriminatory, removing legal and moral hazard con-

cerns about discriminatory auctions. In takeovers, our mechanism lets a seller

satisfy fiduciary duties requiring it to accept the “highest” bid, even if bid-

ders use different securities or differ in other ways. The seller uses the same

mechanism no matter how bidders differ ex ante, or how their securities differ.

2. It alleviates information demands. A seller can be uninformed (but need not

be). Collectively, the market only needs to learn about the winner, and it can

acquire the information post-auction, after a winner’s selection.

3. It is practically relevant. It applies to both collars and cash bids that are fi-

nanced after the auction with securities, as occurs for a large share of takeovers.

4. It always generates higher revenues than cash, and is robust to bidder hetero-

geneity, exhibiting the properties that revenues rise when any single bidder uses

a steeper security, or has a lower standalone value.

5. It delivers optimal revenues when bidders only differ in stand-alone values and

have either small or large stand-alone values; and numerically we find that rev-

enues are close-to-optimal when bidders’ stand-alone values are at intermediate

levels, even if they differ substantially.

More broadly, the message of our paper is that an auctioneer can greatly sim-

plify auction design with heterogeneous bidders by linking auction outcomes to post-

auction market prices, thereby obtaining high revenues. To our knowledge, our paper

is the first to establish these points, providing a starting point for future research.
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7 Appendix

Proof of Lemma 1: Denoting by si(p) the solution to (2) when bidder i wins, we

rewrite (1), the expected profit of winner i with θi, as

πi(θi, p) = VT + θi − ESi(si(p) , θi). (31)

Below, to economize on language, we say a security is a “full security” if its payoff

function S (z) = z for all z; that is, if the security pays out 100% of the cash flows.

Claim 1: πi(θ
a
i , p) ≥ πi(θ

b
i , p) for all p ≥ ri, where the inequality is strict unless the

security corresponding to si(p) is a full security.

Proof: We use Lemma 1 of DKS. In our setting this lemma implies that the derivative

of ESi(si(p), θi) with respect to θi is strictly less than 1 if the security corresponding

to si(p) is not a full security. With a full security, the derivative equals 1. Given our

premise that θai > θbi , Claim 1 follows.

Claim 2: If the security corresponding to si(p) is a full security, then πi(θi, p) < 0.

Proof: With a full security, (31) yields πi(θi, p) = VT +θi−(VT + θi +Xi) = −Xi < 0.

Claim 3: If βi(θ
b
i ) > ri, then for any b̂ ∈ [ri, βi(θ

b
i )), there is a positive measure of

p∈
[
b̂, βi(θ

b
i )
]

such that the security corresponding to si(p) is not a full security.

Proof: Denote the expected profit of bidder i of type θi when it bids some b ≥ ri by

π̂i(θi, b), and denote the cumulative density function for the highest bid among all

bidders other than i by K(·). Then

π̂i(θi, b) =

∫ b

ri

πi(θi, t)dK(t)+πi(θi, ri)K(ri).

Consider bidder i with θbi . If i bids its equilibrium bid βi(θ
b
i ), then i’s expected profit is

π̂i(θ
b
i , βi(θ

b
i )) =

∫ βi(θ
b
i )

ri

πi(θi, t)dK(t)+πi(θi, ri)K(ri).

If bidder i instead deviates and bids b̂, the gain from the deviation is

π̂i(θ
b
i , b̂)− π̂i(θbi , βi(θbi )) = −

∫ βi(θ
b
i )

b̂

πi(θ
b
i , t)dK(t).
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Now suppose that contrary to Claim 3, for all (full measure) p∈
[
b̂, βi(θ

b
i )
]
, the

security corresponding to si(p) is a full security. Then Claim 2 would yield that the

deviation gain π̂i(θ
b
i , b̂)− π̂i(θbi , βi(θbi )) ≥ 0 for all functions K(t), with strict inequal-

ity for some K(·). Thus, bidding the posited equilibrium bid βi(θ
b
i ) would be weakly

dominated by bidding b̂, a violation of Assumption 1. This proves Claim 3.

