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Abstract
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1 Introduction

The starting point for our paper is a classical auction setting in which a seller seeks to sell

a single asset/project to risk-neutral bidders who privately receive signals about the asset’s

expected future cash flows. When a bidder wins control, the asset’s payoffs hinge on both

his signal and those of rival bidders. The existing literature studies mechanisms in settings

where only the bidder who controls the project receives cash flows (possibly splitting them

with the seller), but no other bidder receives cash flows.

Our paper shows that a seller can do better by sometimes allocating control to one bid-

der and (some or all) cash flows to other bidders. We establish that as long as expected

cash flows are more sensitive to the signal of the bidder who controls the project than to

those of other bidders—so that project payoffs have both private value and common value

components—expected seller revenues are strictly higher when the seller sometimes allocates

control and cash-flow rights to different bidders, and that the bidder who should be assigned

control may not be the one that would generate the highest project payoffs. We believe our

paper is the first to propose a “separation” mechanism of this form, to establish its revenue

advantages, and to identify the sources of those advantages.

To highlight how outcomes in our separation framework differ from those in the “no-

separation” frameworks of existing studies, we focus on settings with ex-ante identical bid-

ders. In the classical no-separation framework, given a standard monotone-hazard condition,

it is optimal for a seller to always award both control and cash-flow rights to the highest

bidder. This result reflects that (i) allocating control to the bidder with the highest signal

maximizes social welfare, and (ii) allocating cash flows to the highest bidder reduces rents

earned by bidders with lower signals, thereby minimizing bidders’ total rents (reflecting the

envelope theorem logic that rents earned by lower types cumulate to carry over to higher

types). Our paper derives the surprising result that violating either (i) or (ii) can increase

seller revenue. We show that separating control and cash-flow rights among different bidders

facilitates rent extraction, the benefit of which will strictly outweigh the costs of not always

assigning both cash flow rights and control to the highest bidder.

To see the benefit of separation, consider a simple example where two bidders receive
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independently-distributed signals t1 and t2. The asset generates cash flows of vi =
1

1+ρ
(ti + ρt−i)

if i ∈ {1, 2} has control, where ρ ∈ (0, 1) means that cash flows are more sensitive to the

controlling agent’s signal than the rival bidder’s signal. For simplicity, assume it is costless to

run the project. First consider standard English auctions where cash-flow and control rights

are not separated. The equilibrium bidding strategy is βi(ti) = ti, and the bidder with the

higher signal th > ts wins. The seller’s revenue is ts and the winning bidder’s payoff is th−ts
1+ρ

.

Now consider the following two-stage separation mechanism. The first stage is an “always-

separating” English auction in which the highest bidder pays the exit price of the second-

highest bidder and receives cash-flow rights, but, unlike in a standard no-separation auction,

the second-highest bidder receives control. In the second stage of the mechanism, the seller

offers the first-stage winner an option to override the first-stage outcome: he can pay the seller

a small fixed extra payment of pextra to acquire control, while still retaining all cash flows.

One can show that bidding βi(ti) = ti still constitutes an equilibrium to the first stage

of our separation mechanism. Thus, considering the first stage outcome alone, seller rev-

enue is the same as in the no-separation auction, but the winning bidder’s payoff is reduced

by a factor of ρ to ρ th−ts
1+ρ

: only bidders bear the efficiency loss from assigning control to

the lower-valuation bidder. Adding the second stage recovers some of this efficiency loss,

leading to a Pareto improvement: as the asset generates more cash flows under the winning

bidder’s control, the winning bidder will pay to acquire control whenever the efficiency gain

(1−ρ) th−ts
1+ρ

exceeds the price pextra. Both the seller and the winning bidder benefit, implying

that expected seller revenue strictly exceeds that in the standard English auction.

These insights extend, holding for any number of bidders, general signal structures and

valuation functions where cash flows strictly increase in the controller’s signal and are weakly

(strictly so for a positive measure) more sensitive to the controller’s signal than those of the

other bidders. We allow pextra to depend on the exit prices of losing bidders and derive the

form that maximizes seller revenues. We also show that the bidding equilibrium is ex-post

incentive compatible. That is, our separation mechanism has the virtue that it is an ex-post

equilibrium (Bergemann and Morris (2008))—ex post, no bidder regrets. Since it always

generates (weakly and sometimes strictly) higher revenue than the optimal no-separation

mechanism event by event, its advantages extend directly to risk-averse sellers.
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The source for the benefits of separation is that the project’s payoff is most sensitive to

the information of the bidder who controls the project. As we know from standard auction

theory, a bidder’s information rent depends on the importance of his private information for

project payoffs. Allocating both control and cash flow rights to the same bidder maximizes

his informational advantage. Allocating cash flows, instead, to a bidder who does not control

the project, reduces the sensitivity of project payoffs to this bidder’s private information,

lowering his informational advantage. When the two highest signals are sufficiently close, the

inefficiency cost from allocating control to a lower signal bidder and the cost of increased bid-

der rents due to allocating cash flows to a lower signal bidder become arbitrarily small, leaving

only the benefit from the reduced sensitivity of a bidder’s payoff to his signal. Thus, when

the difference in the two highest signals is small enough, separation dominates no-separation.

We then consider the possibility that the controller must receive a minimum share qmin of

cash flows, for example to satisfy corporate regulations that mandate minimum equity stakes

for control, or to assuage moral hazard concerns. We observe that one can split rights in

two ways: instead of (1) always giving cash flow rights to the highest bidder and sometimes

giving control to the second-highest bidder, one could (2) always give control to the highest

bidder and sometimes give the second-highest bidder some cash flows. In each of these two

separation mechanism designs, the highest bidder only receives all rights when his signal suf-

ficiently exceeds the second highest. We show that for any qmin ∈ (0, 1), at least one of these

two types of separation mechanisms can be designed to (i) be ex-post incentive compatible,

and (ii) generate strictly higher expected revenues than no-separation English auctions.

We extend our analysis to characterize when one of these two types of mechanisms is

optimal among all incentive compatible separation mechanisms. To do this, we specialize to

settings where cash flows are linear functions of signals that are independently-distributed

across bidders and satisfy the standard monotone hazard condition that ensures global incen-

tive compatibility of no-separation mechanisms. We show that with significant common val-

ues and qmin small, it is optimal to split by assigning control to the second-highest bidder and

cash flow share 1−qmin to the highest bidder. When, instead, qmin is large enough relative to

the extent of common values (qmin ≥ 50% suffices), it is optimal to reverse this split of rights.

Finally, we show our qualitative findings extend to a setting where bidders receive multi-
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dimensional signals. We assume the cash flows generated by a bidder’s control are the sum

of a bidder-specific component and a common component, and bidders receive signals about

each component; in addition, a bidder privately observes his cost of running the project.

Mechanism design is challenging with multi-dimensional signals.1 We identify a class of

separation mechanisms in which the three-dimensional signals can be reduced to a single di-

mension, rendering analysis tractable. In this mechanism class, the asset is always sold with

the controller receiving a fixed share q of cash flows, and each rival bidder receiving share

1−q
n−1

. We derive closed-form solutions for bidding strategies, and show that this mechanism

can generate both higher revenues and greater social welfare than no-separation mechanisms.

Lastly, we highlight a useful interim result in our analysis: we identify necessary and

(sharp) sufficient conditions for direct-revelation separation mechanisms to be globally in-

centive compatible. This result is of independent interest, as it simplifies establishing ex post

and interim global incentive compatibility in many settings. To understand this result, note

that a standard way to think about incentive compatibility is to examine what happens if

we fix an agent’s true type but vary his reported type. We show that one can instead fix the

reported type and vary the true type. Our approach eases analysis for two reasons: a bidder’s

payoff is typically continuous in his true type, but it may not be continuous in his reported

type (as is often true off the equilibrium path); and reported types affect auction outcomes,

but true types do not, so the derivative with respect to the true type takes a simpler form.

Other researchers have examined settings where a single bidder splits cash flows with

the seller. Ekmekci, Kos and Vohra (2016) consider the problem of selling a firm to a single

buyer who is privately informed about post-sale cash flows and the benefits of control. The

seller can offer a menu of cash-equity mixtures, and the buyer must obtain a minimum equity

claim to cash flows (with the seller retaining any residual cash flows) to gain control rights.

They provide sufficient conditions for the optimal mechanism to take the form of a take-it-

or-leave-it offer for either the minimum stake or for all shares. In contrast, we examine a

multi-bidder auction setting in which the seller can allocate control and cash-flow rights to

different bidders, showing that such separation among bidders increases seller revenues.

Mezzetti (2003; 2004) also studies two-stage mechanisms with interdependent valuations

1See Vohra (2011) and Ekmekci et al. (2016) for details on these challenges and ways to addressing them.
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where first allocations are determined and then transfers are determined depending on the

information revealed in the first stage. Mezzetti largely focuses on efficiency, showing that

one can implement the ex-ante efficient allocation in an ex-post incentive compatible way

using contingent transfers. He then adds an assumption that bidders at the first-stage per-

fectly observe their realized outcome-decision payoffs at the second-stage and shows that

one can extract full rents. When signals perfectly reveal future realized cash flows—when

realized cash flows are not subject to any noise or shocks—it allows for a “shoot the liar”

design that asks bidders to report their types at the first stage and their realized payoffs at

the second stage. With perfect observability, if a bidder misreports at the first stage, no one

is subsequently fooled, so a designer can perfectly cross-check against bidders’ reports, and

thus detect and punish lying at the first stage.

The bankruptcy resolution, private equity/venture capital, and M&A settings that mo-

tivate our analysis do not feature deterministic relationships between signals and realized

cash flows, rendering Mezzetti’s cross-checking design infeasible. Instead, our mechanism

exploits the feature that when the payoff of the auctioned asset depends more strongly on

the information of the bidder who controls the asset, any cash flows that a bidder receives

are less sensitive to his signal if he does not have control. Our design leverages this novel

channel of lowered sensitivity to reduce a bidder’s informational advantage by splitting con-

trol and cash flows, awarding control or cash flows to the second-highest bidder when signals

are close, thereby raising seller revenues.

The literature has examined optimal designs of no-separation auctions with common valu-

ations in many settings. McAfee, McMillan, and Reny (1989) derive conditions under which,

with common values, the optimal no-separation selling procedure is implemented by a simple

mechanism in which a seller solicits reports from one bidder and offers the asset to another.

Bergemann, Brooks, and Morris (2016) and Brooks and Du (2018) identify robust auctions

in pure common value settings that yield maximum revenue guarantees. Lauermann and

Speit (2023) study bidding in common-value auctions with an unknown number of bidders.

Other researchers have examined the consequences of separating ownership and control

in the market for corporate control in the context of agency issues, free riding problems and

information aggregation (see, e.g., Bagnoli and Lipman 1988, Ekmekci and Kos 2016, Voss
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and Kulms 2022). Our paper contributes to this literature by identifying an advantage of

the separation of ownership and control from the perspective of optimal auction design.

2 Base Model

There are n > 1 ex-ante identical bidders who bid for an asset/project.2 The project can

be controlled (run) by only one bidder who incurs a publicly-known opportunity cost τ ≥ 0

from running the project that then generates a stream of future cash flows. The bidders

and the seller are risk-neutral. Bidders do not discount future cash flows, whereas the seller

values only current cash payments from the auction, discounting future cash flows to zero.

Each bidder i receives a private signal ti that is informative about the project’s future

cash flows. We sometimes refer to ti as bidder i’s type. We use t ≡ (t1, t2, ..., tn) to denote

the vector of all bidder types and t−i ≡ (t1, ..., ti−1, ti+1, ..., tn) to denote the vector of bidder

types other than i. We use f(t) to denote the joint density of t with associated cdf F (t).

We assume that signals are weakly affiliated, nesting independently-distributed signals as

a special case. We further assume that f(t) is symmetric in its arguments, and uniformly

continuous and strictly positive over its support [t, t̄]n.

