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Abstract
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lysts’ recommendations.
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1 Introduction

One of the most important services that financial analysts provide is to make recommenda-

tions to retail and institutional customers about which stocks to purchase, and which ones

to sell. Brokerage houses want to employ financial analysts who provide recommendations

on which investors can profit, thereby generating profitable trading activity for the broker-

age house. Many researchers (e.g., Womack (1996), Barber et al. (2001), Jegadeesh et al.

(2004), Ivkovic and Jegadeesh (2004)) have documented the profitability and informativeness

of various measures of recommendations and recommendation changes.

In this line, one can contemplate an “idealized” financial analyst who first exhaustively

gathers and evaluates information from public and private sources about a set of companies

to form assessments about their values. Ignoring for the moment what enters this valuation

assessment, an idealized analyst would then compare his value assessment with the stock’s

price, and issue buy or sell recommendations to his investor audience on that basis. Thus, an

idealized analyst employing a five-tier rating system would issue “Strong Buy” recommenda-

tions for the most under-valued stocks, whose value-price differentials, V−P
P

, exceeded a high

critical cutoff, µ5. The analyst would establish progressively lower cutoffs, µ4, µ3 and µ2, that

determine “Buy”, “Hold”, “Sell” and “Strong Sell” recommendations, so that, for example,

the analyst would issue Buy recommendations for value-price differentials between µ5 and µ4,

and strongly advise customers to sell stocks with the worst value-price differentials below µ2.

The data violently reject the hypothesis that financial analysts form recommendations in

this way. To understand why, observe that sometimes a stock’s value-price differential will

be close to a critical cutoff, in which case slight fluctuations in price relative to value can

cause an analyst’s assessment to alternate above and below the cutoff, causing the analyst to

revise recommendations repeatedly (see Figure 1). In practice, analysts infrequently revise

recommendations. This reluctance to revise likely reflects that customers may question the

ability of an analyst who repeatedly revised recommendations.

In this paper, we develop and estimate a dynamic model of value assessment and recom-

mendations issued by a “pretty good” financial analyst. A pretty good analyst assesses value

in the same way as the idealized analyst, and when initiating coverage of a stock, the analyst

makes an initial recommendation on the same basis, for example issuing a Strong Buy recom-

mendation if and only if his assessment of the value-price differential, V−P
P

, exceeds the high

cutoff µ5. However, the analyst understands how customers may interpret frequent revisions,
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Figure 1: Idealized analyst

Recommendation cutoffs, and sample valuation and recommendation paths over a 36-month period

for an idealized analyst employing a three-tier rating system whose private information is transient.

and only reluctantly revises recommendations: a pretty good analyst only downgrades a rec-

ommendation if the value-price differential falls far enough below the critical cutoff, and only

upgrades a recommendation if the value-price differential rises far enough above the critical

cutoff. Concretely, a pretty good analyst downgrades a recommendation from a Buy only

if the stock’s value-price differential falls below µ4 − δ4↓, and upgrades a recommendation

from a hold only if the differential rises above µ4 + δ4↑ (see Figure 2). This model nests the

“idealized” financial analyst, who sets recommendation revision frictions, δk↑ and δk↓, of zero.

We face several econometric challenges. Analysis is complicated by the fact that analysts

uncover information to which the econometrician is not privy. This information need not be

“private”, just unobserved by the econometrician (e.g., announcements by a drug company

about doctors’ willingness to prescribe a treatment), and hence not in the econometrician’s

model of valuation even when the information enters price. Moreover, the valuation con-

sequences of such information surely persist—if an analyst has favorable information that

the econometrician lacks, then some of that information likely remains months later. In our

estimation, we must separate out and distinguish stickiness in recommendations due to an

analyst’s strategic design of recommendation “bins” and revision frictions from stickiness due
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Figure 2: Recommendation cutoffs and revision frictions of a pretty good analyst

Cutoff-specific recommendation frictions, δk↓ and δk↑, bear the same index k as cutoff µk: δk↓ is

the friction for downgrades from k to k − 1, while δk↑ is the friction for upgrades from k to k + 1.

to persistence in his “private information” (i.e., “information that the analyst has that the

econometrician does not”). Since an analyst’s assessment is not observable, we must treat

these unobserved latent valuations as additional unknown parameters and analyze them

jointly with other parameters using Monte Carlo methods.

To highlight the importance of posing the estimation in a dynamic framework, observe

that an ordered probit approach in which recommendations are regressed on variables that

capture components of value, estimates a model of an idealized analyst who lacks access to

persistent “private” information (see Conrad et al. 2006). Our dynamic model allows us to

address fundamental issues:

• How does an analyst choose the recommendation bin sizes, µi+1 − µi, that determine

the likelihoods of different initial recommendations, and how does he select the sizes

of different recommendation revision frictions?

• An analyst can reduce the likelihood of frequent recommendation revisions not only

with symmetric frictions, but also with asymmetric ones, where say the friction from

buy to hold is large, but that from hold to buy is small. Since an analyst has flexibility

in the design of frictions that limit recommendation revisions, how does he tailor them?
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• Some brokerage houses employ five-tier rating systems, while others use a three-tier

system (Buy, Hold or Sell). Do they design recommendations in similar ways?

• Our model has multiple sources that can raise the duration of a recommendation. The

expected duration of a recommendation i increases in (a) its bin size, µi+1−µi, (b) its

revision frictions, δi+1↑ and δi↓, and (c) persistence in “private” analyst information.

What are the key drivers of stickiness for different recommendations?

• An analyst’s notion of value may reflect not only factors that capture intrinsic asset

fundamentals, but also attributes that appeal to his retail investor audience (e.g., small,

growth stocks) and attributes such as underwriting business that matter to the ana-

lyst, but not his retail investor audience. Which firm characteristics positively affect

an analyst’s assessment, and which ones reduce it?

We test the model using analyst recommendations from the post Reg-FD,1 post Global

Analyst Research Settlement period, where analysts could issue negative sell recommenda-

tions without fear of losing access to company information sources. We estimate separate

models for brokerage houses that employ three-tier rating systems and those that use the

traditional five-tier rating system,2 and for various subsamples (e.g., of larger brokerages).

The publicly-available characteristics that we find enter a pretty good analyst’s assess-

ment of value positively tend to be consistent with the findings of others (e.g., Conrad et al.

(2006)). For example, a pretty good analyst has higher assessments of firms with (a) higher

forecasted earnings or greater earnings surprises, (b) attributes that appeal to retail clients

(small firms, as measured by market capitalization, book-to-price or sales growth; glamor

firms, as measured by analyst coverage or institutional holdings), (c) less uncertainty (as mea-

sured by forecast dispersion), and (d) investment banking relationships with their brokerage

house. An important exception is that, contrary to existing findings, once one controls for

the pretty good analyst’s strategic behavior and private information, measures of past firm

performance (lagged returns) cease to positively affect assessments. That is, the idealized

analyst model provides a misleading indication of the impacts of past firm performance.

1Reg FD was designed to curb the practice of selective disclosure of material nonpublic information. Reg
FD eliminated incentives of analysts to issue favorable recommendations in order to curry favor with firms
and hence retain access to nonpublic information. Reg FD came into effect in August 2000.

2Kadan et al. (2010) find that following the Global Analyst Research Settlement and related regulations
on sell-side research in 2002, many brokerage houses, especially those affiliated with investment banks,
switched from a five-tier rating system to a three-tier system; and subsequently more have switched.
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What is fundamentally more important than these results is the fact that these readily-

available public information sources matter far less for explaining the dynamics of analyst

recommendations than do the recommendation frictions and the persistent analyst informa-

tion. Highlighting this, the Bayes factor (the ratio of the marginal likelihoods of the alter-

native and null models) is an astonishing exp(81660) for (a) the null model of an idealized

analyst that includes all standard public information sources of valuation, but no persis-

tent private information and (b) a barebones alternative model of a pretty good analyst that

includes no public information components of valuation, and only two recommendation revi-

sion frictions, one for upgrades and one for downgrades, plus persistent analyst information.

The result that an analyst’s “private information” matters more for recommendations

than public information available to the econometrician is quite important. It suggests that

most of the econometrician’s information is already incorporated into prices, and hence has

only secondary impacts on recommendations. Moreover, if recommendations only reflected

readily-available information, they would have modest value, and one would be hard-pressed

to justify why financial analysts should be well-paid. We find that about one-third of the

valuation consequences of an analyst’s “private” information persists to the next month.

The recommendation revision frictions that analysts introduce are as important for model

fit as the analysts’ information. Failing to account for these frictions biases up the estimate of

the persistence in information, almost tripling the estimate. We find that analysts tailor re-

vision frictions asymmetrically, depending on the recommendation. Analysts introduce much

smaller frictions “out” of hold recommendations than “into” hold recommendations. This

suggests that analysts do not like to maintain hold recommendations, presumably because

they generate less trading volume for the brokerage house. For analysts using a five-tier rat-

ing system, we find that sell and buy recommendation bins are small relative to the frictions

from strong sell to sell and strong buy to buy, so that most revisions are to hold. This, too,

suggests strategic considerations: revisions from strong buy to buy that maintain a positive

assessment or from strong sell to sell that maintain a negative assessment may not be enough

to induce customers to unwind positions, but larger revisions to hold may do so.

We find that analysts who use the same (e.g., three-tier) recommendation rating system

are well-described by a common model of recommendation bins and frictions, where sources

of heterogeneity (firm and analyst attributes) only enter an analyst’s valuation assessment.

To verify the validity of this conclusion, we estimate our model on subsamples where one

might suspect that analysts’ recommendations might vary:
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1. Over time. Estimates based on later years (2006-2010) are virtually identical to those

for our entire sample. There is no evidence that analysts have altered how they issue

recommendations over time. This means that differences between our estimates for

three- and five-tier recommendation rating systems do not reflect temporal changes.

2. By brokerage size or analyst experience. Large brokerages (> 52 analysts) and se-

nior analysts (≥ 5 years experience) have modestly higher estimates (<10% higher) of

information persistence, and slightly higher frictions for revisions from hold to sell.

3. By analyst following. For heavily followed (≥ 15 analysts) firms, information persis-

tence is moderately (< 25%) higher, but other structural parameters differ by little.

Overall, our estimates are remarkably robust: the homogeneous model of recommendation

formation and revision describes analyst behavior extremely well.

As a final validation test, we investigate whether some of the stickiness that we find

might proxy for analysts’ imperfect and delayed reaction to new information (see Raedy,

Shane and Yang (2006)): we estimate a model in which analysts may process a fraction of

new information immediately, and the rest with a lag. Our estimates suggest slightly delayed

incorporation of information, but they indicate that over 90% is processed immediately. Al-

lowing for delayed incorporation of information raises the estimate of information persistence

by roughly one-third, and has only modest (5-15%), non-uniformly signed impacts on recom-

mendation frictions. This latter result reflects that absent non-trivial recommendation fric-

tions, frequent revisions are likely whenever valuations are close to a recommendation cutoff.

Having validated the model structure, we investigate its indirect implications. Our model

provides a theoretical lens through which to understand the different impacts of recommen-

dation revisions made inside versus outside earnings announcement windows. Information

arrival tends to be smooth between earnings announcements, but lumpy/discontinuous at

announcements, or when firms provide earnings guidance. As a result, recommendation

revisions made outside earnings announcement or guidance windows tend to occur when a

value-price differential smoothly crosses a recommendation cutoff, whereas recommendation

revisions made just after announcements often reflect discontinuous jumps in valuation in-

formation, so that value-price differentials “jump” past the revision cutoff. As a result, our

model predicts that the duration of a revised recommendation “before retracement” to the

original recommendation should be greater for recommendations made just after earnings

announcements or guidance. Consistent with this, we find that the mean duration of a rec-
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ommendation revision is 6-8 days longer if it is issued in a three-day window (on and after)

of an earnings announcement or guidance date, than if it is issued outside these windows.

We also predict that recommendation revisions made inside earnings announcement or

guidance windows should have greater impacts on stock prices than revisions made at other

times. Consistent with this prediction, upgrades issued in the two days after earnings an-

nouncements or guidance result in three day cumulative abnormal returns that are 0.6 to

1.1 percentage points larger than those associated with revisions made at other times; and

CAR differences for downgrades are triple those for upgrades. We then exploit the fact that

the discontinuity in valuation assessment only occurs for revisions and not new recommen-

dations. A difference-in-difference analysis of revisions vs. new recommendations inside and

out of announcement and guidance windows provides strong reinforcing evidence for our

model. Posed differently, our model reconciles the different market responses to new and

revised recommendations made inside vs. out of earnings and guidance windows.

We conclude by exploiting the fact that our model provides a measure of the “surprise” as-

sociated with a recommendation revision or initiation. For example, if the current estimate of

an analyst’s stock valuation given publicly-available information is below an upgrade revision

cutoff, the market should be more surprised by an upgrade, than if the estimated valuation

suggests that the revision should already have been made. Concretely, the market should be

more surprised by an upgrade to a buy if a stock’s public information value suggests a hold

than if it already suggests a buy. Thus, we predict a difference in the (appropriately signed)

CARs following revisions in these two scenarios. So, too, when an analyst initiates coverage,

the market response to a buy recommendation should be smaller if the current assessment

of value given public information suggests a buy recommendation than if it indicates a hold.