Claim 4: Suppose βi(θ
b
i ) > ri. Then for bidder i with type θai > θbi , bidding βi(θ

b
i )

weakly dominates bidding any b̂ ∈ [ri, βi(θ
b
i )).

Proof: The difference in i’s expected profit when it bids βi(θ
b
i ) and when it bids b̂ is:

π̂i(θ
a
i , βi(θ

b
i ))− π̂i(θai , b̂) =

∫ βi(θ
b
i )

b̂

πi(θ
a
i , t)dK(t)

=

∫ βi(θ
b
i )

b̂

(πi(θ
a
i , t)− πi(θbi , t))dK(t) +

∫ βi(θ
b
i )

b̂

πi(θ
b
i , t)dK(t)

≥
∫ βi(θ

b
i )

b̂

(πi(θ
a
i , t)− πi(θbi , t))dK(t)

≥ 0.

The second equation follows by subtracting and adding
∫ βi(θbi )
b̂

πi
(
θbi , t

)
dK(t); the

third equation follows because the added term is nonnegative (by individual rational-

ity of type θbi ); the fourth equation follows from Claim 1. By Claims 1 and 3, a strict

inequality holds in the fourth equation for some function K(·)—ones with a positive

support over the region of prices for which the corresponding security is not a full

security. Thus, for type θai , bidding βi(θ
b
i ) weakly dominates bidding b̂. This proves

Claim 4.

Using the same arguments as those for Claim 4, it is also strightforward to

show that (1) if βi(θ
b
i ) > ri, then for type θai , bidding βi(θ

b
i ) weakly dominates non-

participation (bidding below ri); and (2) if βi(θ
b
i ) = ri, then for type θai , bidding βi(θ

b
i )

weakly dominates non-participation. This proves Lemma 1. �

Proof of Proposition 1: We first prove that the bidding strategy is strictly increas-

ing under Assumptions 1 and 2.

Claim 1: If bidder i of type θi wins at price p = βi(θi), then (i) the bidder’s expected

profit πi(θi, p) (in (31)) must be nonnegative; and (ii) the security corresponding to

si(p) is not a full security.

Proof: If πi(θi, p) were strictly negative, then following standard arguments for
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second-price auctions, bidding the posited equilibrium bid βi(θi) would be weakly

dominated by bidding slightly less than βi(θi), a violation of Assumption 1. This

proves part (i). To prove part (ii), note that if it were a full security, then by Claim 2 in

the proof of Lemma 1, i’s expected profit would be strictly negative if it wins at βi(θi).

Claim 2: Any equilibrium bidding strategy is strictly increasing: if θai > θbi and

βi(θ
b
i ) ≥ ri, then βi(θ

a
i ) > βi(θ

b
i ).

Proof: Suppose instead that Claim 2 does not hold. Then by Lemma 1, the equilib-

rium bid of type θai must equal that of type θbi ; i.e., βi(θ
a
i )=βi(θ

b
i ). Next we show that

a contradiction would arise, thereby establishing Claim 2.

• By Claim 1 above and Claim 1 in the proof of Lemma 1, π(θai , βi(θ
b
i )) >

π(θbi , βi(θ
b
i )) ≥ 0; that is, type θai ’s expected profit from winning at βi(θ

a
i ) =

βi(θ
b
i ) is strictly positive.

• We now show that bidding slightly above βi(θ
a
i ) is a profitable deviation for

type θai . First, suppose that when winning at a higher (than βi(θ
a
i )) price, the

market’s beliefs about i’s synergies are the same as if i wins at βi(θ
a
i ). By the

continuity of the profit function, if i wins at a price that exceeds βi(θ
a
i ) by an

arbitrarily small amount, i’s profit must still be strictly positive. Second, by

Assumption 2, the market’s beliefs are weakly more optimistic when a bidder

wins at a higher price. Thus, relaxing the premise that beliefs are the same

from winning at a slightly higher price as those from winning at βi(θ
a
i ) can

only further increase i’s expected profit. Hence, following standard arguments

for second-price auctions, bidding i’s posited equilibrium bid βi(θ
a
i ) is weakly

dominated by bidding slightly above βi(θ
a
i ), violating Assumption 1.

