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Abstract

We analyze a model of speculation by an informed trader who can commit to his trading
strategy in a Kyle-style dealership market. The informed trader commits to a trading strat-
egy and market makers price competitively given knowledge of the functional form of the
trading strategy, but not the trader’s private information. We provide conditions under
which a unique equilibrium obtains. We characterize the (non-negative) value of this strate-
gic commitment, showing constructively that it can be strictly positive. We then derive
necessary and sufficient closed-form conditions for the informed trader not to be able to
profit from commitment. This imposes conditions on model primitives—the distributions of
the fundamental value and noise trades—that are satisfied by linear equilibria, e.g., when
both distributions are Normal.



1 Introduction

Consider a speculator who has designed a sophisticated trading algorithm. The algorithm

may rely on information gleaned elsewhere, but otherwise has minimal real time human

interaction—in essence, the trading algorithm is fixed over long durations although its infor-

mation inputs arrive at a far higher frequency. The speculator trades in a market with high

frequency market makers who seek to reverse engineer the speculator’s algorithm to uncover

her trading strategy. One’s first instinct might be that this reverse engineering should harm

the speculator. But reflection suggests that this might not be so, as the market makers are

learning the form of the speculator’s strategy, rather her information, itself. In effect, by

unraveling the speculator’s strategy, this raises the possibility that market makers may be

providing the speculator a first-mover advantage, possibly yielding her higher profits.1,2

We analyze speculation by an informed trader who can commit to her trading strategy

in a Kyle-style (Kyle, 1985) competitive dealership market. Specifically, the informed trader

can commit to the functional form of her trading strategy; market makers then price com-

petitively given knowledge of the functional form of the trading strategy (e.g., the linear

parameter of a linear trading strategy), but not the trader’s private information, setting the

informationally-efficient pricing rule as a function of the net order flow from the speculator

and noise traders. In the equilibrium of this Stackelberg setting (Kyle, A., 2007, private com-

munication), the speculator’s trading strategy maximizes expected profits subject to market

makers setting consistent informationally-efficient pricing rules. We establish existence of a

unique equilibrium and characterize the value of strategic commitment by an informed trader.

To do this, we build on Boulatov and Livdan (2022), who establish that a unique Nash

equilibrium exists in the single-period trading model of Kyle (1984, 1985). The original Kyle

(1985) static trading model examines a Nash equilibrium in which a monopolistic informed

trader chooses a possibly non-linear trading strategy to maximize profits and competitive

market makers simultaneously choose a possibly non-linear pricing rule that generates zero

expected market-maker profits conditional on any net order flow. Kyle (1985) shows that

there is only one equilibrium in which the trading strategy and pricing rule are both linear

functions. Using mild regularity conditions, Boulatov and Livdan prove the existence and
1An illustration of an explicit open construction of strategies is RavenPack, which posts the algorithm

used to read news and score sentiment on its website.
2Indeed, market makers have strong incentives to unravel a speculator’s trading strategy, else they will

misprice relative to other market makers who do unravel.
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uniqueness of a Nash equilibrium without imposing linearity assumptions and for a broad

class of pdfs for the fundamental value v and random aggregate noise trader demand u. We

extend this analysis to our Stackelberg setting, establishing that a unique equilibrium exists.

We then characterize the value of strategic commitment. We ask: when can a speculator

earn higher expected profits if she can commit to a particular trading strategy? In this set-

ting, market makers break even in expectation, so the question becomes: when can commit-

ting to a trading strategy allow a speculator to extract greater profits from the noise traders?

It is immediate that the speculator can do at least as well as in the standard Nash setting—

the speculator can always commit to the Nash trading strategy to earn the same expected

profit—but under what circumstances can the speculator do no better with commitment?

We establish constructively that the speculator can earn strictly higher expected profits in

the Stackelberg equilibrium than in the Nash equilibrium. Specifically, we solve explicitly for

equilibrium outcomes in the Cho and Karoui (2000) model, which maintains all assumptions

of Kyle (1985) save that v has a Bernoulli distribution rather than a normal distribution,

showing that the ability to commit to a trading strategy has value.

We then show, surprisingly, the speculator cannot always profit from an ability to commit

to her trading strategy. We derive closed-form analytic conditions on the pdfs of v and u for

a speculator not to be able to profit from commitment, i.e., for the Nash and Stackelberg

equilibria to coincide. Of note, these conditions are satisfied for linear equilibria, in partic-

ular when as in Kyle (1985) settings, the pdf fv is equal to some linear rescaling of fu. In

our proof, we formulate the equilibrium problem as a fixed point problem of a particular

functional, defined in an appropriate function space. We explicitly construct the pricing

functional for an arbitrary informed trading strategy, and derive its properties. We then

show the knife-edge nature of this result: we prove that in the vicinity of linear equilibria,

for almost all distributions fv and fu, commitment yields higher speculator profits.

The closest related research is Biais and Germain (2002), who analyze a setting with

discrete (bad, zero, good) private information and equally likely liquidity trades of −L, 0, or

L. The competitive market makers see a pair of orders, but do not know which one is from

the informed trader. Biais and Germain characterize when commitment by the speculator to

a mixed trading strategy (only trading when she has private information with a probability

α < 1) has value. In particular, commitment raises informed profits whenever the speculator

is sufficiently likely to have information, as price then moves less when she trades L or −L:
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the less aggressive strategy raises expected ex-ante profits by reducing market reaction.

2 Model

As a benchmark, recall the classic static Kyle (1985) model. In the model, a single risk-

neutral informed trader privately observes an asset’s liquidation value v drawn from a dis-

tribution with mean zero and pdf fv (·). Liquidity traders cumulatively trade a quantity u,

drawn independently from a distribution with zero mean and pdf fu (·). After observing v, the

speculator chooses a quantity x to trade. The quantity x is a “market order,” in the sense that

it depends on v, but not the equilibrium price. The speculator does not see the level of noise

trade u before trading. Market makers know the joint distribution of v and u but do not ob-

serve either realization. Instead, they only observe the net order flow y = x+u, and then set a

competitive price that yields zero expected profits conditional on the net order flow observed.

The Bayesian Nash equilibrium (BNE) in Kyle (1985) is formally defined by two func-

tions, a trading strategy X∗(·) and a pricing rule P ∗(·), that satisfy, respectively, a profit-

maximization condition and a market-efficiency condition. The profit-maximization condi-

tion states that the speculator’s order x = X∗(v) maximizes her expected profits given the

pricing rule P ∗(·) i.e.,

X∗(v) = argmax
x

Eu[(v − P ∗(x+ u))x|v]. (1)

The market efficiency condition states that market makers expect zero profits given the ob-

served net order flow y = x+u and taking the informed trader’s trading strategy as given, i.e.,

P ∗(y) = E[v|X∗(v) + u = y]. (2)

With Normal pdfs fv (·) and fu (·), the proof that a unique BNE exists in which X∗(·)
and P ∗(·) are linear functions is simple (see, e.g, Kyle (1985)). The equilibrium trading

strategy and pricing rule take the forms

X∗(v) =
σu
σv
v and P ∗(y) =

1

2

σv
σu
y. (3)

Note that a linear trading strategy implies a linear pricing rule and vice versa. Thus, in

any equilibrium, either both the trading strategy and pricing rule are linear or neither are.

To examine general non-linear trading strategies and pricing rules, it is useful to intro-

duce notation that describes the reaction function of market makers to a possibly non-linear
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trading strategy of the speculator. We re-write pricing rule (2) to emphasize the functional

dependence on the conjectured speculator’s strategy Xc(·):

P (y,Xc) = E[v|Xc(v) + u = y]. (4)

The notation P (y,Xc) indicates that the price depends on both a scalar argument given by

the aggregate order flow y and a function argument given by the demand function Xc that

the market makers believe the informed trader is using. Our analysis makes use of function-

als, i.e. functions mapping both scalars and other functions into scalars. To keep notation

clear, we place scalar arguments in front of functional arguments, as in (4). For clarity, we

generally use lower-case letters to denote scalars and upper case letters to denote functions

or functionals, except for pdfs, where we use lower case letters to avoid confusion with cdfs.

Let P (x,Xc) denote the expected price obtained by the speculator when she trades x and

market makers believe she is using trading strategyXc. The functional P (x,Xc) is defined by

P (x,Xc) = Eu [P (x+ u,Xc)] . (5)

When the trading strategy X(·) is linear, the functionals P (y,X) and P (x,X) are identical

linear functions because the zero-mean noise term u has no effect when P is linear in y.

When, instead, the trading strategy X(·) is non-linear, the functions P (y,X) and P (x,X)

generally differ from each other and do not have simple closed-form expressions. When P is a

non-linear function of y, the noise term u has the effect of making P a smoothed version of P .

We analyze two strategic settings, the Nash equilibrium of Kyle (1985) and the Stackel-

berg equilibrium described by Kyle (1983).3 To facilitate analysis, we redefine the equilibrium

concepts as fixed point problems involving functionals.