We find both of these CAR relationships in the data. These findings provide strong confir-

matory evidence for our model. In particular, they indicate that (a) investors believe financial

analysts make recommendations along the lines of our model, and (b) the market values the

information that analysts acquire that the econometrician does not possess. This means that

the impacts of any unmodeled behavior-distorting incentives on recommendation formation,

which serve to add noise, are modest enough that we still uncover these CAR relationships.

The paper is organized as follows. We next review the related literature. Section 2 de-

velops our dynamic model of the analyst recommendation process. Section 3 provides an

overview of our estimation approach. Section 4 details our data. Section 5 presents our find-

ings. Section 6 concludes. An appendix includes more details on our estimation procedure.
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1.1 The Literature

Our paper differs sharply from the existing literature in both its focus and methodology.

Methodologically, most existing empirical analyses employ combinations of the following

methods: (a) descriptive summary statistics, (b) investment strategies based on portfo-

lio construction using recommendation information (Barber et al. (2001), Jegadeesh et al.

(2004), Jegadeesh and Kim (2010), Boni and Womack (2006)), (c) regressions of recommen-

dations on returns or regressions of returns on recommendations, and/or similar regressions

based on changes of recommendations (Jegadeesh et al. (2004), Jegadeesh and Kim (2010),

Barber et al. (2005), Ivkovic and Jegadeesh (2004), Bagnoli, Clement, Crawley, and Watts

(2009)), and (d) correlation analysis (Boni and Womack (2006)).

The most closely-related paper is Conrad et al. (2006). They employ an ordered probit

model coupled with a valuation model similar to ours to estimate a model of an idealized an-

alyst who lacks access to persistent “private” information. This intrinsically static approach

allows them to focus on subsamples surrounding large return events, and analyze the re-

sponse of recommendations to major news. They find that analysts respond asymmetrically

to positive and negative price shocks. Assuming away persistence in analyst information and

recommendation frictions allows Conrad et al. (2006) to estimate their model using maxi-

mum likelihood. However, ordered probit models cannot deliver the intertemporal stickiness

in recommendations found in the data, and we document the large biases that result. We

extend their structural model of an idealized analyst by integrating persistent analyst in-

formation, thereby making the model explicitly dynamic. Despite a superior fit, this model

still delivers far too little persistence in recommendations.3

Other studies provide descriptive statistical relationships between key analyst and firm

characteristics and recommendations such as sample means, correlations, or quintiles (Je-

gadeesh et al. (2004), Ivkovic and Jegadeesh (2004)). Boni and Womack (2006) use a rank

test for serial correlation between returns and recommendations. These raw empirical re-

lationships provide valuable qualitative information about recommendations, offering useful

guidance for building econometric models that can explain the complicated dynamics of the

analyst recommendation process.

There is also a large literature focusing on the return reaction to recommendation changes,

3This stickiness in recommendations contrasts with the extreme “anti-herding” in forecasts of earnings
that analysts issue to distinguish themselves. For example, the probability an analyst’s forecast exceeds
earnings given that it exceeds the consensus forecast is about 0.6 (Bernhardt, Campello and Kutsoati 2006).
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and the investment value contained in recommendations. Stickel (1995) and Womack (1996)

show that upgrades are associated with positive returns at the time of announcement. Wom-

ack (1996) finds that a post-recommendation price drift lasts up to one month for upgrades

and six months for downgrades. Barber et al. (2001, 2005) find that absent transactions costs,

investors could profit from the information in recommendations. Jegadeesh et al. (2004) in-

vestigate whether recommendations have investment value in the sense of predicting future

returns, finding that analysts tend to issue more favorable recommendations for stocks with

positive momentum and higher trading volume, and that analysts fail to respond quickly to

negative signals by downgrading stocks. Jegadeesh and Kim (2006) confirm these findings in

international markets. Ivkovic and Jegadeesh (2004) find a sharp increase in the information

content of recommendation upgrades (but not downgrades) before earnings announcements.

Ljungqvist, Marston and Wilhelm (2006) use a limited dependent variable model to ex-

amine securities underwriting mandates and investigate the impact of investment banking

relationship on recommendations. Boni and Womack (2006) study whether analysts chase

or respond to price momentum at the industry level. They find that recommendation in-

formation is quite valuable for identifying short-term, within-industry mispricing. Loh and

Stulz (2011) look at 2-day cumulative abnormal returns around recommendation changes,

and study when recommendation changes are influential.

2 The Model

This section develops our dynamic model of the analyst recommendation process in the

context of an analyst who employs a five-tier rating system; the model of an analyst who

employs a three-tier rating system is similar.

If recommendations reflect buying opportunities, then they should reflect the difference

between an analyst’s assessment of a stock’s valuation and its share price. This valuation

assessment may reflect expected discounted earnings, or technical considerations that reflect

market mispricing; and it may be prospective (e.g., the analyst’s forecast of firm value in

a year’s time). Moreover, the notion of value is from the analyst’s perspective: in addition

to standard valuation fundamentals, attributes that appeal to an analyst’s retail investor

audience (e.g., small, growth, glamor stocks), or attributes such as underwriting business

that only the analyst cares about, may enter the analyst’s assessment of value.

Let V ∗ijt be analyst i’s per share valuation of stock j at time t, which equals the per-share
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difference between the analyst’s assessment of “value Vijt” and price (Pjt):

V ∗ijt =
Vijt − Pjt

Pjt
.

We assume that V ∗ijt is determined by a large set of explanatory variables that we describe

later and analyst i’s private information. Letting Xijt be the per-share analogue of these

variables, we write analyst i’s per-share valuation model as:

V ∗ijt = X ′ijtβ + uijt. (1)

The unobserved residual terms uijt capture information that the analyst has, to which the

econometrician is not privy. These residual terms are serially correlated: we must allow for

persistence in uijt to capture the fact that the valuation consequences of this information will

last for some time. Accordingly, we suppose that uijt evolves according to an AR(1) process:

uijt = ρuij,t−1 + εijt, (2)

where εijt are i.i.d. N(0, σ2) and ρ measures the persistence in the valuation consequences of

the analyst’s “private” information. For identification purposes, we normalize σ2 = 1.4

As we highlighted in our introduction, an analyst i’s recommendation for stock j at date

t, Rijt, is a function of both his valuation V ∗ijt, and his outstanding recommendation. Conse-

quently, the model that determines an analyst’s recommendation when he initiates coverage

is not the same as the one that he uses to determine subsequent recommendations. In

particular, an analyst’s outstanding recommendation affects subsequent recommendations.

Suppose that analyst i initiates coverage for stock j at time tij0. His initial recommen-

dation of Rij,tij0 at t = tij0 is determined by the level of his valuation V ∗ijtij0 relative to the

critical cutoffs µ2 < µ3 < µ4 < µ5 that he sets. Analyst i initiates coverage with a strong

buy if V ∗ij,tij0 ≥ µ5, and with an appropriate lower recommendation if V ∗ij,tij0 falls into the

corresponding valuation bin. That is,

Rij,tij0 =



5, if µ5 ≤ V ∗ijtij0
4, if µ4 ≤ V ∗ijtij0 < µ5

3, if µ3 ≤ V ∗ijtij0 < µ4

2, if µ2 ≤ V ∗ijtij0 < µ3

1, if V ∗ijtij0 < µ2.

(3)

Thus, a recommendation of a 5 represents a strong buy, a 4 is a buy, a 3 is a hold, a 2 is

a sell, and a 1 is a strong sell. Without loss of generality, for identification purposes, we

normalize µ2 to zero.

4The variance just multiplicatively scales the cutoffs for recommendations and revisions.
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Subsequent recommendations Rijt are determined by both the analyst’s updated valu-

ation V ∗ijt and his outstanding recommendation Rij,t−1. Our model captures an analyst’s

reluctance to change recommendations via recommendation-specific revision frictions that

the analyst can introduce. Specifically, if analyst i’s outstanding recommendation for stock

j at time t is Rij,t−1 = k, then analyst i would not lower his recommendation Rijt to k − 1

unless his valuation V ∗ijt falls below the threshold value µk by an amount δk↓ that the an-

alyst chooses. Similarly, analyst i will not raise his recommendation Rijt to k + 1 unless

V ∗ijt > µk+1 + δk+1,↑. In other words, the analyst effectively expands the bin corresponding to

his previous recommendation k from [µk, µk+1) to [µk − δk↓, µk+1 + δk+1,↑), and does not re-

vise his recommendation unless his valuation assessment V ∗ijt evolves outside of this expanded

bin. See Figure 2. Such revision frictions are “localized” in that (a) the extents to which a

recommendation bin is expanded can depend on the recommendation itself (i.e., δk+1,↑ and

δk↓ can vary with k), and (b) revision frictions only affect decisions to upgrade or downgrade

to “adjacent” recommendations. For example, if an analyst has an outstanding strong sell

(R = 1) rating, the friction δ2↑ only affects upgrades to a sell: as long as µ3 > µ2 + δ2↑,

this friction has no effect on upgrades to hold. Therefore, the probability distribution over

analyst i’s recommendations for stock j at time t is

Pr [Rijt = k|Xijt, Rij,t−1] =


Pr
[
µk ≤ V ∗ijt < µk+1

]
, if Rij,t−1 > k + 1,

Pr
[
µk ≤ V ∗ijt < µk+1 − δk+1,↓

]
, if Rij,t−1 = k + 1,

Pr
[
µk − δk↓ ≤ V ∗ijt < µk+1 + δk+1,↑

]
, if Rij,t−1 = k,

Pr
[
µk + δk↑ ≤ V ∗ijt < µk+1

]
, if Rij,t−1 = k − 1,

Pr
[
µk ≤ V ∗ijt < µk+1

]
, if Rij,t−1 < k − 1,

(4)

where we adopt the convention that µ1 = −∞ and µ6 = +∞. This formulation allows for

distinct recommendation-specific frictions for both upgrades and downgrades, for example,

for δk↑ 6= δk↓. This model nests several more restricted models:

• If δk↑ = δ↑ and δk↓ = δ↓ for each k, then the upgrade friction can differ from the down-

grade friction, but these two frictions do not depend on the recommendation level.

• δk↑ = δk′↓ = 0, for all k, k′, captures the “idealized” financial analyst who implicitly

has been the focus of existing literature.

Equations (1) – (4) lay out the model’s econometric structure. Equations (1) and (2)

capture the dynamics of analyst stock valuations, while equations (3) and (4) govern analyst

decisions on initial recommendations, and subsequent revisions and reiterations.
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3 Overview of Model Estimation

This section presents the parameter estimation procedure, and the metrics used to evaluate

the goodness of fit of alternative model specifications. The appendix provides more details.

Parameter Estimation. In practice, we observe Xijt, but not V ∗ijt. That is, V ∗ijt is a latent

variable. In addition, uijt are serially correlated over t. Our model is even more complicated

than an ordered probit model with serial correlation, as the recommendation revision friction

parameters make the estimation even more nonlinear, adding challenge to an already com-

plicated estimation problem. This structure creates barriers to estimating the model using

traditional MLE or GMM methods. For the reasons discussed in the literature on estimat-

ing dynamic ordered probit models, simulation-based methods are typically used to estimate

this class of models. Accordingly, we estimate our model using Markov Chain Monte Carlo

(MCMC) methods. The MCMC approach is conceptually easy to implement here because

we can partition the parameter space in such a way that the conditional posterior densities

take a simple form, making it tractable to draw random variables from their conditional

distributions. Once we reach the stationary distribution for the parameter estimates, we

routinely obtain parameter estimates from their sample averages over 150,000 draws.

Consider first the simple case where analyst i begins giving recommendations for firm j

at time tij0, and continues until time T . We denote the random sequence of recommendation

choices by analyst i for firm j by:

Rij = (Rijtij0 , · · · · ··, RijT )′

and observations (realizations) of Rij by

rij = (rijtij0 , · · · · ··, rijT )′,

where rijt ∈ [1, 2, 3, 4, 5]. We denote the vector of unknown parameters by θ = (β′, µ′, δ′, ρ)′.

Then, denoting the information set up to time t by Ft−1 (i.e., Ft−1 contains information

about previous recommendations, updated public information, etc.), given the parameters θ

and conditional on the information at the starting date, we have5

P [Rij = rij] = P
[
Rijtij0 = rijtij0

] T∏
t=tij0+1

P [Rijt = rijt|Ft−1] .

5Throughout, we consider distributions conditional on available information at the date coverage is
initiated. To ease presentation, we omit this conditioning in our notation. For example, Pr

[
Rijtij0 = rijtij0

]
denotes the distribution over the initial recommendation conditional on information available then.
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Given the information at the starting date when coverage is initiated, the probability

distribution over initial recommendations is determined by (3), so that

P
[
Rijtij0 = rijtij0

]
= P

[
µrijtij0 ≤ V ∗ijtij0 < µrijtij0+1

]
.

Because the list of variables used when coverage is initiated differs from later dates (lagged

recommendations do not enter when coverage is initiated), we denote the vector of right-hand

side variables when coverage is initiated by X ij,tij0
. The analyst’s initial valuation model is

V ∗ij,tij0 = X ′ij,tij0β + uij,tij0 .