Claim 3: If the bidding strategy is given by (5), then the market’s belief is given by

(7).

Proof: The second and third equations in (7) follow from the consistency requirements

on the equilibrium path—market beliefs must satisfy Bayes rule. The first equation

in (7) follows from Assumption 2 that the market’s beliefs are non-decreasing in the

winning price.

Claim 4: For any θi, (6) has a unique solution for s ∈ [si, s̄
i).

Proof: We use Lemma 1 of DKS, which implies that for any s, the derivative of

ESi(s, θi) with respect to θi is no greater than 1. Then our model premise of suffi-
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cient range in the index (ESi(s, θi) ≤ θi + VT and ESi(s, θi) > VT+θi) implies that

ESi(s, θi) ≤ θi + VT and ESi(s, θi) > VT+θi. Then Claim 4 follows by the interme-

diate value theorem and the property that ESi(s, θi) is strictly increasing in s.

We next prove the remainder of the proposition.

Step 1. First consider settings with no reserve prices. We show that bidding according

to (5) comprises an equilibrium. Note that βi(θi) as defined in (5) is strictly increas-

ing in θi because, for any θ1 > θ2, the distribution of θ conditional on θ ≥ θ1 strictly

first-order stochastically dominates the distribution of θ conditional on θ ≥ θ2.

Consider the strategy of a generic bidder i with type θi. We first show that if i

bids above βi(θi) and wins at a price p > βi(θi), then its expected profit is negative.

Case 1: p ≤ βi(θ̄i). Then, there exists some θ∗ > θi such that p = βi(θ
∗). Let

s∗ denote the resulting security index of its payment as determined by the market.

Because the expected value of payment equals the winning price βi (θ
∗), s∗ satisfies

Eθ;i[ES
i(s∗, θ)|θ ≥ θ∗] = βi(θ

∗).

Note that if bidder i were of type θ∗ and won at price p = βi(θ
∗), then the index of

the security paid would be s∗, and its expected profit would be zero (because bidder

i of type θ∗ is indifferent between winning at βi(θ
∗) and losing). Thus, (1) yields

VT + θ∗ − ESi(s∗, θ∗) = 0. (32)

Next we show that

ESi(s∗, θ∗)− ESi(s∗, θi) ≤ θ∗ − θi. (33)

Let Z∗i and Zi denote the random cash flows associated with Θi = θ∗ and Θi = θi, re-

spectively. Then ESi(s∗, θ∗)− ESi(s∗, θi) =E[S(s∗, Z∗i )]−E[S(s∗, Zi)]. Because the

distribution of Z∗i first-order stochastically dominates that of Zi (due to the sMLRP),

it follows that Z∗i can be expressed as the sum of random variable Zi plus another

random variable ε̃, where ε̃ is nonnegative and E[ε̃] = θ∗ − θi. Thus,

E[S(s∗, Z∗i )] = E[S(s∗, Zi + ε̃)] ≤E[S(s∗, Zi) + ε̃] = E[S(s∗, Zi)] + θ∗ − θi.

This establishes (33), which, by (32), (1), and the inequality θ∗ > θi yields that its

expected profit is negative, VT + θi − ESi(s∗, θi) < 0.
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Case 2: p > βi(θ̄i). Because the market’s belief about the winner’s type cannot

exceed θ̄i, the bidder’s expected profit does not exceed what it would be if it won at

p = βi(θ̄i), which was shown to be negative in Case 1.

We now show bidder i’s expected profit is positive if it wins at a price p < βi(θi).