Valuations are interdependent: expected future cash flows from the project under bidder

i’s control, vi (t1, ..., tn), depend on the signals of all bidders. We assume vi is nondecreasing

in its arguments, twice continuously differentiable, and strictly increasing in ti. Valuations

are also symmetric:

vi(t1, ..., tn) = u(ti; t−i), for all i, (1)

where the function u is the same for each bidder and symmetric in its last n−1 components.

Valuations satisfy a single-crossing condition: given any signal vector t ≡ (t1, t2, ..., tn),

∂vi
∂ti

(t) ≥ ∂vj
∂ti

(t), for all i and all j ̸= i. (2)

The single-crossing condition implies that a bidder’s signal has a greater influence on cash

flows if he runs the project than if another bidder runs the project. Given the symmetry

2We focus on ex-ante identical bidders to emphasize that always assigning cash-flow rights and control to
the same (highest) bidder does not maximize seller revenues. Our insights extend to heterogeneous bidders.
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condition in (1), the single-crossing condition reduces to requiring that

u1 (t1; t2, ..., tn) ≥ u2 (t2; t1, ..., tn) , (3)

where ui is the derivative with respect to the ith argument.

These assumptions on the signal distribution and valuations are standard in studies of

auctions with interdependent values (e.g., they are identical to those in Krishna (2010),

Chapter 6). We add a mild assumption that there exist signals t2 ≥ t3 ≥ ... ≥ tn with t̄ > t2

and tn > t, such that (3) holds as a strict inequality at t1 = t2:

u1 (t2; t2, ..., tn) > u2 (t2; t2, ..., tn) . (4)

We sometimes specialize to bidder valuations that are linear in the signals,

u (ti, t−i) = An

(
ti + ρ

∑
j ̸=i

tj
)
, (5)

where An ≡ 1
1+(n−1)ρ

is a normalizing parameter that sets u(t, t, ..., t) = t, and ρ < 1 implies

that expected project payoffs are more sensitive to the controller’s signal than to the signals

of other bidders. We can rewrite this as u(t) = An

(
ρ
∑

j tj + (1 − ρ)ti

)
, i.e., a bidder’s

valuation is the sum of common value and private value components, where ρ measures the

degree of common valuations: a higher ρ implies a higher degree of common valuations.

Our key departure from the literature is to consider settings in which a seller can allocate

control and cash-flow rights to different bidders. That is, a bidder who does not control the

project may nonetheless receive some or all of the future cash flows generated.

Formally, we consider direct-revelation mechanisms that allow for the separation of con-

trol from cash-flow rights. Let Rj(t) ∈ [0, 1] be the probability bidder j is assigned control

when bidders report t. Let Qji(t) ∈ [0, 1] be the fraction of the total cash flow that i gets

when bidders report t and control is assigned to j.3 Let Mi(t) be i’s expected cash payment

to the seller when bidders report t. We use Mi(t
′
i; t−i) = Mi(t1, . . . , ti−1, t

′
i, ti+1, . . . , tn) to

denote i’s expected cash payment from reporting t′i when other bidders report truthfully;

and we use Ri(t
′
i; t−i) to denote the probability i receives control when i reports t′i and other

3If given report t, j is never assigned control, then the value of Qji(t) is irrelevant.
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bidders report truthfully. We require that∑
j

Rj(t) ≤ 1, for all t, (6)

and ∑
i

Qji(t) = 1, for all j and all t. (7)

One can interpret
∑

j Rj(t) < 1 as the seller retaining the project with some probability, in

which case the project does not generate any cash flows.4

We also impose a minimum control stake requirement for the bidder who is given control:

Qjj(t) ≥ qmin for all j and t, (8)

where qmin ≥ 0. Our insights hold regardless of whether qmin = 0 or qmin > 0. We allow for

qmin > 0 to capture settings in which a controller may need to retain a claim to cash flows,

for example, to address moral hazard concerns (Ekmekci, Kos, and Vohra (2016)).

We term our mechanism a “separation mechanism” to contrast with the standard “no-

separation” mechanisms that impose Qjj(t) = 1 for all j and Qji(t) = 0 for all i ̸= j, for all t.

Define Ui(ti, t
′
i; t−i) to be bidder i’s expected profit when he is type ti and reports t′i, and

all other bidders truthfully report t−i:

Ui(ti, t
′
i; t−i) ≡

∑
j

Rj(t
′
i; t−i)Qji(t

′
i; t−i)vj(t)−Mi(t

′
i; t−i)− τRi(t

′
i; t−i). (9)

The first term
∑

j RjQjivj on the right-hand side is the expected value of the cash flows

awarded to bidder i, where the summation over j reflects that bidders other than i may run

the project when i receives cash flows. The second term is the expected value of payments

that i makes to the seller. The third term is the expected cost that i incurs from running

the project, which is τ multiplied by the probability that i is assigned control.

4One may weaken (7) to
∑

i Qji(t) ≤ 1.
∑

i Qji(t) < 1 corresponds to the seller receiving share
(1−

∑
i Qji(t)) of future cash flows, which she fully discounts and hence does not value. Vis à vis this

weaker version, (7) is without loss of generality: if
∑

i Qji(t) ∈ (0, 1) at some t and some j, then one can
adjust the mechanism by multiplicatively scaling down Ri(t) by

∑
i Qji(t), and multiplicatively scaling up

Qji(t) by 1/
∑

i Qji(t) for all i, so that
∑

i Qji(t) = 1. With this adjustment, bidder j runs the project
with a reduced probability and hence incurs weakly less opportunity costs (since τ ≥ 0), so we can increase
j’s payment to the seller (weakly raising her revenues) while leaving j’s payoff unchanged.
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For any given bidder i with signal ti, define

f−i (t−i|ti) ≡
f (ti; t−i)∫

Ωn−1
f (ti; t−i) dt−i

(10)

to be the conditional marginal density of t−i given ti, where Ωn−1 ≡ [t, t̄]n−1 is the space of in-

tegration over the signals of bidders other than i. Let Ūi(ti, t
′
i) be i’s expected profit when he

has type ti but reports t
′
i and all other bidders report truthfully. Integrating (9) over t−i yields

Ūi(ti, t
′
i) =

∫
Ωn−1

∑
j

Rj(t
′
i; t−i)Qji(t

′
i; t−i)vj(ti; t−i)f−i (t−i|ti) dt−i

−
∫
Ωn−1

Mi (t
′
i; t−i) f−i (t−i|ti) dt−i − τ

∫
Ωn−1

Ri(t
′
i; t−i)f−i(t−i|ti)dt−i. (11)

The first term on the right-hand side of (11) is the expected value of cash flows awarded to

bidder i when he reports t′i. The second term (without the minus sign) is bidder i’s expected

cash payment when he reports t′i. The third term (without the minus sign) is the expected

opportunity cost to i of running the project when he reports t′i.

The equilibrium expected profit for bidder i of type ti is Ūi(ti, ti). Equilibrium requires

that both the (interim) incentive compatibility condition,

Ūi(ti, ti) = max
t′i

Ūi (ti, t
′
i) , (12)

and the (interim) individual rationality condition,

Ūi(ti, ti) ≥ 0, (13)

hold for all i and ti. We later characterize when the optimal auction design satisfies the

stronger requirements of ex-post rationality and ex-post incentive compatibility.

The seller’s expected revenue is the sum of the expected cash payments of all bidders,

πs =
n∑

i=1

∫
Mi(t)f(t)dt. Equivalently, seller revenue equals the total gain in social welfare

less total bidder rents. To see this, let g(ti) be the marginal density distribution of ti. Then

πs =

∫ ∑
j,i

Rj(t)Qji(t)vj(t)f(t)dt−
∑
i

∫ t̄

t

(
Ūi(ti, ti)

)
g(ti)dti−τ

∑
i

∫
Ωn

Ri(t)f(t)dt. (14)

Equation (14) is intuitive: expected revenue is the expected increase in social welfare gross

of the costs of running the project (first term on the right-hand side) less the sum of bidders’

expected rents (second term) less the expected costs of running the project (third term).
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Our objective is to identify the mechanism that maximizes expected seller revenue (14)

subject to the feasibility conditions (6) and (7), the incentive compatibility (12) and indi-

vidual rationality (13) conditions, and the minimum control stake requirement (8).

Our characterizations hold regardless of whether bidder signals are correlated or inde-

pendently distributed. With correlated signals, we know from Cremer and McLean (1988)

that a seller can design a mechanism that exploits the correlation to achieve full extraction.

However, such mechanisms require large side bets that may lead to large regrets, rendering

an assumption of risk-neutral bidders problematic. This leads us to focus on separation

mechanisms that either take an English-auction format or are direct-revelation mechanisms

that are ex-post incentive compatible. We show they can always be designed to generate

higher expected revenues than English no-separation auctions.5

2.1 Discussion

The intuition for the advantages of separation can be understood by applying the envelope

theorem to (11) and (12), which yields

dŪi(ti, ti)

dti
=

∫
Ωn−1

∑
j

Rj(t)Qji(t)
∂vj(ti; t−i)

∂ti
f−i(t−i|ti)dt−i

+

∫
Ωn−1

[∑
j

Rj(t)Qji(t)vj(ti; t−i)−Mi(t)− τRi(t)
]df−i(t−i|ti)

dti
dt−i.(15)

The first term is the contribution to a bidder’s rents due to his private information regarding

the value of the cash flows, while the second term is the contribution to bidder rents from any

correlation in bidder signals. The first term is the key for understanding advantage of separa-

tion: as in the standard no-separation setting, allocating cash flows to a bidder i with signal

ti enables him to earn differential rents relative to when i has a lower signal, as reflected by

the term Rj(t)Qji(t); but, unlike the no-separation case, the differential rents are scaled by
∂vj(ti;t−i)

∂ti
. That is, bidder i’s differential rents are weighted by the sensitivity of the value of

his awarded cash flows to his signal when the project is run by bidder j. Because a bidder’s

signal has a greater influence on cash flows when he runs the project than if another bidder

5Lopomo (2000) and Chung and Ely (2007) provide general conditions under which the English
no-separation auction yields the highest seller revenue among all ex-post incentive compatible no-separation
mechanisms.
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runs it, awarding bidder i cash flows when the project is run by a different bidder reduces

i’s overall rents, vis à vis awarding bidder i cash flows when i also runs the project himself.

Our separation mechanism extends the existing framework of mechanism design by in-

corporating the assignments of rights into the design consideration. In practice it loosely

corresponds to settings in which, for example, an entrepreneur “sells” a project idea to a syn-

dicated VC group, where the lead VC is directly involved in the project management, while

the other VCs only contribute funding in return for claims to future cash flows. Private equity

clubs (e.g., club deals) and limited partner frameworks feature a similar separation, where the

limited partners provide capital and other inputs, while the general partner runs the business.

Our model considers an impatient seller who does not value retention of cash flows. This

assumption is standard in the security design literature where a seller owns an asset that

generates future cash flows, but has a higher discount rate than buyers, creating gains to

trade (see, e.g., Biais and Mariotti 2005). In this setting, existing studies focus on revenue-

maximizing mechanism that do not feature separation: given standard regularity conditions,

the highest bidder receives both control and cash flow rights. Our paper shows that separa-

tion can improve seller revenue further. Our insights extend when the seller is as patient as

bidders, but has to raise cash to cover an upfront investment or other liquidity need. Exist-

ing studies have examined such settings when cash-flow rights and control are split between

the seller and a single bidder, with the seller awarding both control and a share of cash-flow

rights to the (same) highest bidder in exchange for the cash needed for investment but no

other bidder receives cash flows. Our insights apply here, too: a seller can do better by some-

times splitting a share of cash flows among different bidders—while retaining the remaining

cash flows for herself, or awarding control to a bidder who is not the highest bidder.