Therefore, from the AR structure of the analyst’s information process, equation (2), we have

P [Rijtij0 = rijtij0 ] = Φ
(√

1− ρ2[µktij0+1 −X ′ij,tij0β]
)
− Φ

(√
1− ρ2[µktij0 −X

′
ijtij0

β]
)
. (5)

Once coverage has been initiated, the conditional distributions, P [Rijt = rijt|Ft−1], are de-

termined by (2) and (4) together. Let the vector of right-hand side variables after coverage

has been initiated be Xijt. Then V ∗ijt = X ′ijtβ + uijt, and defining

gijt(θ) = ρV ∗ij,t−1 +
(
X ′ijt − ρX ′ij,t−1

)
β,

we have

P [Rijt = rijt|Ft−1] = 1(rijt = rij,t−1)
[

Φ
(
µrijt+1 − gijt(θ) + δrijt+1,↑

)
− Φ

(
µrijt − gijt(θ)− δrijt,↓

)]
+ 1(rijt = rij,t−1 − 1)

[
Φ
(
µrijt+1 − gijt(θ)− δrijt+1,↓

)
− Φ

(
µrijt − gijt(θ)

)]
+ 1(rijt < rij,t−1 − 1)

[
Φ
(
µrijt+1 − gijt(θ)

)
− Φ

(
µrijt − gijt(θ)

)]
+ 1(rijt = rij,t−1 + 1)

[
Φ
(
µrijt+1 − gijt(θ)

)
− Φ

(
µrijt − gijt(θ) + δrijt,↑

)]
+ 1(rijt > rij,t−1 + 1)

[
Φ
(
µrijt+1 − gijt(θ)

)
− Φ

(
µrijt − gijt(θ)

)]
. (6)

Thus, letting π(θ) be the prior, we can write the joint distribution of data and parameters as

π(θ, r) = π(θ)
J∏
j=1

∏
i∈Ij

{
P (rijtij0)

T∏
t=tij0+1

P (rijt|rij,t−1)

}
,

where r is the vector of all realizations of recommendations, P (rijtij0) = P (Rijtij0 = rijtij0)

and P (rijt|rij,t−1) = P [Rijt = rijt|Ft−1] are defined by (5) and (6).

Analyst recommendations and related firm- and analyst-level control variables repre-

sent an unbalanced panel dataset containing observations of many analyst-firm pairs (a
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particular firm followed by a particular analyst) over multiple time periods, reflecting that

an analyst may cease following a stock for some time, but then re-initiate coverage. In

this case, analyst i may issue recommendations for firm j in nij different periods, say

{tij0(s), · · ·, tij∗(s), s = 1, · · ··, nij}, during t = 1, ..., T . If we let

Hijs (rij, θ) =

{
P (rijtij0(s))

tij∗(s)∏
t=tij0(s)+1

P (rijt|rij,t−1)

}
,

where the probability P (rijtij0(s)) is defined by (5) and conditional probability P (rijt|rij,t−1)
is given by (6), then the joint distribution of data and parameters is

π(θ, r) = π(θ)
J∏
j=1

∏
i∈Ij

nij∏
s=1

Hijs (rij, θ) .

In our Bayesian estimation approach, we treat the unobserved (latent) valuations as

additional unknown parameters and analyze them jointly with the other parameters (θ)

using Markov Chain Monte Carlo (MCMC) methods. Let R denote the observed analyst

recommendations, and V denote the latent analyst valuations. We divide the vector of pa-

rameters θ into 4 groups: (1) valuation parameters β; (2) recommendation bin parameters

µj, j = 3, 4, 5; (3) recommendation revision friction parameters δ (i.e., δk↑, δk↓, etc); and (4)

the information persistence parameter ρ.

The MCMC estimator using a Gibbs sampler starts with an initial value (θ(0), V (0)), and

then simulates in turn. The above partition of the parameter vector yields a reasonably

simple form for the conditional posterior densities that makes it practically easy to draw

random variables from the conditional distributions. The distribution of β conditional on

the data and other parameters is normal with mean

β̂ =

 J∑
j=1

∑
i∈Ij

nij∏
s=1

tij∗(s)∏
t=tij0(s)+1

(Xijt − ρXij,t−1)
(
X ′ijt − ρX ′ij,t−1

)−1
J∑
j=1

∑
i∈Ij

nij∏
s=1

tij∗(s)∏
t=tij0(s)+1

(Xijt − ρXij,t−1)
(
V ∗ijt − ρV ∗ij,t−1

)
,

and variance

Σβ̂ =

 J∑
j=1

∑
i∈Ij

nij∏
s=1

tij∗(s)∏
t=tij0(s)+1

(Xijt − ρXij,t−1)
(
X ′ijt − ρX ′ij,t−1

)−1 ,
14



where Xij0 = 0. The conditional distribution of the persistence parameter ρ is a truncated

normal distribution, where the truncation reflects |ρ| ∈ (0, 1). The conditional distributions

of the δ recommendation friction and µ bin parameters are uniform distributions, where the

bounds that reflect that given Vijt and other parameters, the parameter must be consistent

with the realized recommendation rijt. Lastly, the conditional distributions of the latent

variables V ∗ijt are truncated normal distributions, where the truncation reflects consistency

of recommendation rijt with the frictions and bin parameters.

After each draw of a new value of a parameter, the corresponding subvector of previous

values is replaced by the new subvector that has the new value rather than the old one. We

then continue to draw a new value of another parameter. Thus, on the qth draw,

1. We first draw V (q) from the conditional distribution p(V |β(q−1);µ
(q−1)
j ; δ(q−1); ρ(q−1))

2. Update V (q) and draw β(q) from the conditional distribution p(β|V (q);µ
(q−1)
j ; δ(q−1); ρ(q−1))

3. Draw µ
(q)
j j = 3, 4, 5, from the conditional distribution p(µ|V (q); β(q); δ(q−1); ρ(q−1)):

(a) draw µ
(q)
3 from the conditional distribution p(µ3|V (q); β(q);µ

(q−1)
4 , µ

(q−1)
5 ; δ(q−1); ρ(q−1)).

(b) draw µ
(q)
4 from the conditional distribution p(µ4|V (q); β(q);µ

(q)
3 , µ

(q−1)
5 ; δ(q−1); ρ(q−1)).

(c) draw µ
(q)
5 from the conditional distribution p(µ5|V (q); β(q);µ

(q)
3 , µ

(q)
4 ; δ(q−1); ρ(q−1)).

4. Sequentially draw δ(q)’s and ρ(q) in the same way.

5. Set q = q + 1, and repeat.

After a complete iteration, we obtain an updated vector (θ(q), V (q)). We repeat this P times,

and as P →∞, the distribution of (θ(P ), V (P )) converges to the distribution of (θ, V ).

Once we have a set of reasonable initial values, to ensure that we sample from the station-

ary distribution for the parameter estimates, we discard the initial 50, 000 iterations,6 and

keep the next 150, 000 iterations as sample draws. To test the null hypothesis that the Markov

chain of each parameter estimate is from the stationary distribution, we use Geweke’s (1992)

convergence diagnostic, which tests that the means of the first 10% of the Markov chain (ob-

servations 50, 001−65, 000) and the last 50% of observations are equal. The data easily pass

6Prior to identifying a set of reasonable starting values, we discarded as many as 200,000 observations.
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this convergence check. We also visually check the trace plots of each Markov chain to con-

firm that it has a relatively constant mean and variance. Parameter estimates are then given

by their sample averages. The appendix provides more details on estimation procedures.

The computation time for each model is about 7 days. The computational burden is

mainly due to the slow convergence of the Monte Carlo Markov chains for the cutoff es-

timates. Intuitively, the slow convergence in the cutoff estimates µk is due to the narrow

interval of its conditional uniform distribution, which leaves little room for a cutoff estimate

to move toward its true value within one iteration. Similar findings have been reported

for estimation of the independent multinomial model (Cowles (1996)) and autoregressive

ordered probit model (Muller and Czado (2005)).

Goodness of Fit. We use the Brier Score (Brier, 1950) and Bayes factor to compare

the goodness of fit of different model specifications. The Brier score is the mean squared

deviation between the observed outcome and the (in-sample) predicted probability of a rec-

ommendation:

S =
1

#obs

∑
ijt

[I(Rijt)− π̂(Rijt)]
2 ,

where I(Rijt) is an indicator function, equal to one if recommendation Rijt is observed, and

zero otherwise; π̂(Rijt) denotes the in-sample estimate of the probability of recommendation

Rijt; and #obs is the total number of recommendations issued in our sample. The Brier

score penalizes large deviations in a probability forecast: the smaller is S, the better is the

model fit. A perfect probability forecast would yield a Brier score of zero.

More formally, we employ the Bayes factor to assess the goodness of model fit. All spec-

ifications considered in our study are nested in the full model. We have no prior belief over

the null model and the alternative (i.e., Pr(M0) = Pr(MA) = 0.5). Given the observed data,

D, the Bayes factor, B, is defined as

B =
Pr (D|MA)

Pr (D|M0)
,

where Pr (D|M0) and Pr (D|MA) are the marginal likelihoods of the null and alternative

models, respectively. In terms of the logarithm of models’ marginal likelihoods (reported

in Table 5), the Bayes factor is exp (log (Pr (D|MA))− log (Pr (D|M0))). Kass and Raftery

(1995) argue that a Bayes factor of 2 log (B) that exceeds 10 (≈ B > 150) represents decisive

evidence in favor of the alternative model against the null. A Bayes factor that exceeds 1, 000

(B > 1000) provides conclusive support for forensic evidence in a criminal trial (Evett 1991).

The Bayes factor also penalizes overfitting (over-parametrization) of an alternative model.
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4 Data

Our sample of analyst recommendations is from the Institutional Brokers Estimate System

(I/B/E/S) U.S. Detail file. Following most studies in the literature, we reverse the I/B/E/S

recommendation coding so that more favorable recommendations correspond to larger num-

bers (i.e., 1=Strong Sell, 2=Sell, 3=Hold, 4=Buy and 5=Strong Buy). Each analyst is iden-

tified by I/B/E/S/ with a unique numerical code (analyst masked code). We use this numer-

ical identifier to match an analyst’s stock recommendations to his earnings forecasts in the

I/B/E/S Detail History file. We exclude recommendations issued by unidentified/anonymous

analysts. Stock return and trading volume related data are collected from CRSP. Firms’ ac-

counting and balance-sheet information is extracted quarterly from Compustat.

We use monthly data from January 2003 to December 2010 from the post Regulation Fair

Disclosure, post Global Analyst Research Settlement period. If an analyst issues multiple

recommendations for a firm within a calendar month, we only use the last recommendation.

Our choice of monthly frequencies reflects several practical considerations. First, analysts

rarely change recommendations multiple times in a month (only 1.2% of recommendations

in our sample are revised multiple times in a month) and there is a concern that analysts

introduce slight temporal revision frictions, to avoid repeated revisions over a short period of

time. It is not feasible to allow for temporal frictions in estimation; and monthly observations

minimize the impact of any temporal frictions on estimates. One might also worry that infor-

mation arrival is uneven due to endogenous information acquisition—an analyst who gathers

information about a firm today is less likely to do so tomorrow, leading to lumpiness in infor-

mation arrival at high frequencies, in essence, a high frequency source of stickiness. However,

an analyst will monitor a firm more than once a month, so endogenous information acqui-

sition should not lead to lumpy information arrival at monthly frequencies. Second, much

of our data is observed at lower frequencies (e.g., sales growth or earnings). Third, monthly

frequencies facilitate estimation, as the median time to recommendation revision is 190 days.

Brokerage houses that use three-tier rating systems appear in the I/B/E/S database as

issuing either Buy, Hold and Sell (4, 3, 2) recommendations only; or as issuing only Strong

Buy, Hold and Strong Sell (5, 3, 1) recommendations. We pool these two populations into a

single three-tier rating system.7 We identify the date at which brokerage houses switch to the

three-tier system by the date at which they exclusively issue from that subset (they typically

7Estimates if we do not pool are qualitatively identical.
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switch on the same day). Our sample of five-tier brokerage houses only includes those that

never switch; and we only use observations on three-tier brokerage houses once they switch.

When analysts maintain a recommendation from one month to the next, they typically do

not reiterate their recommendations. Moreover, analysts sometimes cease following a stock

without indicating a stopped coverage on I/B/E/S. To avoid building in spurious persistence

in estimates of private information and larger recommendation revision frictions by including

non-varying recommendations from analysts who ceased following a stock, we conservatively

assume that an analyst who does not reiterate or revise a recommendation within 12 months

has dropped coverage. Thus, in the absence of a revision or reiteration or stopped coverage

indication by analyst i for stock j (an analyst-firm pair) in month t, we set the recommenda-

tion, Rijt, to be the most recent recommendation/reiteration issued in the past 12 months by

the analyst for that firm.8 For a given analyst-firm pair, an observed recommendation with

no preceding outstanding recommendation in the past year is classified as an initiation, and a

recommendation revision/reiteration refers to a recommendation for which there was an out-

standing recommendation9 in the previous month. We exclude analyst-firm pairs with fewer

than 20 recommendations (including filled in reiterations) over the entire sample period.

This policy largely eliminates only analysts who never revise or reiterate a recommendation,

dropping analysts who may have quickly lost interest and ceased following a firm. Our final

sample of analysts using a three-tier rating system consists of an unbalanced panel data with

241076 recommendations by 1927 analysts (from 188 brokerage houses) for 2805 firms (8224

analyst-firm pairs); and for analysts using a five-tier rating system, we have 89726 recommen-

dations by 740 analysts (from 128 brokerage houses) for 1894 firms (3059 analyst-firm pairs).