Case 1: p ≥ βi(θi). Then, there exists θ∗ < θi so that p = βi(θ
∗). Let s∗ denote the

security index of his payment as determined by the market. Then (32) follows by a

similar argument as in the above step. By (32) and (1), its expected profit is positive.

Case 2: p < βi(θi). Because the market’s belief about the winner’s type is the same

as if the bidder wins at p = βi(θi) (see third equation in (7); this reflects that winning

at a price below βi(θi) is on the equilibrium path—see Claim 3), i’s expected profit is

no less than what would be if it wins at p = βi(θi), which is positive from Case 1.

Combining the results above and the nature of second-price auction that contin-

gent on winning, the price does not depend on winner’s own bid, yields that bidding

according to (5) is weakly dominant, constituting an equilibrium. Furthermore, note

that by Claim 2 and the arguments given in the main text, in any equilibrium the

bidding strategy must be given by (5). Hence the equilibrium is unique.

Step 2. Given reserve prices {rj}nj=1, it is routine to show that the equilibrium holds

in which bidder i bids according to (5) when βi(θi) ≥ ri; and i places a non-valid

bid that is less than ri when βi(θi) < ri. Because the exact value of a non-valid bid

is inconsequential, bidding according to (5) constitutes an equilibrium for all θi and

equilibrium is unique (up to the indeterminancy of non-valid bids). �

Proof of Proposition 3: First consider equity. Bidder 1 bids θ1+VT
θ1+VT+X1

≥ θ+VT
θ+VT+X1

,

and bidder 2 bids θ2+VT
θ2+VT+X2

≤ θ̄+VT
θ̄+VT+X2

. Because X2 > X1 + θ̄−θ
θ+VT

X1 = θ̄+VT
θ+VT

X1, we

have θ+VT
θ+VT+X1

> θ̄+VT
θ̄+VT+X2

, so bidder 1 wins against bidder 2. Expected seller revenue is

E [θ1 + VT +X1]E

[
θ2 + VT

θ2 + VT +X2

]
= (E [θ] + VT +X1)E

[
1− X2

θ2 + VT +X2

]
≤ (E [θ] + VT +X1)

(
1− X2

E [θ] + VT +X2

)
= (E [θ] + VT +X1)

(
E [θ] + VT

E [θ] + VT +X2

)
=

E [θ] + VT +X1

E [θ] + VT +X2

(E [θ] + VT ) ,
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where the inequality follows from Jensen’s inequality. The premise that X2 −X1 >
E[θ]−θ
VT+θ

(X1 + E [θ] + VT ) yields

E [θ] + VT +X1

E [θ] + VT +X2

(E [θ] + VT ) <
E [θ] + VT +X1

E [θ] + VT +X1 + E[θ]−θ
VT+θ

(X1 + E [θ] + VT )
(E [θ] + VT )

=
E [θ] + VT +X1

VT+E[θ]
VT+θ

(X1 + E [θ] + VT )
(E [θ] + VT )

= VT + θ.

Thus, expected seller revenue in an equity auction is less than VT + θ. Because

expected revenue in a cash auction exceeds VT +θ, part (i) of the proposition follows.

Lemma 2 Consider nondiscriminatory fixed-parameter auctions using ordered secu-

rities SA and SB, where SA is steeper than SB. Let X1 < X2. If bidder 1 with expected

synergy θ1 wins against bidder 2 with expected synergy θ2 under SB, then (i) bidder 1

also wins against bidder 2 under SA, and (ii) seller revenue under SA is strictly less

than that under SB given θ1 and θ2.

Proof of Lemma 2: By Assumption 3, the cash flow distribution depends only on

the expected total valuation of the bidder (bidder identity is irrelevant). Abusing

notation we suppress the superscript i in ES, and use ES(s, θi +Xi + VT ) to denote

the expected value of the security with index s. Let s1
B denote bidder 1’s optimal bid

under SB. Then s1
B solves

ESB(s1
B, θ1 +X1 + VT ) = X1. (34)

Because bidder 1 wins against bidder 2 under SB, we have ESB(s1
B, θ2+X2+VT ) > X2.