Suppose the speculator observes the realization v and trades the quantity x, while market

makers conjecture that the speculator follows strategyXc and set the informationally-efficient

pricing rule, P (x+ u,Xc)). The speculator’s expected payoff πI(v, x, P ) is given by

πI(v, x, P ) = Eu[x(v − P (x+ u,Xc))]. (6)

When the speculator determines the functional form of her best response X(·) before seeing

the specific realization of v, 4 we formulate her ex-ante expected payoff, (6), integrating over
3We discuss later structural similarities and distinctions between this model and that of Rochet and Vila

(1994) who consider a informed trader who also sees the level of noise trade u and can condition trade on u.
4After the realization of v is observed, substituting it into X yields the optimal traded quantity x = X(v).
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all realizations of v, as a functional of her actual strategy X and the market makers’ conjec-

ture Xc in (4). The speculator’s ex-ante expected payoff, denoted ΠI(X,Xc), takes the form

πI(X,Xc) = Ev[πI(v,X(v), Xc)] (7)

= Ev,u[x(v − P (x+ u,Xc))].

Definitions of BNE and BSE. The Nash equilibrium trading strategy, denoted XN , is

defined by the fixed-point condition

XN = argmax
X

πI (X,XN) . (8)

That is, in a Nash equilibrium, when the speculator takes as given the pricing by market

makers based on their beliefs about the trading strategy she is going to use, the speculator

indeed chooses that same trading strategy. Although the reaction-function notation empha-

sizes the choice of the function X(·), condition (8) leads to a definition of Nash equilibrium

that is logically equivalent to that in Kyle (1985), defined above in equations (1) and (2).

The two definitions are equivalent because the speculator’s optimization problem decomposes

into separate state-by-state optimization problems for each realization of v.

Suppose now that the speculator can commit to her trading strategy. Then the specula-

tor’s Stackelberg equilibrium trading strategy, denoted XS, is given by the fixed-point

XS = argmax
X

πI(X,X). (9)

Market makers still price according to the market-efficiency condition (4), but the speculator

now accounts for the functional dependence of their pricing rule on her trading strategy.

3 First-Order Conditions

In the Stackelberg setting, we must account for the functional dependence of price when we

derive the analogue of first-order conditions (FOC) for the payoff (7). The speculator’s payoff

depends on the pricing rule, which, in turn, depends on the functional form of her trading

strategy. The speculator may be able to increase her payoff by adjusting the functional form

of her trading strategy X(·).

Define the partial derivative of the price functional

P
′
(x,X) =

∂

∂x
P (x,X). (10)
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To describe the price sensitivity to variation in the speculator’s trading strategy, we use the

notion of functional differentiation. The functional differential of the price at a strategy X(·)
is defined by

δP (x,X; δX) = lim
ε→0

{
P (x,X + εδX)− P (x,X)

ε

}
, (11)

provided that the limit (11) exists for every δX(·) (from the same functional space), and

defines a functional, linear and bounded in δX(·). This definition corresponds to the weak, or

Gateaux differential (see, e.g., Kolmogorov and Fomin (1999), Saati (1981)). Equation (11)

can be viewed as an extension of the directional derivative of functions depending on several

variables to the case where some of the arguments are functions. The differential (11) mea-

sures the price sensitivity to the functional form of the speculator’s trading strategy X(·).
In contrast, (10) describes the quantity variation component, which does not depend on the

functional form of the strategy. The definition below of the full variation of the price func-

tional can be viewed as an extension of the full differential of a function depending on several

variables, when the full differential is obtained as a sum of partial differentials with respect

to all variables. In our setting, one of the “variables” is the function representing the specu-

lator’s trading strategy. For this reason, the full variation of the price functional is given by

DP (x,X, δx; δX) = P
′
(x,X)δx+ δP (x,X; δX) . (12)

For a given x and X, DP (x,X, δx; δX) defines a linear function of δx and a linear functional

of δX.

When the speculator can commit to her trading strategy, her expected payoff (7) has two

functional arguments, one corresponding to her actual strategy, and one corresponding to

the strategy conjectured by the market makers. Using the definition in (11), δ1πI (X, Y ; δX)

and δ2πI (X, Y ; δY ) are the functional differentials of the speculator’s expected payoff with

respect to the first and second functional arguments, respectively. Correspondingly, the full

variation of the speculator’s expected payoff is given by

δπI (X, Y ; δX, δY ) = δ1πI (X, Y ; δX) + δ2πI (X, Y ; δY ) . (13)

Using these definitions, we obtain the following first-order conditions for the speculator’s

profit maximization problem in the Nash and Stackelberg settings. A necessary condition for

a Nash equilibrium is that for all variations δX belonging to the basic functional set, we have:

0 = δ1πI(XN , XN ; δX) (14)

= Ev

[{
v − P (XN(v), XN)−XN(v)P

′
(XN(v), XN)

}
δX(v)

]
.
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A necessary condition for a Stackelberg equilibrium is that for all variations δX, we have:

0 = δ1πI (XS, XS; δX) + δ2πI (XS, XS; δX) (15)

= Ev

[{
v − P (XS(v), XS)−XS(v)P

′
(XS (v) , XS)

}
δX(v)

]
−

Ev

[
XS(v)δ2P (XS (v) , XS)

]
.

The first-order conditions (14) and (15) are analogous to, but distinct from, the first-order

condition obtained in Rochet and Vila (1994), where an insider also observes uninformed (liq-

uidity demand) that she can condition her strategy on. In our Kyle (1985) setting, insiders

do not observe liquidity demand, rendering the analysis fundamentally different.

In the Stackelberg setting, the first-order condition (15) contains the additional struc-

tural derivative of the price functional δ2P (XS(v), XS), reflecting that when the speculator

changes her trading strategy, she internalizes the effect on market maker pricing in her profit

maximization problem. Define Q(y,X) = E [X(v)|X(v) + u = y] to be the expected value

of X(v) from the perspective of market makers who observe the net order flow y; and define

J(v, x,X) =
∂

∂x
Eu [Q(x+ u,X) {v − P (x+ u,X)}] (16)

to be the derivative of the speculator’s profits with respect to x, accounting for how x affects

market maker inferences about X(·). Using (14) and (15) we have

Proposition 1: For any v, the first-order conditions for the speculator’s strategy are given by

0 = v − P (XN(v), XN)−XN(v)P
′
(XN(v), XN), (17)

for the Nash setting, and

0 = v − P (XS(v), XS)−XS(v)P
′
(XS(v), XS)− J (v,XS(v), XS) , (18)

for the Stackelberg setting.

Proof: See the Appendix. □

The J term on the right-hand side of (18) corresponds to the marginal expected informed

trader’s profits in the information set of market makers. Technically, the J-term comes from

the structural variation component δ2P (X(v), X(·)) in the Stackelberg setting, which is ab-

sent in the informed trader’s optimization problem in the Nash setting. That is, the J-term
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(16) describes how the speculator accounts for the market makers’ reaction to her actions in

her optimal strategy. The J-term represents the difference between full functional variation

in the Stackelberg setting and the ordinary differential in the Nash setting.

To develop intuition, we show that the optimality condition in the Stackelberg setting

can equivalently be formulated as maximizing the speculator’s “effective payoff”:

Result 1: A speculator’s optimization problem in the Stackelberg setting can be expressed as:

maxxπeff (x) , (19)

where the speculator’s effective payoff is given by

πeff (X(v)) = Eu [(X(v)− E [X(v)|X(v) + u = y]) {v − P (X(v) + u,X)}] . (20)

Proof: Substituting (16) for J into the speculator’s first-order conddition, (18), yields

∂

∂x

∣∣∣∣
x=X(v)

{Eu [x (v − P (x+ u,X))]− Eu [Q (x+ u,X) {v − P (x+ u,X)}]} = 0.

Factoring terms yields

∂

∂x

∣∣∣∣
x=X(v)

Eu [(x−Q (x+ u,X)) (v − P (x+ u,X))] = 0, (21)

which can be interpreted as an optimality condition for a speculator with “effective” payoff

πeff (x) = Eu [(x−Q (x+ u,X)) (v − P (x+ u,X))] . □ (22)

The speculator’s effective payoff (22) has a simple economic interpretation. In the Nash

setting, the speculator’s optimization problem takes the form maxxEu [x (v − P (x+ u,X))].

Because Q (x+ u,X) = E [X(v)|X(v) + u = y] is the market makers’ best estimate of the

speculator’s market order X(v), the term x−Q (x+ u,X) in (22) represents the unexpected

component of the speculator’s order from the informational perspective of market makers.

The speculator’s effective payoff is the expected value of the error in the market makers’

forecast of the speculator’s trade.5 In the Stackelberg setting, the FOC (18) has the follow-

ing interpretation. The market makers are trying to minimize the speculator’s profits, and

the speculator knows this. The expression (22) for the speculator’s effective payoffs reveals
5For related forecast error results see Bernhardt and Miao (2004) or Bernhardt, Seiler and Taub (2010).
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that she anticipates the market makers’ actions, and hence maximizes the difference between

her actual profits and the market makers’ forecast.

Comparing (22) with the speculator’s Nash objective, we observe that with commitment,

the speculator’s optimization problem explicitly takes into account that market makers can

partially “undo” the effect of speculation by anticipating the speculator’s orders. This effect

may lead the speculator to trade less aggressively. When this is so, one can expect that the

equilibrium with commitment is characterized by smaller price impacts and hence reduced

information efficiency compared to the Nash case, as we will show can occur.