Table 1 presents the distributions of recommendation levels and the transition matrix

of recommendation revisions and reiterations for brokerage houses using a three-tier rating

system; and Table 2 does so for those using a five-tier rating system. Almost half of the rec-

ommendations by brokerages that use three ratings are holds, 41% are buys and 10% are sells.

Table 2 shows that brokerage houses that use five ratings are more optimistic—about 53% of

their recommendations are strong buys or buys, and only 7% are sells or strong sells—likely

reflecting that five-tier brokerage houses, which tend to be smaller, without an investment

bank side, have different audiences. This means that one cannot collapse five-tier brokerage

8We show that our qualitative empirical findings are robust if we use different cutoffs (e.g., 9 or 15
months) to identify analysts who dropped coverage.

9This outstanding recommendation may be an actual issuance by the analyst or a carryover from a
recent issuance within the past twelve months.
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Table 1: Distribution of Analyst Recommendations (three-tier ratings)

Panel A. Stock Recommendation Levels
Buy, 4 Hold,3 Sell, 2 Total

Initiations
29910

41.00%
35862

49.16%
7172

9.83%
72944
100%

Full Sample
99159

41.13%
118626
49.21%

23291
9.66%

241076
100%

Panel B. Transition Matrix of Recommendation Revisions and Reiterations
To: Buy, 4 Hold, 3 Sell, 2 Total

From:

Buy, 4
65859

95.07%
3314

4.78%
100

0.14%
69273
100%

Hold, 3
3265

3.95%
78319

94.81%
1026

1.24%
82610
100%

Sell, 2
121

0.74%
1127

6.94%
14993

92.31%
16241
100%

Total 69245 82760 16119

houses into three-tier ones by grouping strong buys with buys, and strong sells with sells.

For brokerage houses using a three-tier system, transitions out of buy are about as likely

as those out of hold, while upward transitions out of sell are about 50% more likely. Broker-

age houses using a five-tier system do not hold negative ratings for as long as those using a

three-tier system—they are more likely to revise holds or sells upward, and less likely to re-

vise buy/strong buy ratings down—additional indications that they tailor recommendations

more optimistically. Of note, brokerage houses using a five-tier system are more likely to

revise recommendations to hold than to other revisions, even from strong buy and strong sell.

Public Information Components of Value. We consider a wide range of public infor-

mation firm and analyst characteristics that plausibly enter an analyst’s assessment of value,

most of which have been suggested by prior studies to be related to recommendations.

We construct several variables from CRSP. Omitting analyst and firm subscripts (i and

j), and the subscript t for the calendar month in which recommendation Rijt is issued, we use:

ret−1: stock excess return (on the market) in the past month (month t− 1).
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Table 2: Distribution of Analyst Recommendations (five-tier ratings)

Panel A. Stock Recommendation Levels
Strong Buy, 5 Buy, 4 Hold,3 Sell, 2 Strong Sell, 1 Total

Initiations
5476

21.51%
8137

31.96%
9960

39.13%
1519

5.97%
364

1.43%
25456
100%

Full Sample
19371

21.59%
28816

32.12%
35228

39.26%
5068

5.65%
1243

1.39%
89726
100%

Panel B. Transition Matrix of Recommendation Revisions and Reiterations

To:
Strong
Buy, 5

Buy, 4 Hold,3 Sell, 2
Strong
Sell, 1

Total

From:
Strong
Buy, 5

12911
93.45%

395
2.86%

499
3.61%

9
0.07%

2
0.01%

13816
100%

Buy, 4
498

2.39%
19355

92.95%
900

4.32%
58

0.28%
12

0.06%
20823
100%

Hold,3
474

1.88%
869

3.45%
23512

93.43%
251

1.00%
60

0.24%
25166
100%

Sell, 2
6

0.17%
51

1.42%
299

8.31%
3220

89.47%
23

0.64%
3599
100%

Strong
Sell, 1

6
0.69%

9
1.04%

58
6.70%

11
1.27%

782
90.30%

866
100%

Total 13895 20679 25268 3549 879

ret−2:−6: median-term monthly excess return.

ret−7:−12: long-term monthly excess return.

To preclude the impact of analysts’ recommendations on stock performance (reverse-

causality), returns are calculated as the holding period return based on monthly closing

stock prices. For instance, ret−2:−6 is the return received from holding a stock at the closing

price in month t− 7 and selling it at the closing price in month t− 2.

σ−1:−6: past six-month stock return volatility (daily return volatility times the square root

of the number of trading days over the past six months).

log(turnover−1:−6): log of (trading volume in past 6 months scaled by shares outstanding).
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Table 3: Descriptive Statistics for Firm and Analyst-related Variables

Mean Std. Dev. Quar1 Quar2 Quar3 Buy−Sell
ret−1 0.750 11.078 −5.405 0.746 6.879 0.486∗∗∗

ret−2:−6 3.813 22.913 −9.584 3.268 15.882 2.602∗∗∗

ret−7:−12 4.492 26.689 −10.925 3.745 18.316 6.265∗∗∗

σ−1:−6 25.554 13.360 15.862 22.242 31.352 −2.212∗∗∗

log(turnover−1:−6) −0.164 0.735 −0.641 −0.137 0.344 −0.041∗∗∗

log(MktCap−1:−6) 14.413 1.552 13.271 14.306 15.459 −0.104∗∗∗

log(num anal) 2.644 0.689 2.197 2.708 3.135 0.058∗∗∗

HSize 3.742 1.113 3.178 3.951 4.673 −0.226∗∗∗

SUE 0.330 1.451 −0.692 0.359 1.553 0.426∗∗∗

BM 0.516 0.345 0.272 0.443 0.673 −0.098∗∗∗

EP 0.017 0.109 0.018 0.043 0.064 0.025∗∗∗

SG 1.115 0.212 0.999 1.089 1.199 0.057∗∗∗

ROA 0.062 0.112 0.015 0.062 0.123 0.026∗∗∗

FAge 22.364 18.774 9 16 32 −0.286∗∗

FRtoP (×10−3) −0.652 12.586 −2.951 0.605 3.435 2.489∗∗∗

CFtoP (×10−2) 1.005 1.548 0.649 1.209 1.738 0.362∗∗∗

FDisp (×10−2) 0.195 0.307 0.038 0.083 0.201 −0.096∗∗∗

FDev (×10−3) −0.103 4.898 −1.056 0 1.107 0.612∗∗∗

IH 0.747 0.241 0.609 0.790 0.919 0.032∗∗∗

log(year brkg) 1.487 0.677 1.099 1.609 1.946 −0.091∗∗∗

log(year IBES) 1.893 0.589 1.386 1.946 2.398 −0.029∗∗∗

Results of univariate comparisons of means between stocks with a Sell (Sell or Strong Sell) recom-

mendations and those of Buy (Buy and Strong Buy) are reported in the far right column. *** and

** denote statistical significance at 1% and 5% levels.

log(MktCap−1:−6): log of a firm’s market capitalization (monthly closing price times shares

outstanding).

Firm Age: years a firm has been in the CRSP database at the calendar year of month t.

Firm accounting variables come from Compustat. Here q denotes the most recent fiscal

quarter for which an earnings announcement was made prior to or within a calendar month t.

SUE: standardized unexpected earnings. SUE = (EPSq −EPSq−4)/std(EPSq:q−7), where

EPSq − EPSq−4 is a firm’s unexpected quarterly earnings per share and std(EPSq:q−7) is

the firm’s earnings volatility over the eight preceding quarters. We require a firm to report

EPS at least four times in the past eight quarters to calculate earnings volatility. The value

of SUE is carried over the following quarter after the release of EPSq.
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SUE ×DEA: interaction between an earnings-announcement-month dummy and standard-

ized unexpected earnings. The DEA dummy indicates an earnings announcement was made

either in that month, or in the last five trading days of the previous month (to give the

market time to assess the earnings).

BM : ratio of book equity to market equity in quarter q;

EP : earnings-to-price ratio. EP =
∑3

i=0(EPSq−i)/Prcq, where Prcq is the stock price at

the end of quarter q.

SG: annual sales growth rate. SG =
∑3

i=0 Salesq−i/
∑3

i=0 Salesq−4−i, where Sales is a

firm’s quarterly total sales.

ROA: return on assets. ROA =
∑3

i=0 Incomeq−i/ATq, where Income and AT are quarterly

net income and the end-of-quarter total assets.

The I/B/E/S recommendation file yields the following analyst-related variables:

log(num anal): logarithm of the number of analysts with outstanding stock recommenda-

tions on a firm in month t− 1.

HSize: logarithm of the number of analysts at a brokerage issuing stock recommendations

over the course of one calendar year, as in Agrawal and Chen (2008).

We use the I/B/E/S Detail History and Summary Statistics files to construct:

FRtoP : Earnings forecast revisions to price ratio is the rolling sum of the preceding six

months revisions to price ratios (Jegadeesh et al., 2004). FRtoP =
∑6

i=1(ft−i−ft−1−i)/Prct−1−i,
where ft is the mean consensus analyst quarterly forecast in month t.

CFtoP : Consensus quarterly earnings forecast to price ratio. CFtoP = ft−1/Prct−1.

FDisp: Forecast dispersion is the standard deviation of analysts’ quarterly earnings forecasts

at month t− 1 scaled by Prct−1.

FDev: Analyst earnings forecast deviation is the difference between an analyst’s forecast

and the consensus earnings forecast at month t− 1 scaled by Prct−1.

Finally, we consider:

IH: Institutional Holdings is the percentage of a firm’s equity held by institutional investors

in quarter q, obtained from 13f quarterly filings to the Securities and Exchange Commission

(Thomson Financial 13f institutional database).

DIB: Dummy variable indicating an investment banking relationship (lead- or joint-management
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appointment) in the previous five years between the analyst’s brokerage house and the firm.

We obtain all US debt and equity offerings from the Security Data Company (SDC) Database.

log(year brkg): Logarithm of the years an analyst has been at his/her current brokerage firm.

log(year IBES): Logarithm of the years an analyst has been in the I/B/E/S database.

In addition to these 22 explanatory variables, we control for industry fixed effects captured

by one-digit SIC codes. Table 3 provides summary statistics for these public information vari-

ables in the three-tier sample. The right-most column reports results of univariate compar-

isons of means between stocks with Sell and Buy recommendations. All differences in control

variables between sell and buy recommendations are significant at a 5% significance level.

5 Empirical Analysis

We next present estimates of our dynamic model of analyst recommendations. We compare

results from the full model (detailed in equations (1)–(4)) with those from more restricted

models to emphasize the importance of both information persistence and revision frictions

in the analyst decision-making process. We then investigate the indirect implications of the

model for the duration of recommendations and market reactions to recommendations.

Table 4 reports the parameter estimates. Columns 1 to 5 present restricted models for the

three-tier rating system and Column 6 presents the full model. Column 7 presents the full

model for the five-tier rating system. The bottom two rows show the Brier score and the loga-

rithm of the marginal likelihood of a particular model used to assess the goodness of model fit.

Due to the ordinal nature of stock recommendations, the ordered probit model has been

widely used to analyze recommendations. It captures an “idealized” analyst who introduces

no recommendation frictions and who has no persistent private information. The ordered

probit model is nested in our framework when both δ and ρ are set to zero. This model

essentially corresponds to that in Conrad et al. (2006). Columns 1 and 1′ present parameter

estimates of an ordered probit model obtained using our MCMC approach and conventional

maximum likelihood, respectively. The two methods yield nearly identical parameter esti-

mates. We defer discussion of the publicly-available determinants of stock valuation to the

full model. Figure 1 in the introduction depicts the equilibrium bins for this model.

The ordered probit model fits the data poorly. This poor fit is reflected in the large

Brier score, which indicates a large discrepancy between predicted probabilities of recom-
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mendations and actual outcomes. Moreover, the ordered probit model fitted by maximum

likelihood yields a pseudo-R2 of only 2.09%. The poor performance of the ordered probit

model in explaining analyst recommendations is commonly reported in analyses of both rec-

ommendation levels and recommendation changes, where the pseudo-R2 is invariably less

than 5% (see Conrad et al., 2006, or Ljungqvist et al., 2007).10

It is important to emphasize that our approach is agnostic about what enters an idealized

analyst’s model of valuation—we let the data tell us how different components enter. The key

for the poor fit is that no matter how the model of valuation is formulated, it predicts far too

many recommendation revisions. Figure 1 in the introduction presents a sample valuation

path without persistent information, and the consequent impacts on recommendations over

a 36 month period. This model predicts 20 recommendation revisions over this short period

(and there would be many more were one to use weekly, rather than monthly, observations,

or to consider five-tier brokerages). In essence, while there is some persistence in recom-

mendations due to persistence in public information data and quarterly arrival of earnings

information (i.e., there is persistence in most firm and analyst fundamentals in X), there is

far too little to generate the infrequent revisions of recommendations found in the data.

Column 2 considers an idealized analyst who does not set recommendation revision fric-

tions, but does gather information that the econometrician does not have, information that

has persistent valuation implications. The autoregressive coefficient estimate for this infor-

mation source is very high, ρ̂ = 0.90, and hugely credible/significant. Incorporating this

persistent information source cuts the Brier score almost in half, from 0.34 to 0.18, and it

is accompanied by an enormous Bayes factor of exp(49740): there is a vast improvement in

model fit once one accounts for the temporal correlation in an analyst’s information.