Hence there exists

v∗ < θ2 +X2 + VT (35)

such that

ESB(s1
B, v

∗) = X2. (36)

Because X1 < X2, we have

θ1 +X1 + VT < v∗. (37)
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Let s1
A denote the optimal bid of bidder 1 using the steeper securities, SA:

ESA(s1
A, θ1 +X1 + VT ) = X1. (38)

By (34), (38), (36), and the properties of steeper securities, ESA(s1
A, v

∗) > ESB(s1
B, v

∗).

Hence, by (37), ESA(s1
A, θ2 +X2 + VT ) > X2. Thus, bidder 1 also wins against bidder

2 under SA.

Analogously, bidder 2’s bids under SA and SB solve

ESA(s2
A, θ2 +X2 + VT ) = X2 (39)

and

ESB(s2
B, θ2 +X2 + VT ) = X2. (40)

Seller revenues under SA and SB are, ESA(s2
A, θ1+X1+VT ) and ESB(s2

B, θ1+X1+VT ).

Further, (35) and (37) yield θ1 + X1 + VT < θ2 + X2 + VT , which, by the properties

of steeper securities, yields that revenue under SA is strictly less than that under SB.

This proves the lemma.

Part (i) showed that bidder 1 wins against bidder 2 in equity auctions. From the

lemma and the law of iterated expectations, part (ii) of the proposition follows. �

Proof of Proposition 5: Consider any bidder i. Recall thatESi(s, θ) ≡ E(S(s, Zi)|Θi =

θ) is the expected value of security with index s, derived from cash flows generated by

that bidder conditional on Θi = θ. To ease notation we replace “ESi” with “g, which

is a function of s, the standalone value X, and the expected synergy θ of bidder i.

We derive a sufficient condition for the bidding strategy to decrease in X:

Lemma 3 If the ratio
∂g
∂X
∂g
∂s

strictly decreases in the expected synergy θ at any given s

and X, then the bidder’s bidding strategy in floating-parameter design weakly decreases

in X, where the decrease is strict for all θ < θ̄i.

Proof of Lemma 3. Use the notation of this proof to rewrite (6) as:

g(s,X, θ = θi) = θi + VT , (41)

where θi is a constant. In (41), s is an implicit function of X, which we write as s(X);

that is, s = s(X) and X satisfies (41).
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Next examine the derivative of g(s = s (X) , X, θ) with respect to X:

dg(s (X) , X, θ)

dX
=

∂g

∂X
|s=s(X) +

∂g

∂s
|s=s(X)

ds(X)

dX
, (42)

where,

ds(X)

dX
= −

∂g(s,X,θi)

∂X
∂g(s,X,θi)

∂s

|s=s(X),

which follows by applying the implicit function theorem on (41). Plugging the above

into (42) yields

dg(s (X) , X, θ)

dX
=

∂g(s,X, θ)

∂X
|s=s(X) −

∂g(s,X, θ)

∂s
|s=s(X)

∂g(s,X,θi)

∂X
∂g(s,X,θi)

∂s

|s=s(X)

=
∂g(s,X, θ)

∂s
|s=s(X)

{
∂g(s,X,θ)

∂X
∂g(s,X,θ)

∂s

−
∂g(s,X,θi)

∂X
∂g(s,X,θi)

∂s

}
|s=s(X). (43)

Use the notation in this proof to rewrite (5), the bidding startegy when the bid-

der’s expected synergy is θi, as

βi(θi) = E[g(s (X) , X, θ)|θ ≥ θi]. (44)

For any θ > θi, by the premise of the lemma that the ratio
∂g
∂X
∂g
∂s

strictly decreases in θ,

the term inside the curly brackets on the right-hand side of (43) is strictly negative.

Hence, by ∂g(s,X,θ)
∂s
|s=s(X) > 0, dg(s(X),X,θ)

dX
< 0. Thus, by (44), we have d

dX
βi(θi) ≤ 0,

where strict inequality holds for θi < θ̄i. This proves the lemma.