Our framework assumes that cash flows are contractible and they are split in the form

of equities. This assumption captures many settings—e.g., bankruptcy resolution, takeover

auctions, private equity or venture capital—that fit our framework in many ways: (i) equity

is commonly used, (ii) cash flows arrive over time and are subject to shocks, making bidder

signals noisy indicators of future cash flows, (iii) sellers are impatient and must be paid before

those cash flows arrive. In mergers and acquisitions, our mechanism can be implemented by

having bidders take equity shares or dual class shares where only one class of shares has con-
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trol rights, both of which are used in practice. In the market for corporate control, the use of

equity is especially natural as regulations mandate a minimum equity share to gain control.6

2.2 Two-stage separation mechanism when qmin = 0

In a standard no-separation English auction, the auctioneer continuously increases price

and the auction stops when second highest bidder exits, with the winner pays that exit price.

As is well known (see equation 6.5 in Krishna 2010), bidding strategies in the symmetric equi-

librium take the following form: if bidders k+1, k+2, ..., N have dropped out, with their exit

prices revealing their signals tk+1,tk+2, ..., tN (strategies are monotone) to the remaining k ac-

tive bidders, then the strategy of a remaining bidder i with signal ti is to drop out at the price

βk (ti, tk+1, ..., tN) = u (ti; ti, ..., ti, tk+1, ..., tN)− τ, (16)

which is the expected value of the cash flows generated by bidder i when all k active bidders

have signal ti, while those bidders who exited have signals as revealed by their exit prices

minus the opportunity cost for bidder i of running the project.

Next we describe our two-stage auction:

Definition 1 (two-stage auction) The first stage is a standard English auction, i.e., the auc-

tioneer continuously increases price and the auction stops when the next-to-last bidder exits.

In the second stage, the seller offers the first-stage winner a choice of whether to receive

cash-flow rights but give control rights to the highest losing bidder or to pay an additional fee

to obtain both rights. If the winner only chooses cash flows then she pays the seller τ plus the

exit price of the highest losing bidder, and control is assigned to the highest losing bidder who

is paid τ in return for running the project. If, instead, the winner pays to obtain control then

she pays the exit price of the highest losing bidder plus an extra payment of pextra(·) ≥ 0 minus

τ , where pextra(·) can be any (symmetric) function of the exit prices of the losing bidders.

The auction rules, including pextra(·), are public information before the first stage. One

can interpret this two-stage mechanism as follows. The first stage corresponds to an always-

separating English mechanism in which the second-highest bidder (who, in equilibrium, has

6It may also be practically difficult to pay bidders with other securities whose values depend non-linearly
on a stream of future cash flows that arrives over time.
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the second-highest valuation) always receives control and the highest bidder always receives

cash-flow rights. In the second stage, the seller offers the winner the option to override the

first stage outcome by paying the seller an additional pextra(·) to acquire control.

Define ∆(t1; t2, t3, ..., tn) to be the difference in expected cash flow gains from giving con-

trol to a generic bidder 1 rather than a generic bidder 2, when the other signals are t3, ..., tn:

∆ (t1; t2, t3, ..., tn) ≡ u (t1; t2, t3, ..., tn)− u (t2; t1, t3, ..., tn) .

Obviously, ∆ (t1; t2, ..., tn) weakly increases in t1 and is nonnegative given t1 ≥ t2.
7 When

bidder 1 has a higher signal than bidder 2, ∆(t1; t2, ..., tn) is the “efficiency gain” from allo-

cating control to the higher bidder 1 rather than bidder 2.

Proposition 1 Part A: In the symmetric equilibrium of the two-stage auction:

(i) In the first-stage, bidding strategies are given by (16), as in a no-separation English

auction, regardless of the functional form of pextra(·).

(ii) In the second stage, without loss of generality let t1 be the winner’s type and let t2

be the highest losing bidder’s type as inferred from the exit prices.8 The first-stage winner

acquires control if and only if pextra ≤ ∆(t1; t2, ..., tn).

Part B: Given any pextra(·), this equilibrium is ex-post incentive compatible.

Proof: Consider a generic bidder 1 with signal t1 (not necessarily the highest) when all

other bidders follow their posited equilibrium strategies. We show bidder 1 is weakly better

off following his equilibrium strategy for any realization of his rivals’ signals t2, ..., tn.

In stage 2 only the winner’s strategy is relevant, so assume without loss of generality that

bidder 1 won the first stage (but he need not have followed his equilibrium strategy in the

first stage). The difference in bidder 1’s profit from receiving both rights versus just receiving

cash flow rights is ∆ (t1; t2, ..., tn)− pextra. This difference in profits is positive if and only if

pextra ≤ ∆(t1; t2, ..., tn). This establishes the optimality of the bidding strategy in stage 2.

In stage 1, we decompose analysis into two cases.

Case 1: t1 ≥ t2. Then bidder 1 will win the first stage if he follows his equilibrium strategy.

If he deviates and still wins the first stage, the deviation does not affect his profits because

7 d
dt1

∆(t1; t2...tn) =
d
dt1

v1 (t1, t2, ...tn)− d
dt1

v2 (t1, t2, ...tn) = u1 (t1; t2, ...tn)− u2 (t2; t1, ...tn) ≥ 0.
8Types can be inferred because the bidding strategy (16) is strictly increasing and hence invertible.
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the winning price does not depend on his bid. If he deviates and loses the first stage, then his

profit is zero, and hence deviation is not profitable (because his equilibrium profit is positive).

Case 2: t1 < t2. Bidder 1 will lose the first stage if he follows his equilibrium strategy. If he

deviates and still loses the first stage, then his profit is unaffected. If he deviates and wins

the first stage, then his profit is negative if he does not pay pextra in stage 2 (so bidder 2

retains control and the value of the cash flows under bidder 2’s control is less than bidder

1’s payment), and his profit is even more negative if he pays pextra to obtain control (since

bidder 1 generates even lower cash flows than bidder 2 and pextra ≥ 0).

Proposition 1 implies that seller revenue is always weakly higher than in the standard

English no-separation auction. In the first stage, the bidding strategy, and hence seller

revenues, is the same as in the English auction where the outcome is efficient with the best

bidder type receiving both control and cash flow rights. The efficiency loss in our mechanism

from assigning control to the less productive bidder 2 is borne entirely by the winning bidder.

In the second stage, the seller offers the winner an opportunity to Pareto-improve on the

first-stage outcomes, which benefits both the seller and the winner. The design extracts more

rents from the winner when his type exceeds the second-highest type by enough to make

the efficiency gain to the winner from running the project high enough that he would make

an additional payment to achieve an efficient assignment of control. Thus, if the winning

bidder chooses not to pay pextra to obtain control then seller revenue is the same as in the no-

separation auction; and if the winner pays to obtain control, then revenue is higher by pextra.

Via a simple choice of pextra, our mechanism can always generate strictly greater expected

seller revenues than the standard English auction in a robust, detail free, way:

Result 1: Let pextra > 0 be a constant. Then there exists a p∗ > 0 such that for all

pextra ∈ (0, p∗), the two-stage no-separation auction design generates strictly higher expected

revenues than the no-separation English auction.

Proof: See the appendix. □

Next we derive the pextra(·) that maximizes expected revenue in the two-stage mechanism.

To do this, we write pextra as a function of the losing bidders’ types, which can be inferred

from the exit prices by inverting (16). We use pextra(t2, ..., tn), where t2, ..., tn denotes the
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(inferred) types of the losing bidders, with t2 being the highest among them.

Result 2: The seller’s optimal choice of pextra(t2, ..., tn) is

poptimal
extra (t2, ..., tn) = ∆

(
topt; t2, ..., tn

)
,

where

topt ≡ argmax
t

∆(t; t2, ..., tn)

∫ t̄

t

f1 (x|t−1) dx

and f1 (·|t−1) is the conditional marginal density of t1 given the losing signals t−1,

f1(x|t−1) ≡
f(x; t−1)∫ t̄

t2
f(x; t−1)dt

.

That is, the optimal price pextra(t2, ..., tn) is the monopoly price conditional on the highest

signal t1 being at least t2.

We next analyze mechanisms for settings where the agent controlling the project must

receive a share of at least qmin > 0 of cash flows. The two-stage mechanism just analyzed

does not satisfy this minimum stake requirement because when the auction winner does not

pay pextra(t2, ..., tn) to gain control, the bidder who controls the project retains no cash flows.

When qmin>0, we focus on direct-revelation separation mechanisms that are ex-post incentive

compatible, and show they generate higher revenues than English no-separation auctions.

As a precursor to this analysis, we provide a useful result identifying necessary and suf-

ficient conditions for direct-revelation mechanisms to be globally IC (incentive compatible).

This result simplifies establishing ex post and interim global IC in both separation and no-

separation settings, where a bidder’s payoff is often not continuous in his reported type t′.

2.3 Conditions for Global Incentive Compatibility

Lemma 1 Suppose L(t, t′) is a function of t, t′ ∈ [t, t̄] with the following properties:

(a) L is continuous and twice differentiable with respect to t, i.e., ∂
∂t
L(t, t′) and ∂2

∂t2
L(t, t′)

exist for all t and t′;

(b) L is differentiable with respect to t′ for all t′ except possibly for a set Szero−m of

t′ ∈ [t, t̄] that has zero measure, i.e., ∂
∂t′
L(t, t′), ∂

∂t′
∂
∂t
L(t, t′) and ∂

∂t′
∂2

∂t2
L(t, t′) exist for all t

and all t′ ∈ [t, t̄] \ Szero−m;
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(c) L is continuous in t′ at t′ = t for all t, and ∂
∂t′
L(t, t′)|t′=t = 0 for all t /∈ Szero−m.

Then: 1. Necessary condition for global IC. If, for all t, t′ = t maximizes L(t, t′)

over t′ ∈ [t, t̄], then at any t ∈ [t, t̄] and t′ /∈ Szero−m,
∂
∂t′

∂
∂t
L (t, t′) |t′=t ≥ 0.

2. Sufficient condition for local IC to imply global IC. If, for all t, ∂
∂t
L(t, t′) weakly

increases in t′ over t′ ∈ [t, t̄], then t′ = t maximizes L(t, t′) over t′ ∈ [t, t̄] for all t.

Proof: See the appendix. □

Here, one should interpret t and t′ as a bidder’s true type and reported type, respec-

tively, and L as the bidder’s payoff function. One can further interpret L(t, t′) in two ways.

First, L(t, t′) can be the unconditional payoff of a bidder who has type t but reports t′, i.e.,

integrating over all other bidders’ types, assuming other bidders report truthfully. In this

case, Lemma 1 provides conditions for an equilibrium to be interim incentive compatible.

Alternatively, L(t, t′) can be the conditional payoff of a bidder who has type t but reports t′,

conditional on the other bidders’ (truthfully-reported) types. In this case, Lemma 1 provides

conditions for an equilibrium to be ex-post incentive compatible.

The lemma says that the necessary condition for IC is that ∂
∂t
L(t, t′) must weakly increase

in t′ for t′ in the neighborhood of t. A sufficient condition for local IC to imply global IC is

that ∂
∂t
L(t, t′) weakly increase in t′ over the entire domain of t′.

To understand what is new in Lemma 1, note that a standard way to think about incentive

compatibility is to examine what happens if we fix t but vary t′. Lemma 1 says that rather

than fix t and vary t′, one can instead fix t′ and vary t. The necessary condition for incentive

compatibility in the standard approach is that the second-order condition be negative, i.e.,

∂2

∂2t′
L(t, t′) = ∂

∂t′

(
∂
∂t′
L(t, t′)

)
≤ 0. Part (1) of Lemma 1 “replaces” this condition with the

requirement that the cross-partial be positive, i.e., ∂
∂t′

(
∂
∂t
L(t, t′)

)
≥ 0, when that derivative

exists. That is, ∂
∂t′
L(t, t′) is replaced by ∂

∂t
L(t, t′), and the sign “≤ 0” is flipped to “≥ 0”. The

sufficient condition features a similar replacement: a standard sufficient condition for local IC

to imply global IC is that ∂
∂t′
L(t, t′) weakly decrease in t′ over t′ ∈ [t, t̄]; part (2) of Lemma 1

replaces this condition with the requirement that ∂
∂t
L(t, t′) weakly increase in t′ over t′ ∈ [t, t̄].