The high estimated persistence in an analyst’s information reduces the frequency of rec-

ommendation revisions, but only to a limited extent. To see why, consider a stock with a

valuation in the previous month of V ∗t−1 = 4.2, which is well above the Buy rating cutoff of 3.5.

If an analyst receives a one standard deviation positive information shock (εt = +1), raising

V ∗t to 5.2,11 then the slow decay in the valuation consequences of this information means

that it is likely to take a long time for the analyst’s valuation to drop out of the buy bin,

even if some negative public information news arrives. Conversely, a one-standard deviation

10The analogous regression in which, as in Loh and Stulz (2011), changes in recommendation are
regressed on the same right-hand variables as those in the ordered probit fits the data even less well, with
an adjusted-R2 of only 0.33%.

11For the purpose of this illustration, assume ut−1 is 0.
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negative shock (εt = −1) would lead to a downgrade to Hold as V ∗t drops to 3.2. However,

the analyst’s valuation would slowly revert, rising due to the decay of εt. Hence, absent

arrival of other information about the stock’s value, the analyst would switch back to a buy

recommendation after 4 months. Thus, while the high persistence in an analyst’s information

reduces the frequency of recommendation revisions, it can only do so to a limited extent.

Figure 3 depicts the equilibrium bins for an idealized analyst who has persistent infor-

mation, and it illustrates sample valuation paths for the same common public information

valuation path and private information shocks as Figure 1. Persistent information reduces

the number of recommendation revisions from 20 to 12. This reduction helps explain why

the model fit is so much better, but also why the data remain badly described by an idealized

analyst, even when his information exhibits tremendous persistence. No matter how much

persistence is built into the analyst’s model of valuation, the idealized analyst model cannot

deliver low likelihoods of recommendation revisions whenever the current valuation is close

to a ratings cutoff: slight changes in prices would lead to frequent recommendation revisions

as it repeatedly crosses the cutoff, especially were one to use higher frequency observations.

To generate the substantial stickiness/path dependence in recommendations implicit in

the small off-diagonal transition probabilities shown in Table 1, one needs frictions in recom-

mendation revisions strategically introduced by analysts who value intertemporal consistency

in recommendations. Columns 3 to 6 present estimates of models in which analysts introduce

such frictions. Column 3 presents estimates for a model with (a) only two friction parame-

ters, δ↑ and δ↓, one for upward revisions and one for downward revisions, where (b) analysts

have no persistent private information. Both revision friction estimates are large (83−87% of

the size of the hold bin) and highly significant. Model 3 has a far better goodness of fit than

model 2 (Bayes factor of exp(75014), and the Brier score falls from 0.18 to 0.15), even though

model 3 lacks persistent private information. This emphasizes that to reconcile the dynam-

ics of analyst recommendations, one must incorporate the strategic reluctance of analysts to

revise recommendations: revision frictions are even more important drivers of an analyst’s

recommendation decision processes than persistent private information. Importantly, there

would be little impact on estimates were one to use higher frequency (e.g., bi-weekly) recom-

mendation observations, because valuations rarely change sharply over short windows: mod-

erate changes in valuations cannot lead to successive changes in recommendations. In this

way, recommendation revision frictions capture any temporal stickiness in recommendations.
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Figure 3: Idealized analyst with persistent information

Recommendation cutoffs, and sample valuation and recommendation paths over a 36-month period

for an idealized analyst who has persistent private information. The sample valuation path uses

the same common public information valuation path and private information shocks as Figure 1.

Column 4 presents a model with the same two recommendation frictions, δ↓ and δ↑, and

persistent private information for analysts, where we now discard all publicly-available in-

formation save for the constant. Despite throwing away all public information, there is a

massive improvement in model fit from model 3 to model 4 (Bayes factor of exp(6646)).

This underscores the collective importance of both persistence in analyst information and

recommendation frictions for the recommendation process. Both the revision frictions and

information persistence parameters are highly significant. These two sources of stickiness

in recommendations serve as substitutes in slowing down the frequency of recommendation

revisions: the presence of ρ reduces estimates of δ↑ and δ↓ by roughly 7%; while the presence

of δ↓ and δ↑ slashes the estimate of ρ by 55%. Phrased differently, failing to account for both

sources of stickiness in recommendations biases estimates significantly.

Column 5 presents estimates of model 5, which features persistent analyst information

and recommendation revision frictions, augmented to include the public information vari-

ables from model 1. The Bayes factor for models 3 and 5 of exp(13324) is again extremely

large: persistent analyst information and recommendation revision frictions are largely com-
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plementary sources of improved model fit. These complementarities are also indicated by the

huge ratios of the mean to standard deviation of the parameter estimate: 85.5 for the infor-

mation persistence parameter ρ, 266.9 for δ↑ and 403.4 for δ↓. Phrased differently, persistent

private information and recommendation revision frictions capture fundamentally different

economic phenomena—persistence in analyst information (or in the analyst’s assessment of

value) is not a proxy for an unwillingness of analysts to revise recommendations—and both

are central to understanding the dynamics of analyst recommendations.

The improvement in the goodness of fit relative to model 4, which has no public informa-

tion, is large (Bayes factor of exp(6948)), but it pales in comparison with the improvements

associated with introducing revision frictions or persistent analyst information. Moreover,

the predictive improvement suggested by the 0.003 reduction in the Brier score is tiny. In

sum, standard public information sources matter far less for the dynamics of analyst recom-

mendations than do revision frictions and persistent analyst information.

Column 6 presents estimates for our full model, in which recommendation revision fric-

tions are cutoff-specific and analysts have persistent private information. Recommendation

revision frictions δk↓ and δk↑ bear the same index k as cutoff µk: δk↓ is the friction for down-

grades from k to k − 1, while δk↑ is the friction for upgrades from k − 1 to k. Analysts

do not need to use symmetric recommendation revision frictions to reduce the frequency of

recommendation revisions; they can tailor them to reflect other considerations (see Figure 4).

The full model fits the recommendation data the best. It has the smallest Brier score of

0.141 and the large Bayes factor of exp(7134) versus model 5 provides conclusive evidence

against the other models. Figure 5 depicts the equilibrium bins for the full model, and it

illustrates sample valuation paths for the same common public information valuation path

and private information shocks as Figures 1 and 3. The figure hints at why the model fit

is so much better: only 4 revised recommendations are issued over the 36 month period.

Inspection of the estimates of the cutoff-specific revision frictions provides more insights:

their magnitudes vary sharply, indicating that the more restricted models are significantly

mis-specified. In particular, frictions out of hold are much smaller than those into hold, and

a single one-directional friction cannot simultaneously account for this. An indirect indicator

is that the hold bin size increases by 12%, so that the frictions are smaller relative to the bin

size, and the more flexible formulation of the recommendation-specific revision frictions re-

duces the analyst’s information as a source of persistence in recommendations by almost 25%.

Column 7 presents estimates for brokerages that use the traditional five-tier rating sys-
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Figure 4: Cutoff and recommendation revision friction estimates

Cutoff and recommendation revision friction estimates of the full model, in which revision frictions

are cutoff-specific, and analysts have persistent information. Cutoff-specific revision frictions, δk,↓
and δk↑, bear the same index k as cutoff µk: δk,↓ is the friction for downgrades from k to k − 1,

while δk↑ is the friction for upgrades from k − 1 to k.

tem. Most estimates are qualitatively similar to those for the three-tier system. For example,

the recommendation revision friction from sell to hold is far higher than that from hold to

sell. Observe, too that the frictions from strong sell to sell and strong buy to buy are very

large relative to the sizes of the sell and buy bins (98% and 92% respectively), so that most

revisions from strong buy and strong sell are to hold. Thus, the overall nature of the rec-

ommendation revision frictions that five-tier brokerages introduce qualitatively lead them in

the direction of behaving like three-tier brokerages.

This does not imply that brokerages using a five-tier rating system behave like their

three-tier counterparts. There are at least two reasons why one cannot pool strong buys

with buys, strong sells with sells, and estimate a homogeneous brokerage using a three-tier

rating system. First, the estimates show why brokerage houses using a five-tier rating sys-

tem tend to have more optimistic assessments of the firms that they follow: the average new

recommendation initiation for those using five ratings is roughly at the buy/hold cutoff (the

constant is 2.9), while that for those using only three ratings is at the 62nd percentile of the

hold recommendation bin above the sell cutoff (the constant is 1.3). This may reflect that
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Figure 5: Pretty good analyst

Recommendation cutoffs, and sample valuation and recommendation paths over a 36-month period

for a pretty good analyst who has persistent information. The sample valuation path uses the same

common public information valuation path and private information shocks as Figures 1 and 3.

they have very different audiences: five-tier brokerages (which tend to be smaller, without

an investment bank side) may be oriented more toward appealing to retail investors. Second,

the estimate of information persistence is much higher for the five-tier brokerage houses.12

Our estimates highlight how analysts design bins and revision frictions to generate trades

from satisfied retail investors:

• The large frictions out of strong buy and strong sell plausibly reflect that revisions to

hold generate trading activity by inducing investors to unwind positions, but revisions

from strong buy to buy that maintain a positive assessment, or from strong sell to sell

that maintain a negative assessment do not.

• Revision frictions out of hold are small, suggest that maintained hold ratings (as op-

12One might worry that this high estimate could indicate that some analysts in the five-tier brokerage sam-
ple behave as if they were at three-tier brokerages. Such mis-classification would lead to higher estimates of
revision frictions within buy and sell categories, and greater information persistence. However, the many tran-
sitions from buy to strong buy and strong buy to buy suggest that the extent of any misclassification is slight.
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posed to revisions to hold) discourage investors from trading. Analysts can limit re-

peated revisions both with symmetric and asymmetric frictions. Analysts prefer to

design frictions in and out of hold asymmetrically, with smaller frictions out of hold, so

that recommendations spend “less time” in hold, thereby generating more client trades.

Even though hold revision frictions are small, the model delivers the prevalence of hold rec-

ommendations (39% for five-tier brokerages, 49% for three-tier brokerages) in three key ways:

• The hold recommendation bin for five-tier brokerages is large, about 25% larger than

the buy bin, and 50% larger than the sell bin.

• The estimated average firm for five-tier brokerages is roughly at the buy-hold recom-

mendation cutoff, which places extensive probability mass on an initial hold recom-

mendation; and the estimated average firm for three-tier brokerages is slightly above

the hold bin midpoint.

• Analysts at five-tier brokerages are less likely to face revision frictions from buy or sell

into hold due to the high frictions from strong sell to sell and strong buy to buy, which

results in most transitions going from strong buy and strong sell straight to hold.13

These findings make economic sense on other fronts, as well. That the average firm for

which coverage is initiated is a hold, but closer to a buy than a sell, supports the notion that

analysts tend to follow stocks that they deem to have better prospects. This is consistent

with their retail clients being less likely to short-sell. As a result, covering firms with poorer

prospects generates fewer retail client orders from which brokerage houses can profit. At

the same time, analysts want clients to profit from trades—a happy client is likely to trade

again—so analysts want there to be meaning to buy and sell recommendations, and hence

are reluctant to issue such recommendations unless profits are somewhat likely to result.

We now turn to the publicly-available determinants of value. Of note, we see that in

contrast to existing findings, once we control for a pretty good analyst’s information and

revision frictions, better lagged return measures of past firm performance cease to system-

atically raise the analyst’s assessment: the one month lagged return now enters negatively,

13These estimates also give insight into where improvement in model fit occurs versus more restricted mod-
els of five-tier brokerages. Recall that strong sells only comprise 1.4% of the sample, so that the two frictions,
δ↑ and δ↓ do not weigh transitions from strong sells heavily in the estimation. As a result, δ↑ is far larger
than δ2↑. In turn, the large size of δ↑ necessitates a large value for µ2 (so that transitions from strong sell to
sell can occur with positive probability); but then the model cannot deliver few initial sell recommendations.
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while more distant returns enter slightly positively. Qualitatively, Column 6 reveals that a

pretty good analyst has higher assessments of firms:

• for which the analyst has relatively higher estimated forecasts of earnings (vis à vis

the consensus), consistent with Womack (1996) or Jegadeesh et al. (2004).

• that have positive earnings surprise, especially in the earnings announcement window

in which they are reported, as in Chan, Jegadeesh and Lakonishok (1996), Jegadeesh,

Kim, Krische and Lee (2004), or Ivkovic and Jegadeesh (2004).

• that draw more attention from other analysts, consistent with more analysts following

stocks they believe are undervalued, or possibly analysts valuing a stock’s “glamor”.

• that are smaller, as measured by higher sales growth (see Lakonishok, Shleifer, and

Vishny (1994)) or lower book-to-price ratios (see Jegadeesh et al. 2004)).

• with less turnover, consistent with Lee and Swaminathan (2000), who argue that

turnover is a contrarian sign, associated with lower returns.

• about which there is less uncertainty, as captured by forecast dispersion in earnings

(see Diether et al. (2002), Zhang (2006)), lesser dispersion in recommendations, or

more analyst following or higher institutional holdings.

• for which an analyst’s brokerage house has investment banking relationships, consis-

tent with Lin and McNichols (1998), Ljungqvist et al. (2007), O’Brien, McNichols and

Lin (2005), Jackson (2005), Cowen, Groysberg, and Healy (2006) and Lim (2001).