Next we show that for debt and call, the ratio
∂g
∂X
∂g
∂s

strictly decreases in θ. First

note that both ∂g(s,X,θ)
∂s

and ∂g(s,X,θ)
∂X

are strictly positive.

Consider debt. Let s denote the face value of debt. We have

g = θ +X + VT − E [max (((θ +X + VT ) τ − s) , 0)] ,

which yields
∂g

∂s
= prob

(
τ ≥ s

θ +X + VT

)
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and
∂g

∂X
= 1− E

[
τ |τ ≥ s

θ +X + VT

]
prob

(
τ ≥ s

θ +X + VT

)
,

where “prob” denotes the probability. prob
(
τ ≥ s

θ+X+VT

)
increases in θ, as does

E
[
τ |τ ≥ s

θ+X+VT

]
prob

(
τ ≥ s

θ+X+VT

)
(to see this note that the term equals

∫∞
s

θ+X+VT

τdR (τ),

where R (τ) is the cdf of τ , and then differentiate with respect to θ). Hence, ∂g
∂s

in-

creases in θ and ∂g
∂X

decreases in θ. Thus, the ratio
∂g
∂X
∂g
∂s

strictly decreases in θ.

Next, consider call options. Let K denote the strike price. Given our onvention

that a larger s means a larger security, but a larger K means a smaller call, we set

s = −K to preserve the order. We have

g = E [max (((θ +X + VT ) τ −K) , 0)] ,

which yields
∂g

∂s
= prob

(
τ ≥ K

θ +X + VT

)
and

∂g

∂X
= E

[
τ |τ ≥ K

θ +X + VT

]
prob

(
τ ≥ K

θ +X + VT

)
.

Hence
∂g
∂X
∂g
∂s

= E

[
τ |τ ≥ K

θ +X + VT

]
,

which strictly decreases in θ.

Thus, debt and call satisfy the premise of Lemma 3. Therefore, the bidding strat-

egy in the floating-parameter design strictly increases as X decreases for θi < θ̄i.

Further, following readily from (14), the above statement also holds for equity. Be-

cause more agressive cash bidding by any bidder leads to a higher expected profit,

the proposition follows. �

Proof of Proposition 6. We use the property that the expected monetary value

of the winner’s payment equals the winning cash price, conditional on the winning

price and the winner’s identity. Then the law of iterated expectations yields that

a bidder’s expected profit in the floating-parameter design is the same as that in a

“hypothetical” cash auction in which bidders bid cash according to Proposition 1,

and that the winner pays the second-highest bid directly with cash.
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Let Y1 denote the highest valid cash bid (i.e., the highest bid exceeding the re-

serves) among the n − 1 bidders other than bidder i, and let K (Y1) denote the cdf

of Y1. We use πiA and πiB to denote bidder i’s expected profit under S iA and S iB,

respectively. Then for J ∈ {A,B},

πiJ =

∫ θ̄i

θ∗J

∫ βi;J (θi)

minj 6=i{rj}
(VT + θi −max (Y1, ri)) dK (Y1) dFi (θi) ,

where βi;J(θi) denotes bidder i’s bidding strategy under security set S iJ , and θ∗J ≡ θi

if ri ≤ βi;J(θi) and βi;J(θ∗J) ≡ ri if ri > βi;J(θi).