We next illustrate the distinction between the two components of the full variation of the

price functional (12) in the classical Normal setting.

Example 1: Suppose fv ∼ N(0, σ2
v) and fu ∼ N(0, σ2

u) and strategies are linear X(v) = βv.

Kyle (1985) shows that the conjectured linear speculator strategy Xc(v) = βcv leads to

the linear informationally-efficient pricing rule

P (y,Xc) = λ (Xc) y, where λ(Xc) =
βc

β2
c + β2

0

and β0 = σu/σv. (23)

The expected price functional is also linear

P (x,Xc) = λ (Xc)x. (24)

Combining (12), (23), and (24), we obtain for the linear strategy X(v) = βv

∆P (x, dx,X; δX) = λdx+ xδλ (X, δX) , (25)

where the last term on the right-hand side, δλ (X; δX), only depends on the functional vari-

ations of the linear strategies δX(v) = vδβ. In other words, δλ (X; δX) depends on the

variation of β, but not v. Then (12) and (25) yield that for linear variations δX(v) = vδβ,

the price derivative and the structural variation components are given by

P
′
(x,X) = λ(β) =

β

β2 + β2
0

and δP (x,X; δX) = x
∂λ

∂β
δβ. (26)

Foreshadowing future results, we exploit the explicit linear solutions for the speculator’s

trading strategy and market maker pricing to show that commitment has no added value

when both liquidation values and noise trade are normally distributed. Around the optimal

linear strategy, β = β0, we have[
∂λ

∂β

]
β=β0

=
∂

∂β

[
β

β2 + β2
0

]
β=β0

= 0. (27)
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Substituting this into (26) yields that the variation of the price functional with respect to

linear variations of the informed trader’s strategy, δX(v) = δβv, vanishes at X (v) = β0v:

δP (x,X; δX) = 0. (28)

Therefore, Ev

[
xδP (x,X; δX)

]
= Ev [v

2] β2 ∂λ
∂β
δβ = 0, which implies that the Stackelberg

term J vanishes in equilibrium. Directly evaluating, Q (y,X) = Ev|y [X(v)] = λβy, and we

confirm that J = Eu [λβv − 2λ2βy] = λβv (1− 2λβ) = 0. □

3.1 Equilibrium Existence

We next pose the informed trader’s optimization in both Nash and Stackelberg settings as

fixed-point problems. We impose regularity conditions on the distributions to ensure the

existence of equilibria. Specifically, we impose assumptions on the densities fv(·) and fu(·)
that rely on regularly-varying functions (RVF) and slowly-varying functions (SVF) in the

Karamata sense (see, e.g., Seneta (2019), Takesi and Maric (2006), or Karamata (1962)).

DEFINITION 1A (Seneta, 2019): A function f(x) defined, positive, and measurable on

x ≥ A > 0 , is said to be regularly varying of index ρ if lim
x→∞

f(λx)
f(x)

= λρ for some real ρ ∈ R

and any λ > 0.

To establish the existence of Nash and Stackelberg equilibria we adopt the regularity con-

ditions on the distributions of priors and noise trade imposed by Boulatov and Livdan (2022):

1. Probability density functions fv(·) and fu(·) are smooth and have infinite support.

2. fv(x) = Cv exp (−ψv (|x|)) and fu(x) = Cu exp (−ψu (|x|)) where (i) ψv is convex (the

pdf fv is thus log-concave), (ii) both ψv and ψu are measurable with respect to fv, and

(iii) ψu is measurable with respect to fu. Also, both ψv and ψu are RVF with indices

av > 1 and au, respectively.

3. fu (u) is an analytic function for u ∈ C (except for, possibly, the point u = 0) satis-

fying the condition |fu (x+ iy)| ≤ gu(x)M(y), where the function gu(·) is a pdf, ψu is

measurable with respect to gu, and M(y) is finite, |M (y)| <∞, for any finite |y| <∞.

For example, Normal pdfs satisfy these regularity conditions, corresponding to fv(x) =

Cv exp (−ψv (|x|)) and fu(x) = Cu exp (−ψu (|x|)) where ψv(|x|) = ψu(|x|) = x2

2
, implying
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that ψv and ψu are RVF with indices av = au = 2. The conditions rule out fat-tailed distribu-

tions with infinite support and asymmetric distributions. Condition 3 says that the analytic

extension of fu(·) in a complex plane remains bounded and without fat tails along the real

axis. In essence, equilibrium existence requires that expected trading profits be bounded—

when the tails are too fat, speculators observe high values of v sufficiently frequently and

with fat-tailed noise trade can submit aggressive orders without being easily detected by

market makers, resulting in unbounded profits and hence an unraveling of equilibrium.

Theorem 1 The Bayesian Nash and Stackelberg equilibria (XN , PN) and (XS, PS) exist given

the regularity conditions 1–3 on the distributions. The informed trader’s optimal Stackelberg

strategy X∗ satisfies the first-order condition: ∇X∗(v)πI (X
∗, X∗) = 0.

Proof: See the Appendix. □

Boulatov and Livdan (2022) prove that the technical conditions 1–3 above ensure that

a unique BNE exists. To extend this result to establish existence of the Stackelberg equi-

librium, we first observe that the functional πI (X,X) is weakly continuous. Therefore, its

values on each weakly converging sequence {Xn} converge (Krasnoselskii, 1964). Because

πI is weakly continuous, it assumes its upper and lower bounds on any finite ball ∥X∥ ≤ r

(Krasnoselskii, 1964).

Second, exploiting the explicit form of the pricing rule, we observe that when the norm of

the speculator’s strategy ∥X∥ increases unboundedly, i.e., when ∥X∥ → ∞, then πI(X,X) →
0. Economically, this means that strategies with infinite norm are not profitable, implying

that the optimal strategy has a finite norm. This also means that the speculator’s expected

profit is bounded from above, πI(X,X) ≤ a < +∞. Because πI is weakly continuous, we

have max
∥X∥≤h

πI(X,X) = π∗
I , where π∗

I ≤ a < +∞ is the maximal value of πI(X,X) in the entire

strategy space. Then, because the optimum π∗
I of πI(X,X) exists and is finite, the corre-

sponding optimal strategyX∗ has a finite norm and πI (X,X) takes its maximal value on this

optimal strategy, π∗
I = πI (X

∗, X∗). Finally, because πI(X,X) is uniformly differentiable, its

gradient at the optimal strategy X∗ vanishes, ∇X∗(v)πI (X
∗, X∗) = 0 (Krasnoselskii, 1964).

3.2 Market maker isoprofit curves

To provide intuition about the speculator’s optimization problem in the Nash and Stack-

elberg settings, we now allow for arbitrary pricing functions P (y) that need not equal the
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informationally-efficient pricing function, P (y,Xc) = E [v|y = Xc(v) + u]. We consider a

speculator’s profit functionals in this extended strategy space. The informationally-efficient

pricing rules and corresponding conjectured strategies form an isoprofit curve in the func-

tional space characterized by the expected profits of market makers being identically zero

along the curve. Expected market maker profits equal

πM (X,Xc) = Ev,u[y(P (y,Xc)− v)] (29)

= EyEv|y[y(P (y,Xc)− v)]

= Ey[y(P (y,Xc)− P (y,X))],

where P (y,X) = Ev|y[v] = E[v|y = X(v) + u] is the expected value of v conditional on the

net order flow y. Informational efficiency requires that the marginal profit be zero, i.e., the

price is the conditional expectation of v given the correct conjecture, Xc = X. We prove in

Proposition 2 that this condition holds locally, even for arbitrary variations of the pricing rule.

Consider the Stackelberg setting with commitment, Xc = X, and define the isoprofit

curve ΓC(X,P ) in the functional space of pricing rules P (y,X) as πM (X,P ) ≡ const = C,

when (X,P ) ∈ ΓC (X,P ). This is a direct extension of the notion of a curve in finite di-

mensional Euclidean space to the case where the “point” (X,P ) is characterized by two

functions defined in a Banach space. In particular, the zero-profit isoprofit curve for market

makers, πM (X,P ) ≡ 0, contains all pairs of speculator trading strategies and corresponding

informationally-efficient pricing rules, i.e., (X,P ) ∈ Γ0 (X,P ).

Suppose that a pair (X,P ) belongs to ΓC , i.e. (X,P ) ∈ ΓC(X,P ). Consider any small

variation of the speculator’s strategy δX. Then the resulting variation in the pricing rule δP

should lead the point (X + δX, P + δP ) to still belong to the same isoprofit curve ΓC . Eval-

uating the variation of (29) along ΓC , and noting that δy = δ (X(v) + u) = δX(v), we obtain

δπM(X,P ) = Ev,u[δX(v)(P (y,X)− v + yP ′ (y,X)) + yδP (y,X)] = 0. (30)

In particular, along Γ0, we use the explicit form of the informationally-efficient pricing rule

Pe (y,X) = E [v|y] to obtain:

Proposition 2: The informationally-efficient pricing rule Pe (y,X) satisfies the isoprofit condition

δπM (X,Pe) = Ev,u[δX (v) (Pe (y,X)− v + yP ′
e (y,X)) + yδPe (y,X)] = 0, (31)

for expected market maker profits.
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Proof: See the Appendix. □

Figure 1: Optimization by speculator in Nash and Stackelberg settings

X

P

𝐴 𝑋𝑁, 𝑃𝑁

B 𝑋𝑆, 𝑃𝑆

Γ0 𝑋, 𝑃

ത𝜋𝐼 𝐵 ≥ ത𝜋𝐼 𝐴

∇ത𝜋𝐼 𝑋, 𝑃 =𝛿𝑃 ത𝜋𝐼 𝑋, 𝑃

The Nash and Stackelberg equilibrium points are (XN , PN ) and (XS , PS), respectively. The Nash equilibrium
is given by intersection of the blue curve representing the speculator’s best response to an arbitrary pricing
rule P and the red curve representing informationally-efficient pricing given an arbitrary informed trading
strategy X. The Stackelberg equilibrium (XS , PS) = argmax

(X,P )∈Γ0

πI(X,P ), is obtained by maximizing the

speculator’s expected profit along the zero profit curve Γ0 for market makers.