• if an analyst is at a smaller brokerage house. Analysts at smaller brokerages also issue

more optimistic earnings forecasts (Bernhardt et al. (2006)), and follow smaller firms.

• if an analyst is new at his or her brokerage firm. The coefficient on an analyst’s duration

at a brokerage firm is negative and highly significant. This is consistent with analysts

initially issuing optimistic recommendations in order to generate trading activity, while

senior analysts issue more conservative recommendations to preserve reputations.

Quite generally, accounting for revision frictions and information persistence in analyst

decision-making sharply reduces the statistical significance/credibility of parameter estimates

(relative to the ordered probit model of an idealized analyst), typically by factors of two to

five, and the magnitudes of parameter estimates tend to be reduced, as well.

34



Robustness of Homogeneous Model of Recommendations. Our econometric model of

how analysts form recommendations presumes that sources of heterogeneity between analysts

or between the firms for which analysts issue recommendations only enter via the assessment

of value, V . To assess the validity of this premise, we estimate separate models for subsamples

of analysts and firms where one might suspect that analysts’ recommendations might vary—

over time, by brokerage house size, analyst following and analyst experience. These robust-

ness tests reveal remarkable consistency in our estimates.14 Column 1 of Table 5 reproduces

estimates from the full sample. Subsequent columns present estimates for the subsamples of

(S1) the second half of the sample period (2006-2010); (S2) large brokerages that on average

employed at least 52 analysts over the sample period; (S3) heavily-followed stocks that were

covered on average by at least 15 analysts over the sample period; and (S4) senior analysts

who have been employed by the same brokerage firm for at least five years. The sample cri-

teria were chosen so that the subsample would have roughly half of the original observations.

We see true intertemporal consistency—comparing columns (Full) and (S1) reveals al-

most no variation in estimates—there is no evidence that analysts have altered how they

issue recommendations over this period. Similarly, the subsample of larger brokerage houses

(S2), and senior analysts (S4) have very similar estimates, with slightly higher estimates (less

than 10% more) of the persistence in an analyst’s information, and somewhat higher frictions

for recommendation revisions from hold to sell. Analyst’s information appears to be slightly

more persistent yet for heavily-followed stocks, but even this difference is less than 25%, and

the other structural recommendation parameters differ by far less. In sum, the homogeneous

model of recommendation formation and revision describes analyst behavior extremely well.

Delayed Incorporation of Information by Analysts? Raedy, Shane and Yang (2006)

uncover evidence suggesting that it takes time for analysts to process new information, which

would lead them to under-react to it. This leads us to modify our model to estimate the

extent to which analysts fully process new information, providing a direct estimate of the

amount by which analysts under-react to new information. A by-product of this analysis is

that it assuages concerns that such delayed incorporation of information can underlie the high

estimates of persistence in analyst information or the large recommendation revision frictions

that we find. To do this, we estimate a model in which, of the new private information εijt

14The very large ratios of the posterior mean to standard deviation that we find for our structural
parameters indicate that they are extremely precisely estimated. As a check on this precision, in unreported
results, we estimate the model for the subsample of stocks with odd CUSIP numbers. All structural
parameter estimates differed by less than 0.01.
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that analyst i receives about stock j at time t, the analyst only incorporates a fraction ζ. As a

result, the valuation consequences of the analyst’s persistent information evolve according to

uijt = ρ(uij,t−1 + (1− ζ)εij,t−1) + ζεijt.

The last column of Table 5 presents estimation results for the model in which analysts

under-react to new information. This model displays a somewhat improved fit. The es-

timates indicate that analysts incorporate the vast bulk of new information immediately,

incorporating all but 9 percent of information when it arrives. Importantly, the estimates

reveal that allowing for delayed incorporation of information does not lower the estimate of

information persistence; rather, it raises the estimate by about one third. Moreover, while

three of the four estimates of the revision frictions are reduced, all changes in estimates

are modest, on the order of 5 to 15%. That the revision frictions remain large was to be

expected, as delayed incorporation of information alone could not prevent repeated revision

when valuation-price ratios are close to cutoffs. Thus, the estimates indicate that analysts

are “close to rational” in their assessments of new information, and that our qualitative

findings are largely reinforced by integrating this source of modest “irrationality”.

Lost Interest? Columns (6m), (9m) and (15m) present estimates when we use alternative

cutoffs of 6, 9 or 15 months for the time after which we assume that an analyst has ceased

following a stock absent a recommendation revision or reiteration. Longer windows include

more analysts who have ceased following a stock, and hence spuriously suggest stickiness,

while shorter windows exclude more analysts who are following a stock, but have not reiter-

ated, spuriously suggesting too little stickiness. We see that any reasonable cutoff level has

only modest effects on estimates of structural parameters—as expected, longer windows for

continued coverage slightly raise estimates of persistence and revision frictions.

Indirect Evidence. The goodness of fit measures provide conclusive evidence that our

model of a pretty good analyst does a vastly superior job of explaining the dynamics of an-

alyst recommendations than do conventional discrete choice models. We now derive indirect

implications of our model, and document the associated confirming empirical evidence.
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We first show how the pretty good analyst model provides a theoretical framework that

can reconcile the differential impacts of recommendation revisions made around significant

public information events, such as quarterly earnings announcements. As the most important

source of firm-specific information, earnings announcements convey material and “lumpy”

information content about earnings, and other key firm characteristics (e.g., sales, margins

and investment (Brandt et al., (2008)). The earnings guidance that firms provide is another

channel for lumpy firm-specific information release. Earnings announcements and guidance

often feature large surprises that discontinuously shift analysts’ assessments of a firm’s value.

In contrast, information arrival about firm value at other times tends to be smooth.

This difference in information arrival has implications within our model for the differential

impacts of recommendation revisions made inside and outside earnings announcement and

guidance windows. Recommendation revisions made outside EA or EG windows typically

occur when valuation assessments smoothly cross friction-adjusted recommendation cutoffs.

In contrast, revisions issued inside these windows are more likely to be driven by “jumps” in

valuations past friction-adjusted recommendation cutoffs due to “lumpy” information release.

It follows that if, as in our model, given an outstanding recommendation, analysts issue

higher recommendations to firms they value more highly on a per dollar basis, then revisions

issued within EA or EG windows should tend to have longer retracement durations than

those issued outside these windows. That is, inside an EA or EG window, the valuation is

likely further from the friction-adjusted recommendation cutoff, so it will take longer for an

analyst’s assessment of value to retrace toward the cutoff for a revision back to the original

recommendation. Moreover, the valuation information associated with a recommendation

revision inside an EA or EG window should greater on average than the valuation informa-

tion conveyed by a revision made outside of those windows. That is, the CAR (cumulative

abnormal return) impact of a recommendation revision should be greater inside a window.

Importantly, this effect should not exist for new recommendations as no information is

conveyed by an earnings announcement about the location of an analyst’s assessment of

value relative to cutoffs. Thus, via this difference in differences, we can control for CAR

impacts of information arrival in earnings announcements or guidance that are not due to

recommendation revisions (see Ivkovic and Jegadeesh (2004) and Kecské et al. (2010)).

We focus on recommendation revisions of one-level, as revisions of multiple levels (e.g.,

from a buy to a sell) necessarily reflect discontinuities in the valuation consequences of new

information, so we cannot conclude that valuations tend to be closer to cutoffs following
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recommendations outside EA and EG windows. For revisions of multiple levels, our model

only predicts that they are more likely within these windows than outside, which we find in

the data. The EA window is defined as the three-day period on and after the date of a firm’s

quarterly earnings announcement, where announcements after close are treated as if they oc-

curred on the next trading day. We then determine whether the date of a recommendation15

is inside or out of an EA window. We obtain earnings guidance dates from the First Call

Guidelines database and define three-day earnings guidance windows in the analogous way.

Table 6: Retracement durations of revisions inside vs. outside EA windows

Panel A. Retracement durations of one-level revisions
EA Window Obs. Mean Std. Dev. 95% Conf. Interval

In 6154 158.268 96.924 (155.845, 160.689)
Out 19402 152.064 98.064 (150.683, 153.443)

diff.
6.204∗∗∗

(4.34)

Panel B. Retracement durations of one-level upgrades
EA Window Obs. Mean Std. Dev. 95% Conf. Interval

In 3021 163.396 96.563 (159.951, 166.841)
Out 9296 159.705 98.659 (157.699, 161.711)

diff.
3.691∗∗

(1.80)

Panel C. Retracement durations of one-level downgrades
EA Window Obs. Mean Std. Dev. 95% Conf. Interval

In 3133 153.322 97.028 (149.924, 156.721)
Out 10106 145.034 96.987 (143.143, 146.926)

diff.
8.288∗∗∗

(4.18)

The row “diff.” refers to the difference in average retracement durations of revisions made
inside vs. outside EA windows. t-statistics of tests on the equality of means are reported in
parentheses. *** and ** denote statistical significance at the 1% and 5% levels.

Panel A of Tables 6 and 7 reports summary statistics of durations (in days) for a rec-

ommendation revision to retrace to its original level, both for revisions made inside the

associated windows and for revisions outside of both windows. Consistent with our predic-

tions, on average it takes over 6 days longer for revisions issued inside EA windows to return

to their original levels than it does for revisions made outside both windows; and it takes

15If the date is not a trading day, we use the next trading date.
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Table 7: Retracement durations of revisions inside vs. outside EG windows

Panel A. Retracement durations of one-level revisions
EG Window Obs. Mean Std. Dev. 95% Conf. Interval

In 3245 159.859 95.671 (156.566, 163.152)
Out 19402 152.064 98.064 (150.684, 153.443)

diff.
7.795∗∗∗

(4.21)

Panel B. Retracement durations of one-level upgrades
EG Window Obs. Mean Std. Dev. 95% Conf. Interval

In 1522 162.179 96.358 (157.335, 167.024)
Out 9296 159.705 98.659 (157.699, 161.711)

diff.
2.474
(0.91)

Panel C. Retracement durations of one-level downgrades
EG Window Obs. Mean Std. Dev. 95% Conf. Interval

In 1723 157.809 95.040 (153.318, 162.300)
Out 10106 145.034 96.987 (143.143, 146.926)

diff.
12.775∗∗∗

(5.07)

The row “diff.” refers to the difference in average retracement durations of revisions made
inside vs. outside earnings guidance (EG) windows. t-statistics of tests on the equality of
means are reported in parentheses. *** denotes statistical significance at the 1% level.

over 8 days longer for revisions issued inside EG windows to return. These highly significant

differences in average lifetimes are roughly 5% of the average duration of a revision before its

retracement. Panels B and C decompose revisions into upgrades and downgrades.16 They

show that the effect is stronger for downgrades: it takes almost 13 days longer for downgrades

issued inside EG windows to return than for downgrades issued at other times, whereas the

difference is only 2 days for upgrades. This likely reflects that negative earnings guidance

tends to be larger in magnitude than positive guidance, which may take the form of a firm

confirming that earnings should be in line with past guidance.17

We next explore the implications for market responses to recommendation revisions inside

vs. outside earnings announcement and guidance windows. The market reaction is measured

16No systematic differences in retracement durations emerge for three-tier vs. five-tier brokerages.
17One can also use retracement durations as a ball park test of our premise that analysts set the same

cutoffs µj for new and revised recommendations. Retracement durations are only marginally longer for new
recommendations than revised ones.
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by the three-day CAR following a revision issued by analyst i for stock j at day d,

CARijd =
2∏
d=0

Rjd −
2∏
d=0

RM , (7)

where Rjd and RM are the raw stock and market daily return, respectively. Day 0 (d = 0) is

the I/B/E/S reported recommendation date or the following trading day if the recommen-

dation date is not a trading date. We exclude recommendation revisions made on the same

day as an announcement or guidance (or the next day if the EA or EG is after close) to

avoid having the CAR reflect both the announcement and the revision.

Table 8: Market reaction to revisions made inside vs. outside EA windows

Panel A. Market reaction to one-level upgrades
EA Window Obs. Mean Std. Dev. 95% Conf. Interval

In 8221 2.917 7.417 (2.756, 3.077)
Out 24488 2.345 7.915 (2.245, 2.443)

diff.
0.573∗∗∗

(5.95)

Panel B. Market reaction to one-level downgrades
EA Window Obs. Mean Std. Dev. 95% Conf. Interval

In 8518 −3.347 8.841 (−3.534,−3.158)
Out 24793 −1.821 8.517 (−1.926,−1.714)

diff.
−1.526∗∗∗

(13.87)

Three-day cumulative abnormal returns (CAR) associated with recommendation revisions issued

inside and outside earnings announcement (EA) windows. The row “diff.” refers to the difference in

average CAR of revisions made inside vs. outside EA windows. t-statistics of tests on the equality

of means are reported in parentheses. *** denotes statistical significance at 1% level.

Tables 8 and 9 report findings for three-day CARs following revisions. Consistent with

our predictions, upgrades issued inside EA and EG windows have far larger market impacts

than those issued outside of both windows, and these CAR differences are highly significant.