Because S iA is steeper than S iB, we have θ∗A ≤ θ∗B. Rewrite πiA as

πiA ≡ πiA;1 + πiA,2,

where

πiA;1 ≡
∫ θ∗B

θ∗A

∫ βi;A(θi)

minj 6=i{rj}
(VT + θi −max (Y1, ri)) dK (Y1) dFi (θi) (45)

and

πiA;2 ≡
∫ θ̄i

θ∗B

∫ βi;A(θi)

minj 6=i{rj}
(VT + θi −max (Y1, ri)) dK (Y1) dFi (θi) . (46)

We first show that πiA;1 ≤ 0. If θ∗A = θ∗B, then πiA;1 = 0. If θ∗A < θ∗B, then it must be

that θ∗B > θi (else θ∗A = θ∗B = θi). Thus, ri = βi;B(θ∗B). Since βi;B(θ∗B) ≥ VT + θ∗B,

VT + θ∗B − ri ≤ 0. (47)

By (45), we have

πiA;1 ≤
∫ θ∗B

θ∗A

∫ βi;A(θi)

minj 6=i{rj}
(VT + θi − ri) dK (Y1) dFi (θi)

≤
∫ θ∗B

θ∗A

∫ βi;A(θi)

minj 6=i{rj}
(VT + θ∗B − ri) dK (Y1) dFi (θi)

≤ 0,

where the first inequality follows from max (Y1, ri) ≥ ri, and the final inequality

follows from (47).
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Next, (46) yields

πiA;2 − πiB =

∫ θ̄i

θ∗B

∫ βi;A(θi)

βi;B(θi)

(VT + θi −max (Y1, ri)) dK (Y1) dFi (θi)

≤
∫ θ̄i

θ∗B

∫ βi;A(θi)

βi;B(θi)

(VT + θi − Y1) dK (Y1) dFi (θi)

≤
∫ θ̄i

θ∗B

∫ βi;A(θi)

βi;B(θi)

(VT + θi − βi;B(θi)) dK (Y1) dFi (θi)

≤ 0,

where the first inequality follows from max (Y1, ri) ≥ Y1, and the final inequality fol-

lows from βi;B(θi) ≥ VT + θi. By πiA;2 − πiB ≤ 0 and πiA;1 ≤ 0, we have πiA ≤ πiB . �

Proof of Proposition 7: Theorem 1 in Liu (2016) shows the seller’s expected

profit in any incentive-compatible equity mechanism decomposes into the sum of three

terms. The first two terms vanish for both the optimal mechanism and the floating-

parameter mechanism (the first term vanishes when all bidders i with si earn zero

rent, and the second term vanishes when losing bidders do not pay). Hence, for both

the floating-parameter and optimal mechanisms, the expected seller profit equals the

third term, which (after adjusting for the different notation in this paper) is given by:

πs =

∫
χ

[
n∑
i=1

Wi (θ1, θ2, ..., θn)φi(θi)

]
f1 (θ1) ...fn (θn) dθ1...dθn, (48)

where Wi (θ1, θ2, ..., θn) is the probability that bidder i wins when bidders’ reported

types are (θ1, θ2, ..., θn), and ΣiWi ≤ 1 for all (θ1, θ2, ..., θn).

Now we prove equation (18). Referring to (24), we have that for all i and θi,

∆i(θi)− φi(θi) =
1

2

Xi

(VT +Xi + θi)
2

(
θ̄ − θi

)2
(49)

≤ 1

2

Xiθ̄
2

(VT +Xi + θi)
2

≤ 1

2

θ̄2

VT +Xi

=
1

2k

θ̄2

V ∗T +X∗i

≤ 1

2k

θ̄2

V ∗T + mini {X∗i }
, (50)
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where the right-hand-side of (50) is independent of i and approaches zero as k goes

to infinity. Note also that by (49), ∆i(θi)− φi(θi) > 0 for all i and θi. Thus, for any

ε > 0, there exist a k∗ (ε) such that for all k > k∗ (ε),

0 < ∆i(θi)− φi(θi) < ε (51)

for all i and θi.

Claim 1: For any ε > 0 and any i, j ∈ {1, ..., n} such that ∆i(θi) ≥ ∆j (θj), φi(θi) >

φj (θj)− ε for all k > k∗ (ε).

To establish this claim, note that for all k > k∗,

φj (θj)− φi(θi) = [φj (θj)−∆j (θj)] + [∆j (θj)−∆i(θi)] + [∆i (θi)− φi(θi)]

≤ 0 + 0 + [∆l (sl)− φl (sl)]

< ε, (52)

where the last inequality follows from (51), establishing Claim 1.