The approach in Lemma 1 of fixing t′ and varying t is useful for two reasons. First, the

payoff function is often not differentiable with respect to t′ at all t and t′. Discontinuities
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arise even in simple no-separation mechanisms where a bidder’s payoff may be discontinuous

at the boundary between winning and losing, and the payoff depends on whether the bidder’s

reported type is the highest.9 In addition, our separation mechanism has a second source

of discontinuity: even when a bidder’s report is the highest, there is a discontinuous change

in allocations depending on whether his report exceeds the second highest by a sufficient

amount. The second reason why the approach of fixing t′ and varying t is useful is that

for typical payoff functions ∂
∂t
L (t, t′) takes a simpler form than ∂

∂t′
L(t, t′) because bidders’

reported types (t′) affect auction outcomes (winning and allocations) and hence affect bidder

payoffs, but bidders’ true types (t) do not affect auction outcomes.10

2.4 Minimum control stake

With Lemma 1 in hand, we now analyze direct-revelation separation mechanisms that are

ex-post incentive compatible, in settings where the agent controlling the project must receive

a share of at least qmin > 0 of cash flows. For notational ease, when we say ti is a “generic”

signal, we mean that ti ∈ [t, t̄] but it is not necessarily the signal of bidder i.

Definition 2 (Separation function and its inverse) For any n−1 “generic” signals t1, ..., tn−1,

denote the highest signal by th and the second-highest by ts. A “separation function” S (t1, ..., tn−1)

is a symmetric function of t1, ..., tn−1 with S(t1, ..., tn−1) ∈ [th, t̄] that weakly increases in th.

For n = 2, the “inverse” function S−1(t1) is given by the minimum value of t ∈ [t, t1]

such that S(t) ≥ t1. For n > 2, S−1(t1, ..., tn−1) is given by the minimum value of t ∈ [ts, th]

such that S (t1, .., th−1, t, th+1, .., tn−1) ≥ th, where (t1, .., th−1, t, th+1, .., tn−1) is the vector of

n− 1 signals formed by replacing th with t in (t1, ..., tn−1).

To illustrate, with two bidders who receive signals in [0, 1], an example of a separa-

tion function and its inverse is S(t1) = wt1 + 1 − w for some w ∈ (0, 1) and S−1(t1) =

9E.g., in a second-price no-separation mechanism where bidders have private valuations and ti is bidder
i’s valuation, consider a bidder 1 with valuation t1 who reports t′1 when everyone else reports truthfully. His
conditional payoff (given other bidders’ types) is (t1 −maxi̸=1 {ti})1{t′1≥maxi̸=1{ti}}, where 1{t′1≥maxi̸=1{ti}}
is an indicator function: payoffs are discontinuous in t′1 off the equilibrium path, i.e., for t′1 ̸= t1.

10While we use Lemma 1 to establish incentive compatibility of separation mechanisms, it is also useful for
no-separation mechanisms. With linear valuations, Lemma 1 is not needed for no-separation mechanisms be-
cause the necessary and sufficient condition for global (interim) incentive compatibility can be derived by not-
ing that payoff functions are affine, and the maximum of a family of affine functions is convex. With non-linear
valuations, payoff functions are not affine but Lemma 1 can be used to identify sharp sufficient conditions.

17



max
(
t1+w−1

w
, 0
)
. We call S a “separation function” because it determines when assignment

of cash flow and control rights are separated in our mechanisms. Separation occurs only when

the reported types are “close enough”, and S determines what comprises “close enough.”

Our mechanisms have the property that a bidder i receives control and all cash flows

(i.e., control and cash flows are not separated) if and only if his reported type t′i ≥ S
(
t′−i

)
,

where t′−i denotes the reported types of all bidders other than i. We focus on two classes

of mechanisms, A and B, which reflect two ways to divide control and cash flow rights. In

Mechanism A, when the two highest reported types are sufficiently close, the second-highest

bidder receives control and a share q of cash flows, and the highest bidder receives share 1−q

of cash flows. Thus, assignment of control is inefficient. Such a mechanism generalizes the

two-stage mechanism detailed in Proposition 1, reducing to it in the limit as q goes to zero.

Mechanism B has the opposite design: when the reported types are sufficiently close, the

highest bidder receives control and a share q of cash flows, and the second-highest bidder

receiving share 1− q of cash flows. Thus, assignment of control is efficient.

We show that for both classes of mechanisms, we can always design separation functions

that generate strictly higher revenues than no-separation English auctions.

2.5 Inefficient splitting of cash flow and control rights

For notational ease, we use t′−i to denote the reported types of all bidders other than i.

Definition 3 (Mechanism A: inefficient splitting of rights) Suppose qmin < 0.5 and consider

q ∈ [qmin, 0.5). Without loss of generality, let the reported types be t′1 ≥ t′2 ≥ t′3 ≥ ... ≥ t′n.

If t′1 > S(t′−1), bidder 1 receives control and all cash flows and pays

M1 = u
(
S(t′−1); t

′
2, ..., t

′
n

)
− (1− q)u

(
t′2;S(t

′
−1), ..., t

′
n

)
+ (1− 2q)u (t′2; t

′
2, ..., t

′
n)

+qu
(
S−1(t′−1), t

′
2, ..., t

′
n

)
− τ. (17)

All other bidders receive nothing and pay nothing.

If t′1 ≤ S(t′2, ..., t
′
n), bidder 2 receives control and a fraction q of cash flows, and bidder 1

receives fraction 1− q of cash flows. Bidder 1 pays

M1 = (1− 2q)u (t′2; t
′
2, ..., t

′
n) + qu

(
S−1(t′−1); t

′
2, ..., t

′
n

)
(18)
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and bidder 2 pays

M2 = qu
(
S−1(t′−2); t

′
1, t

′
3, ..., t

′
n

)
− τ. (19)

All other bidders receive nothing and pay nothing.

We next identify conditions under which Mechanism A is ex-post incentive compatible

and generates higher revenues than no-separation English auctions. Define

ρmin ≡ min
t

∂v2(t)

∂t1
/
∂v1(t)

∂t1
.

Here, ∂v2(t)
∂t1

/∂v1(t)
∂t1

is the ratio of the influence of a bidder’s signal on cash flows if an-

other bidder runs the project relative to when he runs the project. Thus, ρmin is a mea-

sure of the minimum common-value component; when valuations are linear, vi (t1, ..., tn) =

An

(
ti + ρ

∑
j ̸=i tj

)
, we have ρmin = ρ.

Proposition 2 Suppose the common-value component in valuations is large enough that

ρmin ≥ q
1−q

. Then for Mechanism A

(i) truthful reporting is an ex post equilibrium given any separation function S.

(ii) there exist separation functions S for which Mechanism A generates strictly higher

seller revenues than no-separation English auctions.

Proof: See the appendix. □

With Mechanism A, when the highest reported type t′1 does not exceed the second high-

est reported type t′2 by enough, i.e., when t′1 < S(t′−1), control and cash flow rights are split

with control being assigned inefficiently to bidder 2. When, instead, the highest reported

type is high enough that t′1 ≥ S(t′−1), bidder 1 receives both control and all cash flows.

The logic for the ex-post incentive compatibility extends that for standard English no-

separation auctions to settings where control and cash flow rights can be assigned to different

bidders and more than one bidder may receive allocations. In the direct-revelation mecha-

nism of the English no-separation auction, a bidder’s payment and allocation only depend

on which of two “report-regions” his reported type falls into—it only depends on whether it

is the highest report or not. A bidder’s payoff is non-zero only when his report is the highest.

Mechanism A retains the feature that a bidder i’s payment and allocations do not depend

on where his reported type is in a given report-region. However, it has four report-regions
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(reflecting the additional ways to separate control and cash flow allocations): region 1, t′i

exceeds the second-highest report by enough that t′i > S(t′−i); region 2, t′i is the highest

report, but now t′i ∈
(
t2, S(t

′
−i)
)
; region 3, t′i is the second-highest report but close enough

to the highest, t′i ∈
(
S−1(t′−i), t2

)
; region 4, t′i is lower yet with t

′
i < S−1(t′−i), i.e., t

′
i is either

lower than the second-highest or sufficiently lower than the highest. In regions 1 through 3,

bidder i receives allocations and make payments, receiving a non-zero payoff.

We now explain how Mechanism A delivers ex-post IC. First, consider (19), which is bid-

der 2’s payment in region 3,11 where his reported type is the second highest but close enough

to the highest reported type. Net of compensation for the cost of running the project, this

payment equals the monetary value of the q shares of cash flows awarded to bidder 2 when his

type is the minimum, t2 = S−1
(
t′−2

)
, that he can report in order to still receive q shares.12

This leaves this boundary bidder type indifferent between reporting any type in regions 3

and 4 (the reports yield a payoff of zero), eliminating incentives for a local deviation.13

Next, consider bidder 1’s payment in (18). This payment can be rewritten as

M1 = (1− q)u (t′2; t
′
2, ..., t

′
n)−∆a, (20)

where ∆a ≡ q(u(t′2; t
′
2, ..., t

′
n)−u(S−1(t′−1); t

′
2, ..., t

′
n)) is the differential rent of bidder 1 when

he has type t1 = t′2 and reports truthfully vs. when he has the lower type S−1
(
t′−1

)
and

reports truthfully. The first term in (20) is the value of the share 1− q of cash flows awarded

to bidder 1 when he has type t′2, which is the lowest type that he can report and still receive

share 1−q. Mechanism A reduces what the highest bidder has to pay by ∆a to dis-incentivize

him from reporting a lower type in hope of being the second-highest bidder. This payment

reduction leaves a bidder 1 with boundary type t1 = t′2 indifferent between reporting any type

in regions 2 and 3 (such reports yield payoff ∆a), eliminating incentives for local deviations.

To understand (17), which is bidder 1’s payment when his reported type sufficiently

11The numbering of regions is from the perspective of the bidder referred to in the context. Thus, region 3
is from bidder 2’s perspective. When we discuss bidder 1’s payments, the numbering reflects his perspective.

12The feature mirrors that in a English no-separation auction where the winner’s payment is the value of
the auctioned asset when the winner’s type is replaced by the minimum that he can report and still win.

13Thus, our mechanism satisfies the premise in part (c) of Lemma 1 regarding the continuity of bidder
1’s payoff at this boundary (in fact this premise is satisfied at all points).
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exceeds the second-highest reported type so that t′1 ≥ S(t′−1), rewrite it as

M1 = u
(
S(t′−1); t

′
2, ..., t

′
n

)
−∆b −∆a − τ, (21)

where ∆b ≡ (1 − q)(u(t′2;S(t
′
−1), ..., t

′
n) − u(t′2; t

′
2, ..., t

′
n)) is the differential rent of bidder 1

when he has type S(t′−1) and reports truthfully vis à vis when he has a lower type t′2 and

reports truthfully. The logic for (21) mirrors that for (18). The first term in (21) is the value

to bidder 1 of receiving all cash flows when he has type S(t′−1), which is the lowest type that

he can report and still receive all cash flows. The payment reduction of ∆b leaves a bidder

1 with boundary type t1 = S(t′−1) indifferent between reporting any type in regions 1 and 2

(such reports yield payoff ∆a +∆b), again eliminating incentives for a local deviation.

Bidder 1’s payment in (21) is reduced by two terms: ∆a and ∆b. When bidder 1’s type

sufficiently exceeds t′2 he can deviate by reporting a lower type and still receive allocations in

two ways. First, his reduced reported type can still exceed t′2. Second, he can report an even

lower type that falls slightly below t′2. Each of these deviations yields differential rents (re-

flecting the allocation received for that type of deviation), and the differential rents earned at

lower types add up and carry over to higher types reflecting the standard envelope theorem

logic. This leads to the greater reduction in payments in (21) than (20) (∆a +∆b vs. ∆a).