Figure 1 illustrates the economics. Recall that the speculator’s FOC in the Nash setting

takes the form

δ1πI (X,Xc) = δXEu,v[X(v)(v − P (X(v) + u,Xc)] = 0. (32)

This must hold also in equilibrium at the “fixed” point of (X,Xc) where X = Xc. In the Nash

setting, the functional form of pricing rule is pinned down by the market makers’ conjecture

Xc; it is not a choice variable for the speculator who takes it as given in her optimization

problem. Then the equilibrium point (XN , PN) is obtained as an intersection of two curves

in the functional space (X,P ), as depicted in Figure 1. The blue curve in Figure 1 is a

“response function” of the speculator’s trading strategy X to some arbitrary pricing rule P

set by market makers. That is, the blue curve illustrates a set of pricing rules and corre-

sponding speculator trading strategies in the functional space associated with the FOC (32).
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The red curve in Figure 1 is Γ0(X,P ), which represents a set (X,Pe) of arbitrary speculator

trading strategies X and associated informationally-efficient pricing rules Pe (y,X). It can

be viewed as the response function Pe of market makers to an arbitrary speculator trading

strategy X. The Nash equilibrium point (XN , PN) is given by the intersection of the two

curves, i.e., by the intersection of the two reaction functions, and is characterized by both

FOCs holding, i.e., by the speculator’s optimality condition and the informational efficiency

condition coming from the informational-efficient pricing rule set by market makers.

Now consider a Stackelberg equilibrium point (XS, PS) as illustrated in Figure 1. The

speculator is, in effect, constrained to choosing a point on the isoprofit curve Γ0 for which

market makers expect zero profit, i.e., for which the pricing rule is informationally effi-

cient. That is, a speculator’s optimization problem can be represented as maximizing her

expected profit along the zero profit curve Γ0 for market makers. Its solution, (XS, PS) =

argmax
(X,P )∈Γ0

πI(X,P ), or, equivalently, XS = argmax
X

πI(X,X) gives the Stackelberg equilib-

rium. By construction, moving away from the Stackelberg equilibrium (XS, PS) along Γ0

cannot lead to higher speculator profits.

3.3 Speculator profit and commitment

The ability to commit to a trading strategy can never harm a speculator—she can always

commit to her Nash strategy, in which case market maker pricing is unchanged, implying that

the speculator’s profits are unchanged state by state. We next constructively establish that a

speculator can sometimes earn strictly higher expected profits in the Stackelberg equilibrium

than in the Nash equilibrium. Further, since market makers expect zero profits in both types

of equilibria, this implies that noise trader losses are strictly higher in the Stackelberg setting.

To do this, we compare speculator profits in the Nash and Stackelberg equilibria of the

Cho and Karoui (2000) model. Cho and Karoui replace the assumption in Kyle (1985) that v

has a normal distribution with the assumption that v has a symmetric Bernoulli distribution,

v =

{
a, prob. = 1

2

−a, prob. = 1
2
,

(33)

maintaining all other assumptions of Kyle (1985). Boulatov and Livdan (2022) prove that

this model has a unique Nash equilibrium, and that equilibrium trading strategies and pricing

are non-linear.

The pricing rule in the Cho and Karoui (2000) model remains both a smooth analytic

14



function of total order flow and a smooth analytic functional in the speculator’s strategy

(Boulatov and Livdan (2022)), even though the Bernoulli distribution does not satisfy our

distributional assumptions. As a result, the model is (almost) analytically tractable.

It is straightforward to verify that with a symmetric Bernoulli prior (33), the speculator’s

strategy takes the form

X(v) =

{
β, v = a

−β, v = −a . (34)

That is, the speculator’s optimal strategy is an odd function of v. Following Boulatov and

Livdan (2022), we obtain, as in Cho and Karoui (2000), the pricing rule

P (y) = a

1
2
exp

(
(y−β)2

2σ2
u

)
− 1

2
exp

(
(y+β)2

2σ2
u

)
1
2
exp

(
(y−β)2

2σ2
u

)
+ 1

2
exp

(
(y+β)2

2σ2
u

) (35)

= a
exp

(
yβ
σ2
u

)
− exp

(
−yβ

σ2
u

)
exp

(
yβ
σ2
u

)
+ exp

(
yβ
σ2
u

) = a tanh

(
βy

σ2
u

)
.

To analyze the Nash equilibrium, we use the speculator’s optimality condition

P (X(v)) +X(v)P
′
(X(v)) = v,

which involves the expected price functional P (X(v)) = Eu [P (X(v) + u)]. Using (35), we

solve for the expected price functional

P (x) = aEu

[
tanh

(
β

σ2
u

(x+ u)

)]
. (36)

Because tanh(·) is an odd function and the normal N(0, σ2
u) distribution of the noise trade

is symmetric, it follows from (36) that P (x) is an odd function, i.e., P (−x) = −P (x).
Rescaling the informed trader’s strategy and the noise demand by σu, we obtain

P (x) = aEu [tanh (β (x+ u))] . (37)

As in Cho and Karoui (2000), we obtain the speculator’s FOCs in the form

1 = Eu

[
tanh

(
β

σ2
u

(β + u)

)]
+

(
∂

∂x

)
x=β

Eu

[
tanh

(
β

σ2
u

(x+ u)

)]
, (38)

−1 = Eu

[
tanh

(
β

σ2
u

(−β + u)

)]
+

(
∂

∂x

)
x=−β

Eu

[
tanh

(
β

σ2
u

(x+ u)

)]
,

where the parameter a cancels out. Because the expected price (36) is an odd function of

β, it follows that the two FOCs in (38) are equivalent (reflecting the symmetric prior and
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signal structure). After simplifying, evaluating the derivative, and rescaling one more time,

tedious algebra yields the following fixed point condition

β2 =
1− Eu [tanh (β

2 + βu)]

1− Eu

[
tanh2 (β2 + βu)

] , u ∼ N (0, 1) . (39)

Integration yields that Eu [tanh (β
2 + βu)] = Eu

[
tanh2 (β2 + βu)

]
for all β and hence the

right-hand side of (39) is given by

F (β) =
1− Eu [tanh (β

2 + βu)]

1− Eu

[
tanh2 (β2 + βu)

] ≡ 1. (40)

In Figure 1, the functions β2 and F (β) are given by the thin green and blue lines, respec-

tively. Hence, the solution of (39) is given by β = 1. This completely characterizes the

Bayesian Nash equilibrium (BNE).

Figure 2: FOC for equilibrium with commitment and Nash
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)

The functions β2 and F (β) are given by the thin green and blue lines, respectively. The function G(β) is
presented by an orange line. The solution of (39) is β = 1. The solution βS ≈ 0.8 of (42) is smaller than
βN = 1 solving (39), i.e., βS < βN = 1.

Now consider the Stackelberg setting. In this case, the speculator maximizes:

πI(β) = aβ (1− Eu [tanh (β (x+ u))]) , u ∼ N (0, 1) . (41)
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The associated FOCs are given by

β2 = G(β), (42)

G(β) =
1− Eu [tanh (β

2 + βu)]

2Eu

[(
1− tanh2 (β2 + βu)

)
(1− tanh (β2 + βu))

] .
The function G(β) is given by the orange line in Figure 2. The Stackleberg solution βS of (42)

is smaller than the Nash solution βN solving (39), i.e., βS < βN = 1. Indeed, plugging β = 1

into the right-hand side of (42), yields G(1) = 0.65 < 1. Thus, as Figure 2 illustrates, the so-

lution for β in (42) is less than 1, implying that the speculator’s expected Stackelberg profits

in equation (41) strictly exceed her Nash profits. Figure 3 plots those profits, revealing that

they are maximized by βS ≈ 0.8 < βN = 1, i.e., the speculator can increase profits by com-

mitting to a less aggressive trading strategy, loosely consistent with intuition from Biais and

Germain (2002). Equation (37) also indicates that since βS < βN , price impacts are smaller

in the Stackelberg equilibrium than in the Nash equilibrium, implying that the Stackelberg

equilibrium features greater residual market uncertainty (lower information efficiency).

Figure 3: Speculator profits in equilibrium with commitment

βS βN
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This figure shows the speculator’s profits (41) as function of her trading intensity β. The speculator’s
expected profit has a maximum at βS ≈ 0.8 < βN = 1.