Given any realization of the synergies (θ1, θ2, ..., θn), assume bidder m has the

highest φi(θi) and bidder l has the highest ∆i(θi) among all bidders, where m and l

may or may not be the same bidder. By (23) and (24), βi(θi) = VT + 1
2
θ̄ + 1

2
∆(θi)

and hence bidder l has the highest βi(θi) among all bidders. To simplify presentation,

we ignore ties because they occur over a space with measure zero, and hence do

not contribute to the integration in (48). In the optimal mechanism, m wins if

φm (θm) ≥ 0, and the asset is not sold if φm (θm) < 0. In the floating-parameter

mechanism, given the uniform reserve rflt (equation 17), l wins if βl (θl) ≥ rflt, and

the asset is not sold if βl (θl) < rflt. Referring to the term inside the bracket in (48),

we prove the following claim.

Claim 2. Given any realization of the synergies (θ1, θ2, ..., θn), for any ε > 0, the

following holds for all k > k∗ (ε):[
n∑
i=1

W opt
i (θ1, θ2, ..., θn)φi(θi)

]
−

[
n∑
i=1

W flt
i (θ1, θ2, ..., θn)φi(θi)

]
≤ 2ε (53)

To prove the claim, we consider the following 4 cases.
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Case 1. The asset is sold in both the optimal and floating-parameter mechanisms. Then
n∑
i=1

W opt
i (θ1, θ2, ..., θn)φi(θi) = φm(θm) and

n∑
i=1

W flt
i (θ1, θ2, ..., θn)φi(θi) = φl (θl).

Because ∆l(θl) ≥ ∆m(θm), Claim 1 yields Claim 2.

Case 2. The asset is sold in neither the optimal nor floating-parameter mechanisms.

Then both terms on the left-hand side of (53) vanish, so (53) holds trivially.

Case 3. The asset is sold in the optimal mechanism but not the floating-parameter mech-

anism. Then the left-hand side of (53) becomes φm(θm). The fact that the asset

is not sold in the floating-parameter mechanism means that βfltl (θl) < rflt. Con-

sider two scenarios below.

Scenario 1. βl(θl) < βl(max
{
φ−1
l (0) , θl

}
. This means φl(θl) < 0. Because ∆l(θl) ≥

∆m(θm), by Claim 1, φm(θm) < ε. This establishes Claim 2.

Scenario 2. βl(θl) < βj(max
{
φ−1
j (0), θj

}
for some j 6= l. There are two subcases.

In the first subcase, βfltl (θl) < βj(
{
φ−1
j (0)

}
) and φ−1

j (0) ≥ θj. Because

φj
{
φ−1
j (0)

}
= 0, by βl(θl) < βj(

{
φ−1
j (0)

}
) and Claim 1, φl(θl) < ε. Then

by Claim 1 again and ∆l(θl) ≥ ∆m(θm), φm(θm) < 2ε, which establishes

Claim 2. In the second subcase, βl(θl) < βj(θj). But this second subcase

can’t happen because βl(θl) ≥ βj(θj) ≥ βj(θj).

Case 4. The asset is sold in the floating-parameter mechanism but not in the optimal

mechanism. We show that this case cannot happen. The fact that it is sold in

the floating-parameter mechanism means that βl(θl) ≥ rflt ≥ βl(max
{
φ−1
l (0)

}
,

implying that θl ≥ max
{
φ−1
l (0)

}
and φl(θl) ≥ 0. Because bidder m has the

highest φi(θi)—higher than that of bidder l, we have φm(θm) ≥ 0. Thus, the

asset should be sold in the optimal mechanism, a contradiction. This completes

the proof of Claim 2.

By Claim 2 and (48), πopts −πII,flts < ε. As ε is arbitrary, equation (18) holds. The

remainder of the proposition is proved in the main text, establishing the proposition.

50