The payments can alternatively be understood as follows. When bidder 1’s report is

not sufficiently above t′2, (18) implies that bidder 1 pays for his awarded cash flows at two

different unit prices. The second term means he pays for q shares at the lower unit price of

u(S−1(t′−1); t
′
2, ..., t

′
n), and he pays for the remaining (1− q)− q = 1− 2q at the higher unit

price of u(t′2; t
′
2, ..., t

′
n). This reflects that bidder 1 can deviate by bidding below t′2, but above

S−1(t′−1). This would give him a share q at the lower unit price of u(S−1(t′−1); t
′
2, ..., t

′
n).

14

The payment in (18) rewards him for bidding truthfully by giving him the same benefit as

if he had deviated (and hence would receive q shares at that lower price); he only pays the

higher unit price for the remaining cash flows that he would not receive if he deviates.

The payment features detailed above make deviations unprofitable if they are within a

given report-region, or if a bidder’s type is at the boundary of two regions and he deviates

locally. However, global ex-post IC further requires that given any realizations of the types

14Note that if bidder 1 deviates by bidding below t′2, the highest among the n reported signals will be t′2.
This, by (19), yields bidder 1’s (deviation) payment.
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of other bidders, deviation be unprofitable for the remaining bidder when his true type falls

in the interior of any of the four regions and he deviates to the interior of any other region.

To illustrate the added requirements needed for global IC, we revisit our example from

the introduction where two bidders receive independently-distributed signals t1 and t2, τ = 0,

and the asset generates cash flows of 1
1+ρ

(ti + ρt−i) if i ∈ {1, 2} has control. Let bidder 2 with

t2 bids truthfully and consider bidder 1 with t1 ∈ (t2, S (t2)). If bidder 1 reports truthfully, he

receives 1−q shares and bidder 2 receives control. Thus, bidder 1’s expected profit is the value

of those cash flows, (1− q) 1
1+ρ

(t2 + ρt1), less his payment (1− 2q) t2+q
1

1+ρ
(S−1 (t2) + ρt2):

U1(t1, t
′
1 = t1; t2) = (1− q)

1

1 + ρ
(t2 + ρt1)−

(
(1− 2q) t2 + q

1

1 + ρ

(
S−1 (t2) + ρt2

))
.

If bidder 1 deviates to report a type of t2−ϵ, he receives control and q shares. His expected

profit is the value of those cash flows, q 1
1+ρ

(t1 + ρt2), less his payment q 1
1+ρ

(S−1 (t2) + ρt2):
15

U1(t1, t
′
1 = t2 − ϵ; t2) = q

1

1 + ρ
(t1 + ρt2)− q

1

1 + ρ

(
S−1 (t2) + ρt2

)
.

His gain from deviation is the difference in these two expressions:

t1 − t2
1 + ρ

(q − (1− q) ρ) .

This gain is non-positive under the premise of Proposition 2 that ρmin ≥ q
1−q

.

In principle, we have to consider all such deviations. In the appendix, we circumvent hav-

ing to exhaustively rule out these many possibilities by exploiting Lemma 1 to simplify the

establishment of IC. We show that ρmin ≥ q
1−q

suffices to ensure the ex-post incentive compat-

ibility of Mechanism A for any number of bidders and general (nonlinear) valuation functions.

When q = 0, the premise of Proposition 2 that ρmin ≥ q
1−q

always holds. Proposition 2 ex-

tends the ex-post incentive compatibility of our two-stage mechanism in Definition 1, which

corresponds to Mechanism A with q = 0, to settings where the minimum stake q is small

enough relative to the minimum degree of common values ρmin. Broadly, the intuition for why

truthful reporting is an ex-post equilibrium is that when the high bidder does not receive con-

trol, (i) he still receives a sufficient share 1−q of cash flows, and (ii) the common value compo-

nent ρ is large enough that the efficiency cost of having the bidder with the second-highest sig-

nal run the project is not too high. Obviously, the larger is 1−q, the smaller is the requisite ρ.

15This follows from (19) after switching the index “1” and “2” as bidder 1’s report is now the second highest.
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The intuition for why separation functions exist that generate strictly higher revenues is

the same as that for Result 1: when the two highest types are close enough, the seller strictly

gains from separating cash-flow rights and control. A direct corollary of part (ii) is that for all

qmin ∈ [0, 0.5), separation mechanisms exist that generate strictly higher expected revenues

than no-separation English auctions as long as the common value component is large enough.

2.6 Efficient splitting of cash flow and control rights

We now construct mechanism B in which the highest reported type always receives control.

Definition 4 (Mechanism B: efficient splitting of rights) Consider q ∈ [qmin, 1). Without

loss of generality let the reported types be t′1 ≥ t′2 ≥ t′3... ≥ t′n. Then

If t′1 > S(t′−1), bidder 1 receives control and all cash flows, and pays

M1 = (1− q)u
(
S(t′−1); t

′
2, ..., t

′
n

)
+ (2q − 1)u (t′2; t

′
2, ..., t

′
n)

+ (1− q)u
(
t′2;S

−1
(
t′−1

)
, ..., t′n

)
− τ. (22)

All other bidders receive nothing and pay nothing.

If t′1 ≤ S(t′−1), bidder 1 receives control and a share q of cash flows, and pays

M1 = (2q − 1)u (t′2; t
′
2, ..., t

′
n) + (1− q)

[
u
(
t′2;S

−1
(
t′−1

)
, ..., t′n

)]
− τ, (23)

while bidder 2 receives fraction 1− q of cash flows and pays

M2 = (1− q)u
(
t′1;S

−1
(
t′−2

)
, t′3, ..., t

′
n

)
. (24)

All other bidders receive nothing and pay nothing.

With Mechanism B, when the highest reported type t′1 does not exceed the second highest

reported type t′2 by enough, i.e., when t′1 < S(t′−1), then the bidder 1 who reports the highest

type receives control and share q of cash flows, and the second highest bidder 2 receives share

1 − q. When, instead, the highest reported type is sufficiently higher so that t′1 ≥ S(t′−1),

then bidder 1 receives control and all cash flows.

Although the assignment of control is the opposite of Mechanism A, it shares key features:
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• There are four report-regions; and a bidder i’s payment and allocations do not depend

on where his reported type is in a given report-region.

• When a bidder’s type is at the boundary of any two adjacent regions, the payments

leave the bidder indifferent to reporting any type in those regions. Thus, there is no

incentive for local deviations, and when bidders bid truthfully, the differential rents

earned at lower types add up and carry over to higher types.

• Truthful bidding is rewarded by a price discount. If a bidder would receive a share x of

cash flows at a lower unit price by deviating to report a lower type, then when he bids

his true type, he pays for the share x at that lower unit price; he only pays the higher

unit price for the remaining cash flows that he would not have received if he deviated.16

These features deliver the local IC of Mechanism B. The additional requirements that

ensure global IC are the opposite of those for Mechanism A, reflecting their opposite control

assignments upon splitting. Mechanism A is ex-post IC when the cost of inefficient control

assignment and share q for control are small enough. Mechanism B is ex-post IC in the

opposite scenario where q is sufficiently large relative to the common-value component in

valuations. We measure the maximum common-value component by:

ρmax ≡ max
t

∂v2(t)

∂t1
/
∂v1(t)

∂t1
,

With linear valuations, i.e., with vi (t1, ..., tn) = An

(
ti + ρ

∑
j ̸=i tj

)
, we have ρmax = ρ. Rou-

tine modifications of the proof of Proposition 2 yield the ex-post IC of Mechanism B:

Proposition 3 Suppose the common-value-component in valuations is sufficiently small and

q is sufficiently large that ρmax ≤ q
1−q

. Then in Mechanism B

(i) truthful reporting is an ex post equilibrium given any separation function S.

(ii) there exist separation functions S such that mechanism B generates strictly higher

seller revenues than no-separation English auctions.

16If a bidder would receive more cash flows by deviating to reporting a lower type, the “remaining”
cash flows would be negative. In this case, the bidder effectively “sells” the difference in the two cash flow
amounts back to the seller at a higher unit price. Relatedly, unlike in no-separation mechanisms where
global IC typically requires higher type bidders to receive greater allocations, in our separation mechanisms
a higher type bidder may receive a reduced cash flow allocation if it is accompanied by a change of control.
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When the highest bidder receives “enough” cash flows for control and the cash flow con-

sequences of inefficiently assigning control matter enough, it reduces the value to the bidder

with the highest signal of receiving cash flows but not control. This dis-incentivizes the bid-

der with the highest signal from reducing its bid to be the second-highest bidder, rendering

Mechanism B ex-post incentive compatible.

The broad intuition for why separation functions exist that generate strictly higher rev-

enues is the same as that for Mechanism A: when the two highest types are sufficiently close,

the seller strictly gains from separating control and cash flows. Separation involves a cost-

benefit tradeoff. Here, when cash flows (but not control) are assigned to the second-highest

bidder, the seller benefits from bidders’ reduced information rents due to cash flows being less

sensitive to the signal of the bidder who receives the cash flows; while the costs are those of in-

creased bidder rents due to assigning cash flows to a lower signal bidder. The key is that this

cost increases from zero in the distance between the two highest signals, reflecting the stan-

dard envelope logic that rents earned by lower types cumulate to carry over to higher types.

In contrast, the benefit due to reduced sensitivity is positive even when the difference in sig-

nals is zero. Thus, with sufficiently little separation, the benefit always outweighs the cost.

Proposition 3 is notably useful because a sufficiently large q (i) always satisfies the propo-

sition’s premise that ρmax ≤ q
1−q

for Mechanism B to be ex-post incentive compatible;and

(ii) it always satisfies the minimum-stake requirement that q ≥ qmin for any qmin ∈ [0, 1).

For example, if moral hazard is a sufficient concern that the bidder with control must always

receive a majority of cash flow rights then q ≥ 1/2 and hence q
1−q

≥ 1 ≥ ρmax.

Thus, Mechanism B can always be designed to generate strictly higher seller revenues

than no-separation English auctions by choosing q sufficiently high. If, instead, we fix q at

any qmin ∈ (0, 1), then observing that Proposition 2 holds for ρmin ≥ q
1−q

and Proposition 3

holds for ρmax ≤ q
1−q

, we obtain:

Corollary 1 Fix any q = qmin ∈ [0, 1). Then there exist separation mechanisms that gen-

erate strictly higher seller revenues than no-separation English auctions.

We next specialize to independently-distributed types to characterize optimal designs.
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3 Optimal separation mechanisms: independent types

Assumption 1 Bidder types are independently (and identically) distributed.

Recall that g(ti) denotes the marginal density of ti, which is continuous and strictly pos-

itive over [t, t̄]. Let G(ti) be the associated cdf. By independence, the joint density of t is

f(t) = Πn
i=1g(ti) and the conditional marginal density of t−i given ti is f−i (t−i|ti) = Πn

i ̸=ig(ti).

With independent types, (15) reduces to

dŪi(ti, ti)

dti
=

∫
Ωn−1

∑
j

Rj(t)Qji(t)
∂vj (ti; t−i)

∂ti
Πj ̸=ig(tj)dt−i. (25)

Equation (25) conveys the advantages of separation in a more straightforward way than (15).

With independent types, the terms in (15) related to signal correlations vanish, rendering the

effects of separation more transparent: in (25) the differential rents are scaled by
∂vj(ti;t−i)

∂ti
.

That is, bidder i’s differential rents are weighted by the sensitivity of the value of his awarded

cash flows to his signal when the project is run by bidder j.