Market reactions to downgrades issued inside EA windows have CARs that are 1.5 percent-

age points lower than the CARs for downgrades issued outside these two windows; and those

for downgrades issued inside EG windows are even larger, roughly double those for earnings

announcements. CAR differences for upgrades are smaller, roughly one-third of those for

downgrades. This likely reflects that bad announcements or guidance conveys “more” news
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Table 9: Market reaction to revisions made inside vs. outside EG windows

Panel A. Market reaction to one-level upgrades
EG Window Obs. Mean Std. Dev. 95% Conf. Interval

In 4163 3.401 7.629 (3.169, 3.633)
Out 24488 2.345 7.915 (2.245, 2.443)

diff.
1.056∗∗∗

(7.66)

Panel B. Market reaction to one-level downgrades
EG Window Obs. Mean Std. Dev. 95% Conf. Interval

In 4756 −4.802 9.009 (−5.057,−4.546)
Out 24793 −1.821 8.517 (−1.926,−1.714)

diff.
−2.980∗∗∗

(20.71)

Three-day cumulative abnormal returns (CAR) associated with recommendation revisions issued

inside and outside earnings guidance (EG) windows. The row “diff.” refers to the difference in

average CAR of revisions made inside vs. outside EG windows. t-statistics of tests on the equality

of means are reported in parentheses. *** denotes statistical significance at 1% level.

than good announcements or guidance. As a result, the market’s forecast of the change in

an analyst’s assessment associated with a downward revision is greater.

One might worry that discarding recommendation revisions made on the same days as

earnings announcements or guidance is not enough to isolate the effect of a recommendation

revision from that of the announcement or guidance. To address this, we observe that the

discontinuity in valuation assessment in EA and EG windows only occurs for revisions and

not for new recommendations. That is, a new recommendation made within an EA or EG

window conveys no information about value relative to cutoffs that is distinct from a new

recommendation made outside the window. Thus, differences in CARs for new recommen-

dations inside vs. outside these windows control for the direct information arrival associated

with earnings announcements or guidance. This leads us to employ a difference-in-difference

analysis of revisions vs. new recommendations inside and out of EA and EG windows.

Tables 10 and 11 present the “difference-in-difference” analysis for revisions made inside

and outside EA and EG windows. They also provide a more detailed decomposition for

different recommendation levels. These tables provide further confirmatory evidence for the

prediction. In particular, except for downgrades to sell, all difference-in-differences in CARs

are highly statistically significant with the “correct” signs, and their large magnitudes range
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Table 10: Difference-in-Difference Analysis of CARS for Earnings Announcements

Upgrade to Buy/Strong Buy Upgrade to Hold
In EA Out EA & diff In EA Out EA & diff
Win EG Win Win EG Win

Up
3.051∗∗∗

(7.82)
2.385∗∗∗

(25.79)
0.666∗∗∗

(4.77)
Up

2.182∗∗∗

(11.93)
1.662∗∗∗

(25.50)
0.520∗∗∗

(8.74)

Init
1.487∗∗∗

(4.00)
1.247∗∗∗

(37.08)
0.240∗∗

(2.57)
Init

−1.768∗∗∗

(14.80)
−0.577∗∗∗

(15.76)
−1.190∗∗∗

(13.03)

diff
1.564∗∗∗

(4.70)
1.137∗∗∗

(19.86)
0.426∗∗∗

(3.22)
diff

3.950∗∗∗

(12.24)
2.240∗∗∗

(23.99)
1.710∗∗∗

(8.77)

Downgrade to Hold Downgrade to Sell/Strong Sell

Down
−3.267∗∗∗

(8.29)
−1.568∗∗∗

(18.71)
−1.699∗∗∗

(5.95)
Down

−3.755∗∗∗

(4.34)
−2.430∗∗∗

(8.31)
−1.325∗∗

(1.83)

Init
−1.768∗∗∗

(13.77)
−0.577∗∗∗

(14.62)
−1.190∗∗∗

(12.09)
Init

−2.912∗∗∗

(6.66)
−1.737∗∗∗

(17.18)
−1.175∗∗∗

(4.54)

diff
−1.499∗∗∗

(4.94)
−0.991∗∗∗

(14.69)
−0.509∗∗∗

(3.50)
diff

−0.843∗∗∗

(3.17)
−0.693∗∗∗

(4.74)
−0.150
(0.43)

Difference-in-difference results of CARs for revisions made inside vs. outside earnings announce-

ment windows. The CAR associated with initiations of the corresponding rating is used as the

control group. ***, ** and * denote statistical significance at 1%, 5% and 10% levels.

Table 11: Difference-in-Difference Analysis of CARs after Earnings Guidance

Upgrade to Buy/Strong Buy Upgrade to Hold
In EG Out EA & diff In EG Out EA & diff
Win EG Win Win EG Win

Up
3.574∗∗∗

(9.00)
2.385∗∗∗

(26.06)
1.189∗∗∗

(6.18)
Up

2.230∗∗∗

(11.82)
1.670∗∗∗

(25.77)
0.560∗∗∗

(9.31)

Init
1.730∗∗∗

(5.21)
1.247∗∗∗

(37.47)
0.483∗∗∗

(3.83)
Init

−2.718∗∗∗

(19.32)
−0.579∗∗∗

(15.91)
−2.139∗∗∗

(17.86)

diff
1.844∗∗∗

(5.35)
1.138∗∗∗

(20.08)
0.706∗∗∗

(3.99)
diff

4.948∗∗∗

(13.15)
2.248∗∗∗

(24.24)
2.700∗∗∗

(10.21)

Downgrade to Hold Downgrade to Sell/Strong Sell

Down
−4.806∗∗∗

(12.56)
−1.564∗∗∗

(18.77)
−3.242∗∗∗

(10.26)
Down

−4.944∗∗∗

(3.89)
−2.425∗∗∗

(8.29)
−2.519∗∗∗

(2.55)

Init
−2.718∗∗∗

(17.99)
−0.579∗∗∗

(14.78)
−2.139∗∗∗

(16.59)
Init

−4.682∗∗∗

(10.03)
−1.746∗∗∗

(17.56)
−2.936∗∗∗

(7.97)

diff
−2.088∗∗∗

(7.29)
−0.985∗∗∗

(14.74)
−1.103∗∗∗

(5.89)
diff

−0.262
(0.24)

−0.679∗∗∗

(4.72)
0.417
(0.88)

Difference-in-difference results for CARs of revisions made inside vs. outside earnings guidance

(EG) windows. The CAR associated with initiations of the corresponding rating is used as the

control group. *** and * denote statistical significance at 1% and 10% levels.
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from over 0.4 percentage points to more than two percentage points.

Recommendation Surprise and Market Reaction. Loh and Stulz (2009) document

that some recommendation revisions are more influential than others. They focus on ana-

lyst characteristics and show that some attributes (e.g., experience and reputation) lead to

stronger market reactions to revisions. Jegadeesh and Kim (2006) find that stock price re-

sponses are stronger following recommendation revisions that are further from the consensus.

Our framework provides a distinct explanation for why some recommendation revisions

should have a different market impacts than others. In particular, our model predicts that

some recommendations—those where the public-information assessment of the stock valua-

tion is further from a recommendation cutoff—are more surprising than others, as this indi-

cates the analyst’s private information must be greater, in order to lead to a recommendation

revision. To see this, consider outstanding Hold recommendations for two combinations of

observables with different publicly-perceivable valuations. Then a downward revision to Sell

conveys more negative information in the scenario with the higher public valuation assess-

ment of the hold, while an upgrade to Buy conveys more positive information for the scenario

with the lower public valuation assessment. Consequently, the market CAR responses should

be greater following recommendation revisions in these two scenarios. Indeed, to the extent

that the findings of Jegadeesh and Kim (2006) are due to larger private information assess-

ments, i.e., greater surprise, our model provides a theoretical rationale for their findings.

We measure the size of recommendation surprise, ∆Xβ, using the difference between the

estimate of valuation based on public information Xβ from the previous month, and the

recommendation friction-adjusted cutoffs corresponding to the revisions/initiations from our

full model:

∆Xβ ≡


Xβ − (µk + δk↑), upgrades from k − 1 to k;
Xβ − (µk+1 − δk+1,↓), downgrades from k + 1 to k;
Xβ − µk, new coverage at k;

(8)

where k indexes the recommendation level and we omit analyst, firm and time subscripts for

simplicity. For initial coverage, we focus on Buy and Strong Buy recommendations because

(a) the sample of analysts initiating coverage with a Sell or Strong Sell is too small; and (b)

the information content of an initial Hold recommendation is less clear.

∆Xβ contains information about the perceived private information content in an an-

alyst’s stock recommendation initiation or revision. For instance, given a previous Hold

recommendation, the stock valuation V ∗, which is the sum of the public assessment Xβ and
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the private information component u, must breach the friction-adjusted cutoff (µ3 + δ3↑) to

be upgraded to Buy. A positive ∆Xβ suggests that an upgrade is widely expected by the

market as the public assessment already exceeds the minimum level for triggering such a

revision. There should still be a positive market response, reflecting that the market learns

that an analyst’s private information now exceeds that minimum level. However, the market

response should be less than that when ∆Xβ is very negative, as now an upgrade divulges a

positive and potentially very large private information component. Accordingly, the market

should react more strongly to such a “surprising” revision. A similar argument holds for

downgrades and for new coverage that, for example, is initiated at a buy.

We measure market reactions using three-day market-adjusted CARs. To ensure that the

observed return is attributable to a recommendation revision, we exclude recommendations

issued within a three-day window around (on and after) quarterly earnings announcement or

guidance dates.18 Our model predicts that the market should react more strongly to those an-

alysts’ judgments that imply large private information components. To test this conjecture,

we first categorize recommendation changes as upgrades, downgrades and initial coverage.

Then, within each category, we sort recommendations into four equal-sized groups based on

the sizes of their surprises, as measured by ∆Xβ. Table 12 reports the average size of recom-

mendation surprise, the average 3-day CAR following the recommendation and its standard

deviation for each quartile group for the three-tier system.19 Note that the vast majority of

upgrades have ∆Xβ < 0, and almost all downgrades have ∆Xβ > 0, reflecting that our pub-

lic information measure is calculated based on the previous month’s public information, and,

for example, upgrades typically follow improvement in the public information measures in

the current month. The quartile groups are ordered from smallest ∆Xβ (g1) to largest (g4).

The row labeled “g4− g1” shows the difference in average CARs between these two groups.

The least surprising upgrades and initiations are in quartile g4, and the least surprising

downgrades are in quartile g1, where ∆Xβ is the smallest. The findings in Table 12 strongly

indicate that the least surprising recommendations have the smallest market impacts, while

the most surprising recommendations have the largest impacts, which are both consistent

with the nuanced predictions of our model. The CAR differences between these portfolio

quartiles are always substantial and statistically significant. The CAR difference between

the most and least surprising quartiles is 1.1 percentage points for upgrades (more surpris-

18If we do not discard recommendations issued within an earnings announcement window, CAR impacts
become slightly stronger for downgrades and initiations, and slightly weaker for upgrades.

19Results for the five-tier system are qualitatively similar, albeit less significant.
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ing is good news), −1.33 for downgrades (more surprising is bad news), and 0.52 for Buy

initiations (more surprising is good news), and each is statistically significant at the 5% level.

Table 12: Recommendation Surprise vs. Three-day CAR

Upgrade Downgrade Initiation (Buy)
Ave Ave Std Ave Ave Std Ave Ave Std

∆Xβ CAR CAR ∆Xβ CAR CAR ∆Xβ CAR CAR

g1 −1.870 3.751 7.778 1.008 −2.429 8.424 −0.578 2.632 9.606
g2 −1.674 3.403 5.542 1.202 −2.861 6.079 −0.398 2.136 4.821
g3 −1.478 3.587 6.351 1.379 −2.996 6.929 −0.290 2.175 5.159
g4 −0.224 2.638 7.104 2.323 −3.763 7.370 −0.133 2.111 5.681

g4− g1 −1.113∗∗∗ −1.334∗∗∗ −0.521∗∗

(3.07) (3.46) (2.13)

Equally-weighted quartile portfolios formed by sorting stocks based on the size of recommendation

surprise, ∆Xβ. For upgrades and initiations, portfolio g1 (g4) contains the most (least) surprising

ratings, for which the public assessment is below (above) the minimum level for triggering such a

revision or initiation. For downgrades, Portfolio g4 (g1) contains the most (least) surprising ratings.

The row “g4-g1” presents the difference in average CAR between portfolio g4 and portfolio g1. t-

statistics of tests on the equality of means are reported in parentheses. *** denotes statistical

significance at the 1% level.

In summary, our framework provides a unique perspective on the market perception

of recommendation revisions and coverage initiation. The evidence strongly supports the

premise that the market reacts more strongly to decisions by analysts that are more surpris-

ing in the context of our model. This suggests both that our model describes how investors

believe financial analysts make recommendations, and that investors value the private infor-

mation revealed by analyst’s recommendation changes and initiations.

6 Conclusion

We develop a model of how financial analysts formulate recommendations, and show how it

captures the rich dynamics in analyst recommendations. Our model incorporates two key

features of the recommendation process: (i) analysts acquire information with persistent val-

uation consequences that the econometrician does not observe, and (ii) analysts revise recom-

mendations reluctantly, introducing frictions to avoid repeatedly revising revisions following

small changes in valuation assessments. Our model allows analysts to tailor recommendation

revision frictions according to the level of the outstanding recommendation and the direction

of a possible revision. Our model nests important existing models as special cases.
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Our empirical study reveals that analysts behave quite differently from the “idealized” an-

alyst who has been the focus of existing research. In particular, analysts introduce large rec-

ommendation revision frictions to avoid frequent revisions. Our study reveals that publicly-

available data on firm and analyst characteristics matters far less for explaining recommen-

dation dynamics than the persistent private information of analysts and their recommen-

dation revision frictions. We find that analysts design the recommendation frictions highly

asymmetrically—varying with the recommendation and direction of revision. For example,

analysts introduce far smaller frictions “out” of hold recommendations than “into” hold rec-

ommendations. Qualitatively, our findings suggest that analysts structure recommendations

strategically to generate profitable order flow for their brokerages from their retail clients.