The speculator’s equilibrium expected profits are higher when she can commit to her

strategy than in the BNE, whenever the two equilibria differ. With commitment the specu-
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lator cannot increase her equilibrium expected profits by deviating from the Nash equilibrium

allocation (XN , PN) to another allocation with zero expected market maker profit if and only

if the two equilibria correspond, (XN , PN) = (XS, PS). Conversely, for the Nash equilibrium

(XN , PN) to correspond to the Stackelberg equilibrium, it means that

δkπI (XN , XN ; δXk) = 0, for both k = 1, 2. (43)

From (31), the market price efficiency condition takes the form

δ1πM (XN , XN ; δX1) + δ2πM (XN , XN ; δX2) = 0. (44)

We can now provide explicit conditions under which strategic commitment by the in-

formed speculator does not have value:

Proposition 3: The Stackelberg equilibrium outcome (XS, PS) is the same as the Nash

equilibrium outcome (XN , PN) if and only if(
∂

∂x

)
x=XN (v)

Eu [x {v − P (x+ u,XN)}] = 0,(
∂

∂x

)
x=XN (v)

Eu [Q (x+ u,XN) {v − P (x+ u,XN)}] = 0. (45)

Proof: The equilibria correspond if and only if

δkπI (XN , XN ; δXk) = 0, k = 1, 2. (46)

The first condition of (45) follows from δ1πI (XN , XN ; δX1) = 0 and is equivalent to the

result of Proposition 1 for the FOC in the Nash setting, i.e.,

v − P (XN(v), XN)−XN (v)P
′
(XN(v), XN) = 0. (47)

The second condition of (45) reduces to J(v, x,X) = 0, which is required for the FOCs for

the Nash and Stackelberg to be the same, and hence for the resulting equilibrium outcomes

to match, which also follows from Proposition 1. □

The first condition of (45) is the FOC for the Nash setting, and the second condition

reduces to J(v, x,X) = 0, implying that the Nash and Stackelberg FOCs are identical and
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hence so are their equilibrium outcomes. Surprisingly, this correspondence of equilibrium out-

comes holds in the classical finance setting where the Nash equilibrium takes a linear form:

Proposition 4: The Nash equilibrium is linear when the pdf fv (·) is equal to a linear rescal-

ing of fu (·) , i.e., when γfu(γu) = fv(u) for some positive real γ > 0 and any real u.6

The J term vanishes if the Nash equilibrium is linear, implying that Nash and Stackelberg

equilibria yield the same equilibrium outcome.

Proof: We conjecture and verify that the equilibrium trading strategy is linear, X(v) = βv

with trading intensity parameter β = γ. The informationally-efficient pricing rule is then:

Pe (y,X) =

∫
vfv(v)fu (y − βv) dv∫
fv(v)fu (y − βv) dv

. (48)

Substituting β = γ, equation (48) yields

Pe (y,X) =

∫
vfv(v)fu

(
γ
(

y
γ
− v

))
dv∫

fv(v)fu

(
γ
(

y
γ
− v

))
dv

(49)

=

∫
vfv(v)fv

(
y
γ
− v

)
dv∫

fv(v)fv

(
y
γ
− v

)
dv

.

Using the new integration variable v′ = y
γ
− v, we have v = y

γ
− v′, and (49) yields:

Pe (y,X) =

∫
vfv(v)fv

(
y
γ
− v

)
dv∫

fv(v)fv

(
y
γ
− v

)
dv

=

∫ (
y
γ
− v′

)
fv

(
y
γ
− v′

)
fv (v

′) dv′∫
fv

(
y
γ
− v′

)
fv (v′) dv′

=
y

γ
− Pe (y,X) . (50)

Solving for Pe(y, x) yields Pe (y,X) = λy, with λ = 1
2γ

. Note that λ = 1
2γ

is consistent with

the speculator’s FOC, 2λγ = 1. Thus, the linear equilibrium exists (and uniqueness follows

from Boulatov and Livdan (2022)).

We now prove that the J term vanishes if the Nash equilibrium is linear. From (45),(
∂

∂x

)
x=XN (v)

Eu [x {v − P (x+ u,XN)}] = 0,(
∂

∂x

)
x=XN (v)

Eu [Q (x+ u,XN) {v − P (x+ u,XN)}] = 0.

6See Carre, Collin-Dufresne and Gabriel (2022).
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The speculator’s trading strategy is XN(v) = γv and P (y,XN) = Ev|y [v] = λy. Therefore,

Q (y,XN) = Ev|y [XN(v)] = λγy. (51)

Using the short-hand notation Q(y) = Q(x+ u,XN) and P (y) = P (x+ u,XN), we have(
∂

∂x

)
x=XN (v)

Eu [Q (x+ u,XN) {v − P (x+ u,XN)}]

= Eu [Q
′(y) {v − P (y)} −Q(y)P ′(y)] . (52)

where y = XN(v) + u. Finally, we obtain

J = Eu [Q
′(y) {v − P (y)} −Q(y)P ′(y)] (53)

= Eu

[
Q′(y)v − ∂

∂y
{P (y)Q(y)}

]
= Eu

[
λγv − 2λ2γy

]
= λγv (1− 2λγ) = 0.

The last equality in (53) follows from the speculator’s FOC, 2λγ = 1. □

Thus, we see that in a common class of financial models—those with normally distributed

uncertainty where the speculator’s equilibrium trading strategy takes a linear form—the

speculator is unable to profit from an ability to commit to the form of her trading strategy.

To conclude we show the knife-edge nature of this result. Specifically, we show that if the

Nash equilibrium strategy deviates just slightly from linearity then Nash and Stackelberg

equilibria typically cease to correspond, in which case the ability to commit to a trading

strategy has strictly positive value. The speculator’s Nash equilibrium strategy can slightly

deviate from linearity, X(v) = βv+ δX(v), when the pdfs slightly deviate from the rescaling

condition that the pdfs fv and fu satisfy γfu (γu) = fv (u) for some γ > 0 and any u ∈ R.

To show this, we consider a small variation of the noise distribution pdf,7 f
(1)
u (u) =

fu (u) + δfu (u), such that the scaling condition γfu (γu) = fv (u) with the same scaling

parameter γ ceases to hold. From Proposition 3, Nash and Stackelberg equilibria correspond

if and only if the J term vanishes at equilibrium, i.e. J(v, x,X) = 0. We have:

Proposition 5 In the vicinity of linear equilibria, the set of variations δfu that lead to a

zero J term has measure zero; in contrast, the set of variations δfu that lead to a non-zero

J term has positive measure. Thus, in the vicinity of linear equilibria, speculator profit with

commitment almost always exceeds profits in Nash equilibria.
7Equivalently, we could assume a small variation of fv.
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Proof: See the Appendix. □

4 Conclusion

We analyze strategic commitment by an informed speculator in a Kyle-style competitive

dealership market. The speculator commits to a trading strategy and market makers price

competitively given knowledge of the functional form of the trading strategy, but not the

speculator’s private information. We provide conditions under which a unique equilibrium

obtains. We characterize the (non-negative) value of this strategic commitment, showing

constructively that it is strictly positive in a setting where, rather than receiving a normal

signal, the informed trader receives a binary signal about the asset’s value and noise trade is

normally distributed, so that the resulting informationally-efficient pricing function is non-

linear. We then derive necessary and sufficient closed-form conditions for the informed trader

not to be able to profit from commitment. This imposes conditions on model primitives—the

distributions of the fundamental value and noise trade—that are satisfied by linear equilib-

ria, e.g., when both distributions are Normal as in the classical Kyle model, but not when

equilibria are only “almost linear”.
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5 Appendix A: Proofs

Proof of Proposition 1: The FOC in the Nash setting (17) follows directly from (14).

We now derive the FOC (18) in the Stackelberg setting, which takes into account the price

functional variation component. The FOC expressed in terms of the first functional variation

of (15) yields

0 = Ev

[{
v − P (XS(v), XS)−XS(v)P

′
XS (v) , XS

}
δX(v)

]
(54)

−Ev,u [XS(v)δP (y,XS, δX)] ,

where y = XS(v)+u and we use δP (y,X) as short-hand notation for the functional variation

δP (y,X) =

∫
(v − P (y,X)) fv(v)

(
− ∂

∂y

)
fu (y −X(v)) δX(v)dv∫

fv (v) fu (y −X(v)) dv
, (55)

and we omit the irrelevant argument δX. Defining Q (y,X) = Ev|y [X(v)], we have

Ev,u[X(v)δP (y,X)] =

∫ ∫
fv(v)fu (y −X(v))X(v)δP (y,X) dydv

= Ev

[∫
Q (y,X) (v − P (y,X))

(
− ∂

∂y

)
fu (y −X(v)) δX(v)dy

]
= Ev

[
δX(v)

∫ (
∂

∂y
Q (y,X) (v − P (y,X))

)
fu (y −X(v)) dy

]
= Ev

[
δX(v)Eu

[
∂

∂y
Q (y,X) (v − P (y,X))

]]
= Ev,u

[
δX(v)

∂

∂y
Q (y,X) (v − P (y,X))

]
.