Rewrite (25) as dŪi(ti,ti)
dti

= Ji(ti), where

Ji(ti) ≡
∫
Ωn−1

∑
j

Rj(t)Qji(t)
∂vj(t)

∂ti
Πj ̸=ig(tj)dt−i. (26)

Integration yields Ūi(ti, ti) =
∫ ti
t
Ji(t̃)dt̃+ Ūi(t, t). Substituting this into seller revenues, and

applying standard (integration by parts) mechanism design techniques yields:

Lemma 2 (Revenue Decomposition) In any incentive-compatible mechanism, the seller’s

expected revenue (14) is given by

πs =

∫
Ωn

π̂s(t)Π
n
i=1g(ti)dt−

∑
i

Ūi(t, t), (27)

where

π̂s(t) ≡
∑
j,i

Rj(t)Qji(t)ϕji(t,Q), (28)

and

ϕji(t) ≡ vj(t)−
1−G(ti)

g(ti)

∂vj(t)

∂ti
− τ (29)

is the matrix-form virtual valuation for cash flows generated by bidder j and assigned to i.
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Proof: See the appendix. □

Bidder rationality implies that −
∑

i Ūi(t, t) is non-positive, and it reaches its maximum

when Ūi(t, t) = 0 for all i. The virtual valuations underlying π̂s arise from the envelope theo-

rem, which reflects local incentive compatibility. We next derive an upper bound on π̂s, and

then explore which allocations achieve this upper bound and hence maximize π̂s, deferring

the question of whether a mechanism with such allocations is globally incentive compatible.

Unlike standard settings where control and cash rights are not separated (i.e., where

Qjj(t) is constrained to equal one), the virtual valuation in our separation framework takes a

matrix form: it depends both on which bidders receive cash flows and which bidder generates

them. Intuitively, ϕji measures the rents a seller can extract per unit of cash flows generated

by j and assigned to i. That is, the rents a seller can extract by assigning control to a bidder

j depend on how she assigns cash-flow rights among bidders, conditional on j having control.

We now rewrite bidder valuations so as to account for the minimum stake requirement.

Definition 5 For any j = 1, ..., n and i = 1, ..., n, the minimum-stake-adjusted matrix-form

valuation is

ψji(t) ≡ vj(t)− qmin
1−G(tj)

g(tj)

∂vj(t)

∂tj
− (1− qmin)

1−G(ti)

g(ti)

∂vj(t)

∂ti
− τ . (30)

Here, (30) is defined for both i ̸= j and i = j. When i ̸= j, (30) represents the rents that

the seller extracts from assigning control and share qmin of cash flows to j, and share 1−qmin

of cash flows to another bidder i. When i = j, (30) reduces to vj(t)− 1−G(tj)

g(tj)

∂vj(t)

∂tj
− τ , which

is the virtual valuation in a standard no-separation setting, and it represents the rents that

the seller extracts from assigning control and all cash flows to a single bidder j.

Lemma 3 Given any t, among assignments that satisfy the feasibility conditions (6) and (7)

and the minimum stake requirement (8), the following assignments of rights maximize π̂s(t):

(i) If maxj,i ψji(t) < 0, then there is no sale (i.e., Rj(t) = 0 for all j).

(ii) If maxj,i ψji(t) ≥ 0, then assign control and share qmin of cash flows to ȷ̂, and assign

share 1− qmin of cash flows to ı̂, where the pair (ȷ̂, ı̂) maximize ψji(t):

(ȷ̂, ı̂) ∈ argmax
(j,i)

ψji(t). (31)
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Proof: See the appendix. □

In essence, Lemma 3 says that for assignments that maximize π̂s(t) under the minimum

stake requirement it is without loss of generality to assume that either the constraint binds

(Qjj(t) = qmin) or it is completely slack (i.e., no separation with Qjj(t) = 1).

We now specialize to linear valuations and identify conditions under which either Mech-

anism A or B is optimal. Qualitatively similar results obtain with nonlinear valuations.

3.1 Linear Valuations

Suppose valuations are linear as in (5). To ease notation, define the inverse hazard function,

L (t) ≡ 1−G (t)

g(t)
.

Assumption 2 L (t) is strictly decreasing.

Assumption 3 t− AnL (t) ≥ τ .

Assumption 2 is a sufficient condition for the standard regularity condition that ensures

the global IC (not just local IC) of the “no-separation” mechanism that always assigns control

and cash flow rights to the bidder with the highest virtual valuation. Assumption 3 ensures

that ψji(t,Q) (equation (30)) is nonnegative for any j and i, implying that always selling the

asset is optimal (i.e., part (ii) of Lemma 3 holds). Under Assumptions 2 and 3, standard

English auctions with no reserve price maximize seller revenues among all no-separation

mechanisms. These assumptions simplify characterization of the optimal mechanism when

control and cash flow rights can be separated.

By (5), the minimum-stake-adjusted matrix-form valuation (30) simplifies to

ψji(t) =

{
vj(t)− τ − L (tj)An if i = j
vj(t)− τ − qminL (tj)An − (1− qmin)L (ti)Anρ if i ̸= j.

(32)

We now explicitly characterize the π̂s(t)-maximizing allocations in Lemma 3. Let “h” and

“s” index the highest and second-highest bidders, and let their associated signals be th and ts.

Lemma 4 π̂s(t)-maximizing allocations only allocate cash flow and control rights to h and s.
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Proof: See the appendix. □

Lemma 4 implies that the allocations that maximize π̂s(t) take one of three forms: give

control and all cash flows to the highest bidder; give control and cash-flow share qmin to the

highest bidder and share 1− qmin to the second-highest bidder; or give control and cash-flow

share qmin to the second-highest bidder and cash-flow share 1 − qm to the highest bidder.

We now pin down when each of these allocations maximize π̂s(t). From (32), the associated

virtual valuations are given by

ψhh(t) = vh(t)− τ − L (th)An (33)

ψhs(t) = vh(t)− τ − qminL (th)An − (1− qmin)L (ts)Anρ (34)

and

ψsh(t) = vs(t)− τ − qminL (ts)An − (1− qmin)L (th)Anρ. (35)

From Lemma 3, the π̂s(t)-maximizing allocation is associated with the highest virtual

valuation. Allocating control and all cash flows to the highest bidder is optimal if and only

if ψhh ≥ max{ψhs, ψsh}. We have

ψhh − ψhs = (1− qm)An (ρL (ts)− L (th)) , (36)

which yields ψhh ≥ ψhs if and only if

th ≥ KB (ts) ≡ L−1 (ρL(ts)) , (37)

where L−1 is the inverse function of L. L is decreasing by Assumption 2 and L (t̄) = 0, so

KA(ts) ∈ [ts, t̄] is increasing in ts. Similarly,

ψhh−ψsh = An ((1− ρ) (th − ts) + qminL (ts)− (1− (1− qmin) ρ)L (th)) ≡ K̂A (ts, th) . (38)

Let KA(ts) be the value of th that sets K̂A (ts, th) to zero. KA(ts) increases in ts (since

K̂A(y, x) strictly increases in y, K̂A(x, x) ≤ 0 and K̂A(x, t̄) ≥ 0). It follows that ψhh ≥ ψsh

if and only if th ≥ KA (ts). Thus, allocating control and all cash flows to the highest bidder

is optimal if and only if

th ≥ max {KA(ts), KB(ts)} ≡ K(ts). (39)
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It remains to determine the optimal way to divide control and cash flow rights. We have

ψhs − ψsh = An ((1− ρ) (th − ts)− ((1− qmin) ρ− qmin) (L (ts)− L(th))) . (40)

The right-hand side of (40) strictly decreases in ρ, and it equals zero at

ρ̄ ≡ 1− (1− 2qmin) (L (ts)− L(th))

(th − ts) + (1− qmin) (L (ts)− L(th))
> 0. (41)

That is, when splitting is optimal, control rights should be assigned to the bidder with the

second-highest valuation if and only if the associated efficiency cost in terms of lost cash flows

is sufficiently small, i.e., if and only if the common value component is large enough, ρ ≥ ρ̄.

Combining these results, we have established:

Proposition 4 The following allocations maximize π̂s:

(i) If th ≤ K(ts), then cash-flow rights and control are split between bidders h and s.

If ρ ≤ ρ̄, then assign control and qmin cash flows to bidder h and 1− qmin cash flows to bidder s.

If ρ ≥ ρ̄, then assign control and qmin cash flows to bidder s and 1− qmin cash flows to bidder h.

(ii) If th > K(ts), then assign bidder h all cash flows and control.

Note that if qmin ≥ 0.5, then (41) yields ρ̄ ≥ 1. Therefore, the condition ρ ≤ ρ̄ in part (i)

of Proposition 4 always holds, so that if th < K(ts), then the π̂s-maximizing allocations are

to assign control and qmin cash flows to bidder h and 1− qmin cash flows to bidder s.

We next construct optimal separation mechanisms. Define

δ1 ≡ max
t∈[t,t̄]

d

dt
L (t) and δ2 ≡ min

t∈[t,t̄]

d

dt
L (t) . (42)

By Assumption 2, δ2 ≤ δ1 < 0. Observing that KA(ts) and KB(ts) correspond to the

separation functions for Mechanisms A and B, we establish:

Proposition 5 (i) If qmin ≥ 0.5, then Mechanism B with q = qmin and separation function

KB is the optimal separation mechanism.

(ii) If qmin < 0.5 and ρ ≤ min
{
1 + (1−2qmin)δ2

1−(1−qmin)δ2
, qmin

1−qmin

}
, then again Mechanism B with

q = qmin and separation function KB is the optimal separation mechanism.
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(iii) If qmin < 0.5 and ρ ≥ max
{
1 + (1−2qmin)δ1

1−(1−qmin)δ1
, qmin

1−qmin

}
, then Mechanism A with q = qmin

and separation function KA is the optimal separation mechanism.

Proof: See the appendix. □

The proposition says that if qmin is large, then it is optimal to always have the highest

type control the project; but, if qmin is smaller, the optimal way to divide rights depends on

the degree of common valuation. For example, with qmin = 0.4 and uniformly-distributed

signals, Mechanism A is optimal for ρ ≥ 7/8, and Mechanism B is optimal for ρ ≤ 2/3.17

Thus, either Mechanism A or B is the optimal no-separation mechanism unless ρ is in a

small interval, ρ ∈ (2/3, 7/8).

However, optimal mechanisms only require interim incentive compatibility, and the mech-

anisms identified in Proposition 5 are ex-post incentive compatible. We now use Lemma 1 to

identify the weaker conditions needed for interim incentive compatibility, interpreting L(t, t′)

as Ui(ti, t
′
i), i.e., L(t, t

′) is i’s expected profit when he has type ti but reports t
′
i and all other

bidders report truthfully. With independent types, (11) simplifies to

Ūi(ti, t
′
i) =

∫
Ωn−1

∑
j

Rj(t
′
i; t−i)Qji(t

′
i; t−i)vj(t)Πj ̸=ig(tj)dt−i

−
∫
Ωn−1

Mi (t
′
i; t−i)Πj ̸=ig(tj)dt−i − τ

∫
Ωn−1

Ri(t
′
i; t−i)Πj ̸=ig(tj)dt−i, (43)

which yields

∂

∂ti
Ūi(ti, t

′
i) =

∫
Ωn−1

∑
j

Rj(t
′
i; t−i)Qji(t

′
i; t−i)

∂vj(t)

∂ti
Πj ̸=ig(tj)dt−i. (44)

With linear valuations,
∂vj(t)

∂ti
≡ Wji, where Wji = An for i = j and Wji = Anρ for i ̸= j.