We then document extensive indirect support for our model in (a) durations of recom-

mendation revisions made inside vs. outside earnings announcement and guidance windows,

(b) a difference-in-differences analysis of market (CAR) responses to new vs. revised recom-

mendations and inside vs. outside earnings announcement and guidance windows, and (c)

CAR responses as a function of the extent to which an analyst’s new recommendation or

revision is surprising given the extant public information available to the econometrician.
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6.1 Appendix: Model Estimation

We use MCMC methods to estimate the model. Following section 3, let π(θ) be the prior

distribution of the unknown parameters. If analyst i gave recommendations to firm j for nij

different periods {tij0(s), · · ·, tij∗(s), s = 1, · · ··, nij}, then the joint density of θ and r is:

π(θ, r) = π(θ)
J∏
j=1

∏
i∈Ij

nij∏
s=1

P (Rijtij0(s) = rijtij0(s))

tij∗(s)∏
t=tij0(s)+1

P (Rijt = rijt|Rij,t−1 = rij,t−1)

 ,

(9)

To determine the unconditional and conditional distributions in the above expression,

notice that at the beginning of each period, analyst i’s initial recommendation Rij,tij0 re-

flects his valuation V ∗ij,tij0 . The unobserved residual terms uijt are modeled by AR processes

with parameter ρ,

uijt = ρuij,t−1 + εijt,

where εijt are i.i.d. N(0, σ2), and σ2 is normalized to be 1 for identification purposes. Thus,

the variance of uijt is σ2
u = 1/ (1− ρ2), and

uij,tij0 ∼ N(0, σ2
u).

The probability distribution of the initial recommendation P (Rijtij0(s) = rijtij0(s)) can then

be calculated from the above normal distribution using the recommendation bins, equation

(3). Let φ(·) be the density function for a N(0, 1) random variable. Then the density kernel

of the initial observation is φ
(
uij,tij0/σu

)
.

After the initial recommendation period, the outstanding recommendation affects ana-

lyst’s subsequent recommendations at time t and thus the conditional probability P (Rijt =

rijt|Rij,t−1 = rij,t−1). Notice that, given Rij,t−1 = rij,t−1, we have Rijt = k if

(i) rij,t−1 > k + 1, and µk ≤ V ∗ijt < µk+1,
(ii) rij,t−1 = k + 1, and µk ≤ V ∗ijt < µk+1 − δk+1,↓,
(iii) rij,t−1 = k, and µk − δk↓ ≤ V ∗ijt < µk+1 + δk+1,↑,
(iv) rij,t−1 = k − 1, and µk + δk↑ ≤ V ∗ijt < µk+1,
(v) rij,t−1 < k − 1. and µk ≤ V ∗ijt < µk+1.

(10)

Combining (1) and (2) we have:

V ∗ijt − ρV ∗ij,t−1 −
(
X ′ijt − ρX ′ij,t−1

)
β = εijt.

Depending on which group of parameters are studied, it is sometimes convenient to express

the above relationship as:(
V ∗ijt −X ′ijtβ

)
− ρ

(
V ∗ij,t−1 −X ′ij,t−1β

)
= εijt.
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Given information up to time t, using equation (10) and noticing that εijt are i.i.d. normally

distributed, the conditional probability P (Rijt = rijt|Rij,t−1 = rij,t−1) can be obtained from

equation (6).

The MCMC estimator using Gibb sampler starts with an initial value (θ(0), V (0)), and

then simulates in turn. Conditional on other parameters and the data, the posterior densi-

ties of a subset of parameters can be derived based on the above joint density (9) and given

priors. For convenience of conditioning, we divide the vector of parameters θ into 4 groups:

(1) β; (2) µj, j = 3, 4, 5; (3) δ; and (4) ρ. This partition brings a relatively simple form

to the conditional posterior densities and makes it more tractable to draw random variables

from the conditional distributions. In particular, the conditional distributions of each subset

of parameters are given below:

1. The conditional distribution of β is normal. We start with the prior β ∼ N(0, I). To

simplify the simulation, we follow the suggestion of Albert and Chib (1993) and condition

on the initial observation. Conditional on the data and other parameters, the conditional

distribution of β is given by

N(β̂, Σ̂β),

where

β̂ =

 J∑
j=1

∑
i∈Ij

nij∏
s=1

tij∗(s)∏
t=tij0(s)+1

(Xijt − ρXij,t−1)
(
X ′ijt − ρX ′ij,t−1

)−1
J∑
j=1

∑
i∈Ij

nij∏
s=1

tij∗(s)∏
t=tij0(s)+1

(Xijt − ρXij,t−1)
(
V ∗ijt − ρV ∗ij,t−1

)
,

and variance (inverse precision)

Σβ̂ =

 J∑
j=1

∑
i∈Ij

nij∏
s=1

tij∗(s)∏
t=tij0(s)+1

(Xijt − ρXij,t−1)
(
X ′ijt − ρX ′ij,t−1

)−1 ,
where Xij0 = 0.

2. The conditional distribution of ρ is a truncated normal. We start with the prior

N(0.5, 1)I(|ρ| < 1). Conditional on the data and other parameters, ρ is normally distributed
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with mean ρ̂, and variance σ̂2
ρ, truncated by |ρ| < 1, i.e., ρ ∼ N(ρ̂,Σρ) · I(|ρ| < 1), where

ρ̂ =

 J∑
j=1

∑
i∈Ij

nij∏
s=1

tij∗(s)∏
t=tij0(s)+1

(
V ∗ij,t−1 −X ′ij,t−1β

)2−1
J∑
j=1

∑
i∈Ij

nij∏
s=1

tij∗(s)∏
t=tij0(s)+1

(
V ∗ij,t−1 −X ′ij,t−1β

) (
V ∗ij,t −X ′ij,tβ

)
,

and

σ̂2
ρ =

 J∑
j=1

∑
i∈Ij

nij∏
s=1

tij∗(s)∏
t=tij0(s)+1

(
V ∗ij,t−1 −X ′ij,t−1β

)2−1 .
3. The conditional density of δk↑ is a uniform distribution. Given the data, other pa-

rameters ρ, β, µ, and other elements in δ, the conditional density of δk↑ is proportional to

π(θ, r). The bounds of the uniform distribution can be derived based on the following in-

formation: (1) at the starting period, the stickiness parameter does not enter, and (2) at

other periods, the above likelihood is non-zero when: (i) µk − δk↓ ≤ V ∗ijt < µk+1 + δk+1,↑ if

Rijt = k and Rij,t−1 = k; (ii) µk ≤ V ∗ijt < µk+1−δk+1,↓ if Rijt = k and Rij,t−1 = k+1; and (iii)

µk+δk↑ ≤ V ∗ijt < µk+1 ifRijt = k andRij,t−1 = k−1, (other cases do not depend on the friction

parameters.) Using the above information, we obtain that δk↑ is uniformly distributed on

[δk↑low, δk↑up] ,

where

δk↑low = max
i,j, and t6=tij0(s)

{
V ∗ijt − µk : Rijt = Rij,t−1 = k − 1

}
,

δk↑up = min
i,j, and t6=tij0(s)

{(
V ∗ijt − µk

)
∧ (µk − µk−1) : Rijt = k, Rij,t−1 = k − 1

}
.

Similarly, given the data and other parameters, δk↓ is uniformly distributed on

[δk↓low, δk↓up] ,

where

δk↓low = max
i,j, and t6=tij0(s)

{
µk − V ∗ijt : Rijt = k = Rij,t−1

}
,

δk↓up = min
i,j, and t6=tij0(s)

{(
µk − V ∗ijt

)
∧ (µk − µk−1) : Rijt = k − 1, Rij,t−1 = k

}
.

4. The conditional density of µk given the data and other parameters ρ, β, δ, and µl 6= µk,

is a uniform distribution on the interval [µk,low, µk,up]. The lower bound and upper bound
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can be derived in a similar way as δ. In particular, the lower bound is

µk,low = max
{
µk−1,max

s

[
V ∗ijtij0(s) |Rijtij0(s)

= k − 1
]
, µk,l1, µk,l2, µk,l3, µk,l4

}
,

where

µk,l1 = max
t6=tij0(s)

[
V ∗ijt − δk+1,↑| Rijt = Rij,t−1 = k

]
,

µk,l2 = max
t6=tij0(s)

[
V ∗ijt + δk+1↓ |Rijt = k,Rij,t−1 = k + 1

]
,

µk,l3 = max
t6=tij0(s)

[
V ∗ijt |Rijt = k − 1, Rij,t−1 > k

]
,

µk,l4 = max
t6=tij0(s)

[
V ∗ijt |Rijt = k − 1, Rij,t−1 ≤ k − 2

]
,

and, similarly, for the upper bound:

µk,up = min
{
µk+1,min

s

[
V ∗ijtij0(s) |Rijtij0(s)

= k
]
, µk,u1, µk,u2, µk,u3, µk,u4

}
.

where

µk,u1 = min
t6=tij0(s)

[
V ∗ijt + δk↓ |Rijt = Rij,t−1 = k

]
,

µk,u2 = min
t6=tij0(s)

[
V ∗ijt −δk↑|Rijt = k,Rij,t−1 = k − 1

]
,

µk,u3 = max
t6=tij0(s)

[
V ∗ijt |Rijt = k,Rij,t−1 ≥ k + 1

]
,

µk,u4 = max
t6=tij0(s)

[
V ∗ijt |Rijt = k,Rij,t−1 < k − 1 ,

]
.

5. The conditional distributions of the latent variables V ∗ijt are truncated normal. Giving

our valuation model in Section 2, conditional on data and other information, the conditional

distributions of V ∗ijt at the initial period tij0(s) are given by

V ∗ijtij0(s) ∼ N

(
X ′ijβ,

1

1− ρ2

)
, truncated by [µRijtij0(s)

, µRijtij0(s)
+1].

For subsequent periods, i.e., t ∈ {tij0(s) + 1, · · ·, tij∗(s), s = 1, · · ··, nij}, notice that V ∗ijt =

ρV ∗ij,t−1 +
(
X ′ijt − ρX ′ij,t−1

)
β+εijt, the conditional distributions of V ∗ijt are truncated normals

with means ρV ∗ij,t−1 +
(
X ′ijt − ρX ′ij,t−1

)
β and unit variance, truncated at [µt,low, µt,upp], where

µt,low = 1(Rijt = Rij,t−1 + 1)(µRijt
+ δ↑) + 1(Rijt = Rij,t−1)(µRijt

− δ↓)

+1(Rijt ≤ Rij,t−1 − 1 or Rijt > Rij,t−1 + 1)µRijt
,
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µt,upp = 1(Rijt = Rij,t−1)(µRijt+1 + δ↑) + 1(Rijt = Rij,t−1 − 1)(µRijt+1 − δ↓)

+1(Rijt < Rij,t−1 − 1 or Rijt ≥ Rij,t−1 + 1)µRijt+1 .

Fix a draw q, and denote the conditional distribution of, say, V conditional on θ as

p(V |θ), where the conditioning on X and R is suppressed.

1. Draw V (q) from p(V |θ(q−1)), i.e., p(V |β(q−1);µ
(q−1)
j ; δ(q−1); ρ(q−1))

2. Draw β(q) from p(β|V (q);µ
(q−1)
j ; δ(q−1); ρ(q−1))

3. Draw µ
(q)
j j = 3, 4, 5, from p(µ|V (q); β(q); δ(q−1); ρ(q−1)). This is done by the following 3

steps:

(a) draw µ
(q)
3 from p(µ3|V (q); β(q);µ

(q−1)
4 , µ

(q−1)
5 ; δ(q−1); ρ(q−1)).

(b) draw µ
(q)
4 from p(µ4|V (q); β(q);µ

(q)
3 , µ

(q−1)
5 ; δ(q−1); ρ(q−1)).

(c) draw µ
(q)
5 from p(µ5|V (q); β(q);µ

(q)
3 , µ

(q)
4 ; δ(q−1); ρ(q−1)).

4. Draw δ(q) from p(δ|V (q); β(q);µ
(q)
j ; ρ(q−1)). For example, if δ = (δ↑, δ↓), this is done by

the following 2 steps:

(a) Draw δ
(q)
↑ from p(δ↑|V (q); β(q);µ

(q)
j ; δ

(q−1)
↓ ; ρ(q−1)).

(b) Draw δ
(q)
↓ from p(β|V (q); β(q);µ

(q)
j ; δ

(q)
↑ ; ρ(q−1)).

5. (5) Draw ρ(q) from p(ρ|V (q); β(q);µ
(q)
j ; δ(q))

6. Set q = q + 1, and repeat the above steps.

In practice, we discard the first M draws (in our empirical analysis, we set M = 50, 000),

and the simulated values of (θ(q), V (q)) from q = M + 1, · · ·,M + Q, can be regarded as an

approximate simulated sample. The posterior expectation of a function of the parameters,

h(θ), can then be estimated by the sample average

1

Q

M+Q∑
q=M+1

h(θ(q)).
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