Thus,

Ev,u[X(v)δP (y,X)] = Ev,u

[
δX(v)

∂

∂y
Q (y,X) (v − P (y,X))

]
, (56)

or substituting

J(v, x,X) = Eu

[
∂

∂y
Q (y,X) (v − P (y,X))

]
=

∂

∂x
Eu [Q (x+ u,X) (v − P (x+ u,X))] ,

we have

Eu,v [X(v)δP (y,X)] = Ev [δX(v)J(v, x,X)] , (57)

for arbitrary variations δX (v). Application of the main principle of variation calculus (Kol-

mogorov and Fomin, 1999) to (57) yields the result of Proposition 1. □
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Proof of Proposition 2: The informationally-efficient pricing rule and its functional deriva-

tive with respect to the informed trader’s strategy are given by (Boulatov and Livdan, 2022):

Pe (y,X) =

∫
vfv(v)fu (y −X(v)) dv∫
fv(v)fu (y −X(v)) dv

, (58)

and

δPe (y,X) =

∫
(v − Pe (y,X)) fv(v)

(
− ∂

∂y

)
fu (y −X(v)) δX(v)dv∫

fv(v)fu (y −X(v)) dv
. (59)

Therefore,

Ev,u[yδPe (y,X)] =

∫ ∫
fv(v)fu (y −X(v)) yδPe (y,X) dydv (60)

=

∫ ∫
y (v − Pe (y,X)) fv(v)

(
− ∂

∂y

)
fu (y −X(v)) δX(v)dvdy

=

∫
fv(v)δX(v)

∫ (
∂

∂y
y (v − Pe (y,X))

)
fu (y −X(v)) dydv

= Ev

[
δX(v)Eu

[
∂

∂y
y (v − Pe (y,X))

]]
= Ev,u

[
δX(v)

∂

∂y
y (v − Pe (y,X))

]
= Ev,u [δX(v) (v − Pe (y,X)− yP ′

e (y,X))] .

Thus,

Ev,u[yδPe (y,X)] = −Ev,u [δX (v) (Pe (y,X)− v + yP ′
e (y,X))] , (61)

or

Ev,u[yδPe (y,X) + δX(v) (Pe (y,X)− v + yP ′
e (y,X))] = 0. □ (62)

Proof of Theorem 1. Boulatov and Livdan (2022) establish existence of the BNE given

the regularity conditions 1–3.

For the Stackelberg equilibrium, we first observe that the functional πI(X,X) is weakly

continuous. Therefore, its values on each weakly converging sequence {Xn} converge (Kras-

noselskii, 1964). In fact, we know that πI(X,X) has a uniformly continuous gradient and

hence is uniformly differentiable.

Claim: Because πI is weakly continuous, it assumes its upper and lower bounds on any

finite ball ∥X∥ ≤ r (Krasnoselskii, 1964).
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Proof: The gradient of the functional πI(X,X) is a completely continuous operator (Kras-

noselskii, 1964). That is, by (15) and (18), the speculator’s expected profit functional has

gradient

∇X(v)πI(X,X) = v − AS (v,X(v), X) , (63)

where AS (v,X(v), X) = P (X (v) , X) +X(v)P
′
(X (v) , X) + J (v,X(v), X) ,

which is equivalent to saying that the full variation of πI(X,X) takes the form

δπI (X,X; δX(v)) = Ev

[
δX(v)

(
v − P (X(v), X)−X(v)P

′
(X(v), X)− J (v,X(v), X)

)]
,

obtained in Proposition 1. The operator AS(v, x,X) = ∂
∂x

(
xP (X,X)

)
+ J (v,X(v), X) is

completely continuous. Boulatov and Livdan (2022) show the first term ∂
∂x

(
xP (X,X)

)
is

completely continuous given regularity conditions 1–3.

The J-term given by (16) is also completely continuous. That is, (16) says that

J(v, x,X) = Eu

[
∂

∂y
Q (y,X) (v − P (y,X))

]
, (64)

=

+∞∫
−∞

dyfu (y − x)
∂

∂y
Q (y,X) (v − P (y,X)) .

Therefore, J is given by a superposition, J = GR, with R = ∂
∂y
Q (y,X) (v − P (y,X)) and

linear operator G acting on a vector F ∈ L1 and defined by

G (x;F ) =

+∞∫
−∞

dyfu (y − x)F (y) = Eu [F (x+ u)] .

The linear operator G is characterized by a kernel g (x, y) = fu (y − x). Since g (x, y) is con-

tinuous, G is completely continuous (Krasnosel’skii, 1964, p. 19). The pricing rule R (y,X)

is continuous with respect to the functional argument X. It is even Frechet differentiable

for any nontrivial strategy X ̸= 0, and hence is smooth in the functional sense. Therefore,

the operator J is completely continuous as a superposition of a continuous and a completely

continuous operators (Krasnoselskii, 1964, p. 46). □

Second, we use the explicit form of the pricing rule, to establish:

Claim: When the norm of the speculator’s trading strategy ∥X∥ increases unboundedly,

∥X∥ → ∞, then πI(X,X) → 0.
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Proof: We have

πI(X,X) = Eu,v[X(v)(v − Pe (X(v) + u,X))],

with

Pe (X (s) + u,X) =

∫
vfv(v)fu (X (s)−X(v) + u) dv∫
fv(v)fu (X (s)−X(v) + u) dv

. (65)

Suppose X belongs to a finite ball ∥X∥ ≤ r, and consider a transformation X → tX. In the

limit t → ∞, we have asymptotically fu (tz) → 1
t
δ (z). Taking into account that, for any

differentiable function g, δ (g (s)) = δ(s−s0)
g′(s0)

, with g (s0) = 0 and g′ (s0) ̸= 0, we obtain

Pe (tX (s) + u, tX) =

∫
vfv (v) fu (tX (s)− tX(v) + u) dv∫
fv(v)fu (tX (s)− tX(v) + u) dv

(66)

=

∫
vfv(v)fu

(
t
(
X (s)−X(v) + u

t

))
dv∫

fv(v)fu
(
t
(
X (s)−X(v) + u

t

))
dv

→ s,

and hence

πI(X,X) → Eu,v[X(v)(v − v)] = 0.

Because any vector with infinitely large norm, ∥X∥ → ∞, can be obtained from the vector

∥X0∥ ≤ r via a transformation X = tX0, this result means that πI(X,X) → 0 for any X

with norm ∥X∥ → ∞. □

It follows that strategies with infinite norms are not profitable, and thus the optimal

strategy must have a finite norm. Because the expected profit functional πI is continu-

ous and finite in any finite region ∥X∥ < +∞, this also means that the speculator’s ex-

pected profit is bounded from above, πI(X,X) ≤ a < +∞. If r is sufficiently large, then

max
∥X∥≤r

πI(X,X) = max
∥X∥≤h

πI(X,X), for some h < r (Krasnoselskii, 1964). Because πI is weakly

continuous, max
∥X∥≤h

πI (X,X) = π∗
I , where π∗

I ≤ a < +∞ is a maximal value of πI (X,X) in

the entire strategy space.

To summarize, the optimum π∗
I of πI(X,X) exists and is finite, and the associated optimal

strategy X∗ has a finite norm, with π∗
I = πI (X

∗, X∗). Finally, because πI(X,X) is uniformly

differentiable, its gradient at the optimal strategy X∗ vanishes, i.e., ∇X∗(v)πI (X
∗, X∗) = 0

(Krasnoselskii, 1964). □

Proof of Proposition 5: We proceed with a series of lemmas. We first show that as a

result of this variation, δfu(u) ̸= 0, the initial linear Nash equilibrium (X,P ) defined by

the speculator’s strategy X = βv and pricing rule P = λy transforms into the (generally

nonlinear) equilibrium
(
X(1), P (1)

)
with X(1) (v) = βv + δX(v) and P (1) (y) = λy + δP (y),
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where the variations δX and δP are uniquely defined and continuously and smoothly depend

on the variation δfu (u). More precisely, the variations δX and δP are expressed through

δfu (u) by means of continuous linear operators in a Banach space:

Lemma 1 With a small variation of the noise distribution pdf, f (1)
u (u) = fu (u)+δfu (u), the

initial linear Nash equilibrium (X,P ) transforms into
(
X(1), P (1)

)
with X(1) (v) = βv+δX(v)

and P (1) (y) = λy+ δP (y), as δP = RP δfu and δX = RXδfu, where RP and RX are linear

operators in Banach space defined by

δP (y) =

+∞∫
−∞

dy′RP (y, y′) δfu (y
′) , and δX(v) =

+∞∫
−∞

dv′RX (v, v′) δfu (v
′) ,

with the linear operators RP and RX defined in the proof below.

Proof: The pricing rule variation is given by

δP (y,X) =

∫
(v − P (y,X)) fv(v)

(
δfu (y −X(v))− ∂

∂y
fu (y −X(v)) δX(v)

)
dv∫

fv(v)fu (y −X (v)) dv
(67)

=

∫
(v − λy) fv(v)

(
δfu (y − βv)− f

′
u (y − βv) δX(v)

)
dv∫

fv(v)fu (y − βv) dv
.

Because FOC (17) always holds in the Nash equilibrium, we have

v =

(
∂

∂x

)
x=X(v)

xP (x,X) . (68)

Using the inverse function V (·) property, V (X(v)) = v, we have

δX (v,X) = − 1

V ′ (X(v))

(
∂

∂x

)
x=X(v)

xδP (x,X) (69)

= − 1

2λ

∂

∂v
δP (βv) = − 1

2λ
Eu

[
∂

∂v
δP (βv + u)

]
,

where we take into account that the variation is around the linear strategy X(v) = βv.