Comparing (44) with (26) and noting that Wji are constants, we have

∂

∂ti
Ūi(ti, t

′
i) = Ji(t

′
i) = E−i

[∑
j

Rj(t
′
i; t−i)Qji(t

′
i; t−i)Wji

]
, (45)

where E−i denotes expectation over t−i. Ūi(ti, t
′
i) is the expected payoff after integrating

over other bidders’ type, so it is continuous and differentiable with respect to t′i. Therefore,

17To see these results, note that qmin

1−qmin
= 2

3 . Further, with a uniform distribution δ1 = δ2 = −1, and

hence 1 + (1−2qmin)δ2
1−(1−qmin)δ2

= 1 + (1−2qmin)δ1
1−(1−qmin)δ1

= 7
8 .
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the associated Szero−m in Lemma 1 is the empty set. Part 1 of Lemma 1 says that a nec-

essary condition for global IC is that for all ti ∈ [t, t̄], ∂
∂t′
Ji(t

′
i)|t′i=ti ≥ 0 for t′i ∈ [t, t̄], where

Ji ≡ dŪi(ti,ti)
dti

is given in (26). As Ji(t
′
i) does not depend on ti (with linear valuations

∂vj(t)

∂ti

does not depend on ti), this necessary condition is equivalent to requiring d
dt′i
Ji(t

′
i) ≥ 0 for all

t′i ∈ [t, t̄]. Relabeling t′i as ti, this necessary condition is equivalent to requiring d
dti
Ji(ti) ≥ 0

for all ti ∈ [t, t̄]. This, by Part 2 of Lemma 1 and (45), is also the sufficient condition. Thus,

with linear valuations, the necessary and sufficient conditions coincide:18

Lemma 5 The condition that Ji(ti) be weakly increasing in ti over ti ∈ [t, t̄] is both necessary

and sufficient for local interim IC to imply global interim IC in the separation mechanism.

In standard no-separation mechanisms with linear valuations, the necessary and sufficient

condition for local interim IC to imply global interim IC is that the expected allocation be

non-decreasing. In contrast, for our separation mechanism, the analogous condition is that

the expected allocations weighted by Wji (the sensitivity of cash flows under one bidder’s

control to the signals of other bidders) be non-decreasing. Thus, in separation mechanisms

a bidder’s expected allocation can decrease in his type if this decrease is compensated by

an increased probability for control. Intuitively, separation mechanisms provide two distinct

ways to incentivize a high type bidder not to deviate to reporting a lower type: (i) as in a no-

separation mechanism, rewarding a high report by assigning more allocations; (ii) rewarding

a high report by assigning a higher probability of control (conditional on given allocations).

The increased probability of control is a reward for a high type because a higher type benefits

more from running the project by himself rather than having it run by another bidder.

This latter channel,19 which is novel, is closed in standard no-separation mechanisms

because there, any cash flow allocation assigned to a bidder is always generated by that

bidder’s control—the probability of control conditional on being given cash flows is always

one. Lemma 5 is more general than the standard result for IC in no-separation mechanisms,

reducing to the latter if we set Qjj = 1 and Qji = 0 for all i ̸= j. Our separation mechanism

allows the conditional probability of control to be less than one and vary with bidder type.

This gives a seller more leeway in the mechanism design, facilitating rent extraction.

18With non-linear valuations, one can use Lemma 1 to derive necessary and sufficient conditions.
19This logic also underlies the conditions ρmin ≥ q

1−q in Proposition 2 and ρmax ≤ q
1−q in Proposition 3.
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With this result, parts (ii) and (iii) of Proposition 5 generalize as follows:

Proposition 6 (i) Suppose qmin < 0.5 and ρ ≤ 1 + (1−2qmin)δ2
1−(1−qmin)δ2

. Then Mechanism B

with q = qmin and separation function KB is the optimal no-separation mechanism if and

only if the associated Ji(ti) weakly increases in ti ∈ [t, t̄]. (ii) Suppose qmin < 0.5 and

ρ ≥ 1+ (1−2qmin)δ1
1−(1−qmin)δ1

. Then Mechanism A with q = qmin and separation function KA is the opti-

mal no-separation mechanism if and only if the associated Ji(ti) weakly increases in ti ∈ [t, t̄].

Proof: See the Appendix. □

The parameter space identified in Proposition 6 is (weakly) larger than that identified in

Proposition 5—where the extent to which it is “larger” varies with the number of bidders.

This differs from standard no-separation mechanisms in which the regularity condition for

global IC does not depend on the number of bidders.

4 Multi-dimensional signals

We now illustrate that our qualitative findings about the advantages of separation mecha-

nisms do not hinge on the one-dimensional nature of signals. To show this, we consider two

additional sources of bidder private information. First, the cash flows generated by a bidder

i’s control are given by (1 − µ)θi + µ
(
1
n

∑
k γk
)
, where θi ∈

[
θ, θ̄
]
is a privately-observed,

bidder-specific component that reflects i’s skills, γi ∈
[
γ, γ̄
]
is a privately-observed common

component, and µ measures the extent of common valuations.20 Second, bidder i’s oppor-

tunity cost τi ∈ [τ , τ̄ ] can be i’s private information, and τi can take on negative values, i.e.,

the bidder may receive a benefit of control that is his private information (see, e.g., Ekmekci,

Kos and Vohra (2016)). We assume that θi, γi and τi, are independently distributed.

When i has control and receives cash flow share qi, his expected payoff is

vi = qi

[
(1− µ)θi + µ

( 1
n

∑
k

γk

)]
− τi.

20Our base model essentially assumed that γi and θi were perfectly correlated. One can motivate this
structure in a two-bidder setting where the project has two divisions (lines of business) with values of v1
and v2, and total value v1 + v2, where each bidder is an expert in one line of business. The expert in
line i receives a private signal ti about vi, and he is more efficient at running line i than the other line.
Specifically, the project’s value is (1 + α)ti + t−i when run by expert i rather than by −i, where where
α > 0 captures the feature that the expert for line i is more efficient at running i.
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When, instead, a bidder j ̸= i has control, i’s expected payoff is

vi = qi

[
(1− µ)θj + µ

( 1
n

∑
k

γk

)]
.

With multi-dimensional signals, mechanism design is challenging. We next identify a

class of separation mechanisms in which the three-dimensional signals reduce to a single

dimension, rendering analysis tractable.

Restricted mechanism: The project is always sold with one bidder receiving control and

a fixed share q ≥ qmin of cash flows, and each other bidder receiving share 1−q
n−1

.

The no-separation mechanisms considered previously allowed a single bidder to receive

control and all cash flows. The restriction to mechanisms in which all losing bidders receive

a common share of cash flows obviously reduces a seller’s ability to extract rents. Nonethe-

less, we identify conditions under which this restricted design still generates strictly higher

expected revenues than the English no-separation mechanism.

We denote bidder i’s type by ti = (θi, γi, τi); all other notation is unchanged. We have:

Ui(ti, t
′
i; t−i) = qRi(t

′
i; t−i)

(
(1− µ)θi +

µ

n

∑
k

γk

)
(46)

+
1− q

n− 1

∑
j ̸=i

(
Rj(t

′
i; t−i)

(
(1− µ)θγj +

µ

n

∑
k

γk

))
−Ri(t

′
i; t−i)τi −Mi(t

′
i; t−i).

Using (i)
∑

k γk =
∑

k ̸=i γk + γi and (ii)
∑

j ̸=iRj(t
′
i; t−i) = 1 − Ri(t

′
i; t−i) (because the

asset is always sold in the restricted mechanism), we substitute

yi ≡ q(1− µ)θi +
nq − 1

n2 − n
µγi − τi (47)

to rewrite bidder i’s expected payoff in (46) from reporting t′i given ti and t−i as

Ui(ti, t
′
i; t−i) = yiRi(t

′
i; t−i)−Mi(t

′
i; t−i) + U∗

i ,

where

U∗
i ≡ qRi(t

′
i; t−i)

(µ
n

∑
k ̸=i

γk

)
+

1− q

n− 1

∑
j ̸=i

(
Rj(t

′
i; t−i)

(
(1− µ)θj +

µ

n

∑
k ̸=i

γk

))
+

1− q

n− 1

µ

n
γi.

This reveals that auction outcomes (R andM) only interact with i’s private information via a

single dimension yi in bidder i’s expected payoff. In particular, θi, γi, τi and R do not interact
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in U∗
i . It follows that auction outcomes only depend on i’s private information via yi.

21 This

dimension reduction preserves tractability. Note that this does not mean that i’s payoff only

depends on one dimension of private information; indeed, U∗
i also depends directly on γi.

22

Proposition 7 Truth telling is an equilibrium to the direct mechanism below in which each

bidder i reports a single quantity y′i. In this direct mechanism, when, without loss of gener-

ality, the reported types are y′1 ≥ y′2 ≥ ... ≥ y′n,

(i) bidder 1 receives control and cash flow share q, and pays

M1 = y′2 + q
µ

n

∑
k ̸=1

E [γ|y = y′k] +
1− q

n− 1

µ

n
γ, (48)

where y ≡ q(1− µ)θ + nq−1
n2−n

µγ − τ is a function of θ, γ, τ as in (47).

(ii) each bidder i > 1 receives cash flow share 1−q
n−1

and pays

Mloser =
1− q

n− 1

[
(1− µ)E [θ|y = y′1] +

µ

n

∑
k ̸=i

E [γ|y = y′k] +
µ

n
γ
]
. (49)

Proof: We show that when bidders’ true types yi are such that y1 ≥ y2 ≥ ... ≥ yn, each

bidder i is weakly better off reporting yi if all other bidders truthfully report.

First consider i = 1. Then bidder 1 wins control by truthfully reporting. Bidder 1’s

equilibrium expected profit is the expected value of cash flows awarded to him less his op-

portunity cost and less the expected payment:

π1 = q
[
(1− µ)θ1 +

µ

n

∑
k ̸=1

E [γ|y = yk] +
µ

n
γ1

]
− τ1 −

(
y2 + q

µ

n

∑
k ̸=1

E [γ|y = yk] +
1− q

n− 1

µ

n
γ
)

= q
[
(1− µ)θ1 +

µ

n
γ1

]
− τ1 −

(
y2 +

1− q

n− 1

µ

n
γ

)
.

If bidder 1 deviates to y′1 < y2, then he does not win control, obtaining expected profit

πdeviate
1 =

1− q

n− 1

µ

n

(
γ1 − γ

)
≥ 0. (50)

Algebra yields that such a deviation is unprofitable:

πdeviate
1 − π1 =

1− q

n− 1

µ

n

(
γ1 − γ

)
−
(
q
[
(1− µ)θ1 +

µ

n
γ1

]
− τ1 −

(
y2 +

1− q

n− 1

µ

n
γ

))
= y2 − y1 ≤ 0.

21More generally, this holds when for any two reported type profiles, t′i and t′′i , the difference
Ui(ti, t

′
i; t−i)− Ui(ti, t

′′
i ; t−i) depends on the components θi, γi, and τi of ti only via yi.

22Bidder i’s payoff net of 1−q
n−1µγi depends only on one dimension of private information.
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Finally, (50) yields πdeviate
1 ≥ 0. Thus, πdeviate

1 − π1 ≤ 0 yields π1 ≥ 0, i.e., bidder 1’s

individual rationality constraint is satisfied.

Next consider i > 1. Then i does not win control by truthfully reporting. Bidder i’s

equilibrium expected profit is

πi =
1− q

n− 1

µ

n

(
γi − γ

)
≥ 0. (51)

If i deviates by reporting y′i > y1 then i wins control. His expected deviation profit is the ex-

pected value of share q of cash flows less his opportunity cost and less the expected payment:

πdeviate
i = q

[
(1− µ)θi +

µ

n

∑
k ̸=i

E [γ|y = yk] +
µ

n
γi

]
− τi −

(
y1 + q

µ

n

∑
k ̸=i

E [γ|y = yk] +
1− q

n− 1

µ

n
γ
)

= q
[
(1− µ)θi +

µ

n
γi

]
− τi −

(
y1 +

1− q

n− 1

µ

n
γ

)
.

Algebra yields that such a deviation is unprofitable:

πdeviate
i − πi = q

[
(1− µ)θi +

µ

n
γi

]
− τi −

(
y1 +

1− q

n− 1

µ

n
γ

)
− 1− q

n− 1

µ

n

(
γi − γ

)
= yi − y1 < 0.