Combining (69) and (67) yields a closed-form linear nonuniform integral equation with

respect to the pricing rule variation δP as

(1−K) δP = Lδfu, (70)
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with the linear operators K and L:

KδP (y) =

∫
(v − λy) fv(v)f

′
u (y − βv) 1

2λ
Eu

[
∂
∂v
δP (βv + u)

]
dv∫

fv(v)fu (y − βv) dv
(71)

=
β

2λ

∫ ∫
(v − λy) fv(v)f

′
u (y − βv) fu (y

′ − βv) ∂
∂y′
δP (y′) dvdy′∫

fv(v)fu (y − βv) dv

= − 1

4λ2

∫ ∫
(v − λy) fv(v)f

′
u (y − βv) f ′

u (y
′ − βv) δP (y′) dvdy′∫

fv(v)fu (y − βv) dv
,

and

Lδfu (y) =

∫
(v − λy) fv(v)δfu (y − βv) dv∫

fv(v)fu (y − βv) dv
(72)

=
1

β

∫ (
y
2
− ξ

)
fu (y − ξ) δfu (ξ) dξ∫

fu (ξ) fu (y − ξ) dξ
,

where in the last line, we introduce a dummy integration variable ξ = y − βv and use the

scaling property fv
(

1
β
u
)
= βfu (u).

Now consider (70), which is a nonuniform Fredholm type integral equation (Kolmogorov

and Fomin, 1999, p.116-117). Then the following result8 holds (Kolmogorov and Fomin,

1999, p.120): either (1) the equation (70) has a unique solution δP for any right-hand side

given by Lδfu, which means that the operator I−K is invertible, or (2) the uniform integral

equation (1−K) δP = 0 has a nontrivial solution.

We can exclude the second possibility, as it would imply the existence of other Nash equi-

librium infinitesimally close to the initial linear one, even though the distribution of noise

trade did not change, contradicting the uniqueness of Nash equilibrium under conditions 1–3

established by Boulatov and Livdan (2022).

Thus, we have δP = (1−K)−1 Lδfu = RP δfu with the linear operatorRP = (1−K)−1 L.

Making use of (69), we also obtain δX = MδP = MRP δfu = RXδfu, with the linear op-

erator RX = MRP and MδP = β
2λ

∫
dyf ′

u (y − βv) δP (y). Based on the Riesz represen-

tation theorem (Balakrishnan, 1971), the linear operators RP and RX are represented as

RP δfu =
+∞∫
−∞

dy′RP (y, y′) δfu (y
′) and RXδfu =

+∞∫
−∞

dv′RX (v, v′) δfu (v
′), respectively. □

We next observe that there are some “directions” in the functional space of variations

δfu along which the equilibrium remains linear, the J term remains equal zero, J = 0, and

therefore commitment does not lead to higher expected speculator profits. We then show
8Also referred to as a Fredholm Alternative.
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that these “directions” in the functional space are “rare” comprising a measure zero set, while

variations δfu for which the J term is nonzero comprise a positive measure set.

Recall that in our initial linear Nash equilibrium X(v) = βv, P (y) = 1
2β
y, the equilib-

rium trading intensity β equals the scaling parameter, β = γ, with the scaling condition

γfu (γu) = fv (u). Then we have the following result:

Lemma 2 If the variation δfu of the noise distribution satisfies the condition

δfu (u) = −δk ∂
∂u
ufu (u) , (73)

with a real parameter δk = δγ
γ
, then the initial linear equilibrium X(v) = βv, P (y) = 1

2β
y

transfroms into a linear one with β(1) = β + δγ, and hence the J term remains zero.

Proof: (73) implies that with the small deviation δγ → 0, the scaling property of the

distribution still holds, but with a “shifted” scaling parameter

(γ + δγ) (fu ((γ + δγ)u) + δfu (γu)) = fv (u) + o (δγ) , (74)

where we use the notation o (δγ) for the second-order terms associated with the small change,

δγ. Thus, the scaling property of the distributions still holds, but with a “shifted” scaling

parameter γ(1) = γ + δγ. Indeed, (74) says that

(γ + δγ) (fu (γu) + f ′
u (γu)uδγ + δfu (γu)) = fv (u) + o (δγ) , (75)

or

(γ + δγ) (fu (γu) + f ′
u (γu)uδγ) + γδfu (γu) = fv (u) + o (δγ) . (76)

Using γfu(γu) = fv(u), this simplifies to

δγ (fu (γu) + γuf ′
u (γu)) + γδfu (γu) = 0, (77)

equivalent to (73).

Now, we directly verify that under the transformation (73), the initial linear equilibrium

transforms into a linear one with β(1) = β + δγ. The variation of the pricing rule is

δP (y,X) =

∫
(v − λy) fv(v)

(
δfu (y − βv)− f

′
u (y − βv) δX(v)

)
dv∫

fv(v)fu (y − βv) dv

= −δk
∫
(v − λy) fv(v)fu (y − βv) dv∫

fv(v)fu (y − βv) dv
(78)

+

∫
(v − λy) fv(v)f

′
u (y − βv) (−δky + δkβv − δX (v)) dv∫
fv(v)fu (y − βv) dv

,
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which, with re-organization becomes

δP (y,X) = −δk
∫
(v − λy) fv(v)fu (y − βv) dv∫

fv (v) fu (y − βv) dv

−δky
∫
(v − λy) fv(v)f

′
u (y − βv) dv∫

fv(v)fu (y − βv) dv
(79)

+

∫
(v − λy) fv(v)f

′
u (y − βv) (δkβv − δX(v)) dv∫

fv(v)fu (y − βv) dv
.

Consider the right-hand side of (79). The first term vanishes since it equals −δk (E [v|y]− P (y)) =

0. The second term equals −δkyP ′ (y) = − δγ
γ
P (y) = δλ

λ
P (y), with δλ

λ
= − δγ

γ
= − δβ

β
, con-

sistent with the linear equilibrium condition λ = 1
2β

. The third term also vanishes if the

strategy variation satisfies δkβv = δX(v), or δX(v)
X(v)

= δk = δβ
β

. This holds if and only if the

speculator’s strategy remains linear, X(1)(v) = βv + δβv = (β + δβ) v. □

Finally we prove that the special “shifts” in the functional space like (73) along which

the J term remains zero, are “rare”:

Lemma 3 For almost all variations δfu, the J term is nonzero, implying that the equilibrium

becomes nonlinear, and hence commitment almost always pays off.

Proof: Define I(v, x,X) = ∂
∂x
J(v, x,X). In equilibrium, J (v, x,X) = J (X∗(v), X∗) and

I(v, x,X) = I (X∗(v), X∗), where X∗(v) is an equilibrium trading strategy. To simplify

notation, we drop the star and write X∗ (v) as X(v). With the notation Q (x,X) =

Eu [Q (x+ u,X)], the identical transformations yield

I(v, x,X) = Eu [Q (x+ u,X) {v − P (x+ u,X)}] (80)

= Eu

[(
Q (x+ u,X)−Q (x,X) +Q (x,X)

)
{v − P (x+ u,X)}

]
= −Eu

[(
Q (x+ u,X)−Q (x,X)

) (
P (x+ u,X)− P (x,X)

)]
+Q (x,X)

{
v − P (x,X)

}
= −Covu [Q (x+ u,X) , P (x+ u,X)] +Q (x,X)

{
v − P (x,X)

}
.

When the pdf of noise trade distribution fu shifts to fu + δfu, the initial linear Nash equi-

librium shifts to a new one, with Q (y,X) = λβy + δQ (y,X), P (y,X) = λy + δP (y,X).

Then the last equality of (80) yields, in the first order limit with respect to the variations
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δQ and δP :

I(v, x,X) = −Covu [(λβ (x+ u) + δQ (x+ u,X)) , (λ (x+ u) + δP (x+ u,X))] (81)

+Q (x,X)
{
v − P (x,X)

}
= −λEu [u, (δQ (x+ u,X) + βδP (x+ u,X))]

+Q (x,X)
{
v − P (x,X)

}
+ o (δQ, δP ) .

We must evaluate the variation δI = I − I0, where I0 corresponds to the initial noise dis-

tribution fu. One can show that δQ (y,X) = βδP (y,X) + δφ (y,X), where δφ (y,X) =

Ev|y [δX(v)]. That is,

δP (y,X) =

∫
(v − λy) fv(v)

(
δfu (y − βv)− f

′
u (y − βv) δX(v)

)
dv∫

fv(v)fu (y − βv) dv
,

δQ (y,X) =

∫
β (v − λy) fv(v)

(
δfu (y − βv)− f

′
u (y − βv) δX(v)

)
dv∫

fv(v)fu (y − βv) dv

+

∫
fv(v)fu (y − βv) δX(v)dv∫

fv(v)fu (y − βv) dv
, (82)

and hence δQ (y,X) = βδP (y,X) + δφ (y,X). In what follows, we omit the functional

variable X and use the short-hand notation δQ (y) and δP (y) for variations of the ex-

pected trading strategy and pricing rule, respectively. With this notation, transforming the

last term and taking into account that in equilibrium, x = X (v), the FOC is satisfied as

v − P (x) = xP
′
(x) and 2λβ = 1, we obtain

δI = −Eu [uδP (x+ u,X)]− λEu [uδφ (x+ u,X)] (83)

+
δQ (x)

x
x
(
v − P (x,X)

)
+ o (δQ, δP ) ,

where δφ (x,X) = Eu [δφ (x+ u,X)]. Differentiating with respect to x yields

J = −Eu [uδP
′ (x+ u)]− λEu [uδφ

′ (x+ u)] (84)

+λx (v − λx)
∂

∂x

(
δQ (x)

x

)
+ o (δQ, δP )

= −Eu [uδP
′ (x+ u)]− λEu [uδφ

′ (x+ u)]

−λEu [βδP (x+ u) + δφ (x+ u)− x (βδP ′ (x+ u) + δφ′ (x+ u))] + o (δQ, δP ) .
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Now we have auxilliary results

Eu [uδP
′ (x+ u)] =

∫
dufu (u)u

∂

∂x
δP (x+ u)

=

∫
dufu (u)u

∂

∂u
δP (x+ u) (85)

= −
∫
dyδP (y)

∂

∂y
((y − x) fu (y − x)) ,

and δφ (y) = − 1
2λ
Ev|y

[
∂
∂v

(
vδP (βv)

)]
, which yields

δφ (y) = − 1

2λ

∫
dvfv(v)fu (y − βv) ∂

∂v

(
vδP (βv)

)∫
dvfv(v)fu (y − βv)

=
1

2λ

∫
dvvδP (βv) ∂

∂v
(fv(v)fu (y − βv))∫

dvfv(v)fu (y − βv)
, (86)

where we integrate by parts in the last line. Introducing a new dummy integration variable

ξ = βv and using the scaling property of the noise distribution, we finally obtain

δφ (y) = −β
∫
dy′Kφ (y, y

′) δP (y′) ,

Kφ (y, y
′) =

∫
dξfu (ξ) fu (y − ξ) ∂

∂ξ
(ξfu (y

′ − ξ))∫
dξfu (ξ) fu (y − ξ)

. (87)

Substituting the first-order variations δQ and δP into (84) yields:

J = −1

2
Eu

[
2uδP ′ (y)− u

∂

∂y

∫
dy′Kφ (y, y

′) δP (y′)

]
(88)

−1

2
Eu

[
δP (y)−

∫
dy′Kφ (y, y

′) δP (y′)

]
−1

2
Eu

[
−xδP ′ (y) + x

∂

∂y

∫
dy′Kφ (y, y

′) δP (y′)

]
,

or

J = −
∫
dyfu (y − x) (y − x)

∂

∂y
δP (y) (89)

+
1

2

∫
dyfu (y − x) (y − x)

∂

∂y

∫
dy′Kφ (y, y

′) δP (y′)

−1

2

∫
dyfu (y − x)

(
δP (y)−

∫
dy′Kφ (y, y

′) δP (y′)

)
+
1

2
x

∫
dyfu (y − x)

(
δP ′ (y)− ∂

∂y

∫
dy′Kφ (y, y

′) δP (y′)

)
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Integrating the first and second terms by parts yields

J =

∫
dy

∂

∂y
((y − x) fu (y − x)) δP (y) (90)

−1

2

∫
dy

∫
dy′

∂

∂y
((y − x) fu (y − x))Kφ (y, y

′) δP (y′)

−1

2

∫
dyfu (y − x)

(
δP (y)−

∫
dy′Kφ (y, y

′) δP (y′)

)
+
1

2
x

∫
dyfu (y − x)

(
δP ′ (y)− ∂

∂y

∫
dy′Kφ (y, y

′) δP (y′)

)
,

which can be put in the form

J =
1

2

∫
Γ (y, x) δP (y) dy, (91)

with

Γ (y, x) = 2
∂

∂y
((y − x) fu (y − x)) (92)

+

∫
dy′ (y′ − x) fu (y

′ − x)
∂

∂y′
Kφ (y

′, y)

−fu (y − x) +

∫
dy′fu (y

′ − x)Kφ (y
′, y)

−x ∂
∂y
fu (y − x)− x

∫
dy′fu (y

′ − x)
∂

∂y′
Kφ (y

′, y) .

Next, note that an arbitrary variation δfu leads to a new equilibrium and causes a variation

of the pricing rule δP = RP δfu, where RP is a linear operator according to (67). Since a

variation δfu translates into a variation δP , we now show that for almost all variations δfu
the variation of δP is nonzero, and hence the J term is almost always nonzero.

This stability property follows from the Euler-Lagrange lemma (Young, 1969), which says

that the integral (91) could be zero for arbitrary variation δP (y) if and only if the function

Γ (y, x) is identically zero for any real y and x, i.e., Γ (y, x) ≡ 0, for ∀y, x ∈ R. As follows from

(92), this is equivalent to the following integro-differential equation with respect to the pdf fu:

fu (y − x) = 2
∂

∂y
((y − x) fu (y − x)) (93)

+

∫
dy′ (y′ − x) fu (y

′ − x)
∂

∂y′
Kφ (y

′, y)

+

∫
dy′fu (y

′ − x)Kφ (y
′, y)

−x ∂
∂y
fu (y − x)− x

∫
dy′fu (y

′ − x)
∂

∂y′
Kφ (y

′, y) .
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Integrating both parts with respect to x ∈ (−∞; +∞), we obtain∫
fu (y − x) dx = −1 = 2

∂

∂y

∫
(y − x) fu (y − x) dx (94)

+

∫
dy′

∫
(y′ − x) fu (y

′ − x) dx
∂

∂y′

∫
Kφ (y

′, y) dy

−
∫
dy′Kφ (y

′, y)

−
∫
dy′

∫
dxxfu (y

′ − x)
∂

∂y′
Kφ (y

′, y) .

The first and second terms on the right-hand side of (94) vanish because, by assumption,

the noise distribution has zero first moment,
∫
fu (u)udu = 0. Collecting the last two terms

on the right-hand side yields∫
dy′Kφ (y

′, y) +

∫
dy′

∫
dxxfu (y

′ − x)
∂

∂y′
Kφ (y

′, y)

=

∫
dy′Kφ (y

′, y) +

∫
dy′

∫
dx (y′ − (y′ − x)) fu (y

′ − x)
∂

∂y′
Kφ (y

′, y) (95)

=

∫
dy′Kφ (y

′, y) +

∫
dy′y′

∂

∂y′
Kφ (y

′, y) =

∫
dy′

∂

∂y′
(y′Kφ (y

′, y)) = 0,

where the last equality holds because |y|Kφ (y
′, y) → 0, when |y| → ∞.

Hence we conclude that
∫
Γ (y, x) dx = −1 and the equation (93) cannot hold for arbi-

trary variations δP . This means that (91) is not zero for the price variations δP of nonzero

measure, and it can be zero for only special variations of zero measure.

Further note that∫
Kφ (y

′, y) dy =

∫
dξfu (ξ) fu (y

′ − ξ) ∂
∂ξ

(
ξ
∫
fu (y − ξ) dy

)∫
dξfu (ξ) fu (y′ − ξ)

= 1. (96)

Using this, we show, as above, that
∫
Γ (y, x) dy = 0. In particular, integrating (93) with

respect to y note that all terms except for the third one on the right-hand side vanish, yielding∫
fu (y − x) dy = 1 =

∫
dy′fu (y

′ − x)

∫
Kφ (y

′, y) dy = 1,

and hence
∫
Γ (y, x) dy = 0. One can also show that

∫
Γ (y, x) ydy = 0 reflecting that the

J term vanishes in linear equilibria. Using (91), we investigate the condition J = 0 further.

The condition

g (x) =

∫
Γ (y, x) δP (y) dy = 0, (97)

can be viewed as a linear integral equation with respect to the variation δP . As we know,

it has a nontrivial linear solution corresponding to the linear equilibrium, δP (y) = δλy.
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However, the set of solutions of (97) forms a zero measure set in the space of all price

variations δP . In particular, we now show that it can only have linear solutions of the form

δP (y) = µy + ν with real parameters µ, ν ∈ R. Going back to (89), we observe that

2J = −
∫
dyfu (y − x) (y − x)

∂

∂y
δP (y)−

∫
dyfu (y − x) Φ (y, x, δP ) , (98)

with

Φ (y, x, δP ) =

(
1 + (y − 2x)

∂

∂y

)(
δP (y)−

∫
dy′Kφ (y, y

′) δP (y′)

)
. (99)

Therefore, the condition J = 0 yields∫
dyfu (y − x) (y − x)

∂

∂y
δP (y) +

∫
dyfu (y − x) Φ (y, x, δP ) = 0. (100)

One can show that the integral equation Φ (y, x, δP ) = 0 has only linear solutions, which

also satisfy
∫
dyfu (y − x) (y − x) ∂

∂y
δP (y) = 0. To summarize, the linear solutions satisfy

(98), and it has no other solutions.

We conclude that (93) cannot hold. Therefore, (91) is not zero for price variations δP of

nonzero measure, and is zero for only special variations of zero measure. □
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