Finally, (51) yields πi ≥ 0, i.e., bidder i’s individual rationality constraint is satisfied. □

For no-separation mechanisms, plugging q = 1 into (47) yields that outcomes only depend

on bidder i’s private information via

yno−sep
i ≡ (1− µ)θi +

µ

n
γi − τi. (52)

Assume without loss of generality that yno−sep
1 ≥ yno−sep

2 ≥ ... ≥ yno−sep
n . Then in the

symmetric equilibrium of the no-separation English auction, bidder 1 wins control and all

cash flows, and bidders i > 1 pay nothing. Bidder 1’s payment to the seller is obtained by

replacing yi with y
no−sep
i and plugging q = 1 into the right-hand side of (48):

Mno−sep
1 = yno−sep

2 +
µ

n

∑
k ̸=1

E
[
γ|y = yno−sep

k

]
. (53)

One can show that for any q and n, the restricted-class separation mechanism gener-

ates greater revenues than no-separation English auctions for all µ sufficiently small and
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sufficiently limited private information about τi.
23

We finish with an observation about social welfare. The point is clearest with no asym-

metric information about τ , so we first set τ = 0. Then (47) yields yi = q(1−µ) (θi + ksepγi),

where ksep ≡ 1
q
nq−1
n2−n

µ
1−µ

, and (52) yields yno−sep
i = (1 − µ) (θi + kno−sepγi), where k

no−sep ≡
µ

n(1−µ)
. Thus, our separation mechanisms select the bidder with the highest θi+k

sepγi to run

the project, whereas no-separation mechanisms select the one with the highest θi+k
no−sepγi.

Social welfare maximization requires the bidder with the highest θi run the project: welfare is

higher when the coefficient k on γi is smaller. Crucially, kno−sep > ksep ≥ 0 for all q ∈ [ 1
n
, 1).

This means that controller-selection in the separation mechanism yields higher welfare than

no-separation mechanisms.24 In particular, ksep = 0 when q = 1
n
. It follows that social

welfare is maximized by the separation mechanism that gives each bidder the same cash flow

share, and that no-separation mechanisms do strictly worse. When the extent of information

asymmetry on τ is not zero but small, continuity of the separation mechanism in Proposition

7 implies that it still generate higher social welfare than no-separation mechanisms.

This has implications for bankruptcy resolution. As Hart (2023) points out, there are

different approaches to bankruptcy resolution reflecting the conflicting possible objectives

(e.g., welfare maximization versus revenue maximization) and hence there is no one-size-fits-

all approach. In this regard, our analysis of separation mechanisms suggests an advance. In

bankruptcy resolution settings, agents likely have multiple dimensions of private informa-

tion, the court cares about both revenues and efficiencies, and the court’s strong bargaining

power gives it more leeway than a typical seller in structuring allocations. We identify when

separation mechanisms can improve outcomes, leading both to higher revenues (presumably

reducing the probability of bankruptcy and any resulting deadweight loss) and to higher so-

cial efficiency in terms of assigning control to the agent who generates the highest cash flows.

23For example, solving equations (48), (49) and (53) with two bidders and θ ∼ uniform [θ, θ + 1],
γ ∼ uniform

[
γ, γ + 1

]
, and τ ∼ uniform [τ , τ +∆τ ] with ∆τ ≥ 0, yields that when µ = 0.4 and

q = 0.8, the restricted-class separation mechanism generates higher expected revenues than no-separation
mechanisms as long as ∆τ ≤ 0.36; when µ = 0.1, it does so for all ∆τ ≤ 4.3; and a larger q raises the range
for which the restricted-class mechanism generates higher expected revenues. Note also that the values of
θ, γ, and τ do not affect revenue comparisons of the two mechanisms.

24Thus when bidders have multiple-dimensional private information, standard no-separation mechanisms
typically do not lead to efficient allocations even if bidders are ex ante identical.
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5 Conclusions

Our paper revisits the classical auction setting in which a seller seeks to sell a single

asset/project to potential bidders who privately receive independently-distributed signals

about the asset’s future cash flows. The asset’s payoffs hinge on both the signal of the bidder

who controls the asset and those of rival bidders. The literature characterizes optimal mech-

anisms when bidders who do not receive control receive no cash flows. We show that a seller

can increase expected revenues by sometimes allocating cash flows to a bidder who does not

control the project. The qualitative nature of these findings extend when bidders have pri-

vate information over both private and common values of cash flows and private information

about their opportunity costs: we identify when a simple separation mechanism generates

both higher seller revenues and higher social welfare than no-separation mechanisms.

Separating control and cash-flow rights helps rent extraction because a bidder’s valua-

tion is more sensitive to his private information than to that of other bidders. This means

that the expected value of cash-flow rights is less sensitive to a bidder’s signal when he does

not control the project, reducing his informational rents. When the two highest signals are

sufficiently close, this benefit of separation outweighs its costs. We prove that a seller should

award both rights to the bidder with the highest signal only when his signal sufficiently

exceeds the second-highest signal. When the two highest signals are close, we character-

ize how optimal divisions of cash flow rights and control hinge on the private vs. common

value composition of bidder signals and the minimum share that the controller must have to

ameliorate moral hazard.

A final contribution is to identify necessary and (sharp) sufficient conditions for direct-

revelation mechanisms to be globally incentive compatible. These conditions simplify estab-

lishing both ex-post and interim global incentive compatibility in many common settings

where a bidder’s payoff is not continuous in his reported type.
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7 Appendix

Proof of Result 1: Recall there exist signals t̄ > t2 ≥ t3 ≥ ... ≥ tn > t such that the strict

single-crossing condition (4) holds. Denote one such signal vector by t∗2, ..., t
∗
n.

For any ϵ ∈ (0,min {t̄− t∗2, t
∗
n − t}), define the set

Hϵ ≡
{

(t3, ..., tn) : ∃ (x∗3, ..., x
∗
n) that is a permutation of (t∗3, ..., t

∗
n) such that

ti ∈ [x∗i − ϵ, x∗i ] for all i = 3, ..., n

}
.

Hϵ includes all points (t3, ..., tn) in an ϵ-neighborhood of (t∗3, ..., t
∗
n) and their permutations.

From the continuity of u(t1; ..., tn) and its derivatives, there exists an ω > 0 and an ϵ ∈

(0,min {t̄− t∗2, t
∗
n − t}) such that for all t2 ∈ [t∗2, t

∗
2 + ϵ/2], t1 ∈ [t2, t

∗
2 + ϵ], and t3, ..., tn ∈ Hϵ,

inequality (4) holds with:

u1 (t1; t2, t3, ..., tn)− u2 (t2; t1, t3, ..., tn) ≥ ω. (54)

We now show that a price offer of p∗ ≡ ϵ
2
ω > 0 will be accepted with strictly posi-

tive probability, which establishes the result. To proceed, consider n signals t1, ..., tn, where

(wlog) t1 and t2 are the highest and second-highest signals. Suppose t2 is in the interval[
t∗2, t

∗
2 +

ϵ
2

]
, and t3, t4, ..., tn are in Hϵ. When t1 ∈ [t∗2 + ϵ, t̄], we have

u (t1; t2, ..., tn)− u (t2; t1, ..., tn) =

∫ t1

t2

(u1 (t; t2, ..., tn)− u2 (t2; t, ..., tn)) dt

≥ ω (t1 − t2) ≥
ϵ

2
ω,
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Thus, for all t1 ∈ [t∗2 + ϵ, t̄], a price offer of p∗ ≡ ϵ
2
ω > 0 is accepted. □

Proof of Lemma 1: Define

D (t, t′) ≡ L (t, t)− L (t, t′) . (55)

Claim 1: t′ = t maximizes L(t, t′) over t′ ∈ [t, t̄] for all given t if and only if

D (t, t′) ≥ 0 for all t and t′.

Proof: Immediate. By construction D (t, t) = 0 at all t.

Below, to economize on language, whenever we mention t and t′, we assume that t, t′ ∈

[t, t̄]. For any t′ /∈ Szero−m and t, we have

∂

∂t
D (t, t′) =

d

dt
L (t, t)− ∂

∂t
L(t, t′) =

∂

∂t
L(t, t′)|t′=t +

∂

∂t′
L(t, t′)|t′=t −

∂

∂t
L(t, t′)

=
∂

∂t
L(t, t′)|t′=t −

∂

∂t
L(t, t′) (56)

where we have used (i) for t′ /∈ Szero−m,
∂
∂t′

∂
∂t
L (t, t′) exists, and hence d

dt
L (t, t) = ∂

∂t
L(t, t′)|t′=t+

∂
∂t′
L(t, t′)|t′=t; and (ii) the lemma’s premise that ∂

∂t′
L (t, t′) |t′=t = 0.

Differentiating both sides of (56) with respect to t yields

∂2

∂2t
D (t, t′) |t′=t =

∂2

∂t2
L (t, t′) |t′=t +

∂2

∂t∂t′
L(t, t′)|t′=t −

∂2

∂2t
L(t, t′) for t′ /∈ Szero−m. (57)

At t = t′ /∈ Szero−m, the first and third terms in (57) cancel out, so (57) reduces to

∂2

∂2t
D (t, t′) |t′=t =

∂2

∂t∂t′
L(t, t′)|t′=t. (58)

Now we prove necessity. The premise that “for all given t, t′ = t maximizes L(t, t′) over

t′ ∈ [t, t̄]” and the “only if” part of Claim 1 together imply that for all given t′, t = t′ mini-

mizes L(t, t′). Further, (58) holds for t /∈ Szero−m. The second-order condition for minimiza-

tion, ∂2

∂2t
D (t, t′) |t′=t ≥ 0, reduces to ∂2

∂t∂t′
L (t, t′) |t′=t ≥ 0 via (58). This establishes necessity.

Next we establish the sufficient condition for Global IC: for all t, ∂
∂t
L(t, t′) weakly in-

creases in t′ over t′ ∈ [t, t̄]).

Claim 2: D (t, t′) ≥ 0 for any t′ /∈ Szero−m and any t.

Proof: Suppose t′ /∈ Szero−m. Then (56) holds. By the premise in part 2, if t ≥ t′, then

∂
∂t
L(t, t′)|t′=t ≥ ∂

∂t
L(t, t′). Via this, (56) yields ∂

∂t
D (t, t′) ≥ 0 for t ≥ t′. By the same logic, if
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t ≤ t′, then ∂
∂t
L (t, t′) |t′=t ≤ ∂

∂t
L (t, t′), and hence ∂

∂t
D (t, t′) ≤ 0 by (56). Thus, fixing t′ and

varying t, D (t, t′) is minimized at t = t′. Therefore, D (t, t′) ≥ D (t′, t′) = 0 for all t.

Claim 3: D (t, t′) ≥ 0 for any t′ ∈ Szero−m and any t.

Proof: By contradiction. Suppose instead that D (t∗, t∗∗) < 0, for some t∗ ∈ [t, t̄] and

t∗∗ ∈ Szero−m, where, throughout the proof, we use the short-hand notation D (t∗, t∗∗) to

refer to D (t = t∗, t′ = t∗∗). For any t∗∗∗ ∈ (t, t̄), the definition of D in (55) yields

D (t∗, t∗∗∗)−D (t∗, t∗∗) = L (t∗, t∗∗)− L (t∗, t∗∗∗) ,

which we rewrite as

D (t∗, t∗∗∗) = L (t∗, t∗∗)− L (t∗, t∗∗∗) +D (t∗, t∗∗) . (59)

By the premise that D (t∗, t∗∗) < 0, we have t∗ ̸= t∗∗. Now we prove Claim 3 for the

following two collectively exhaustive scenarios.

Scenario 1: t∗ > t∗∗. Because t∗ ≤ t̄, we have t∗∗ < t̄. Consider t∗∗∗ ∈ (t∗∗, t̄). By the

premises that (i) ∂
∂t
L(t, t′) weakly increases in t′, (ii) t∗ > t∗∗ and, (iii) t∗∗∗ > t∗∗, we have

L (t∗, t∗∗)− L (t∗∗, t∗∗) ≤ L (t∗, t∗∗∗)− L (t∗∗, t∗∗∗) . (60)

Rearranging terms yields

L (t∗, t∗∗) ≤ L (t∗∗, t∗∗) + L (t∗, t∗∗∗)− L (t∗∗, t∗∗∗) .

Substituting this into the right-hand side of (59) yields

D (t∗, t∗∗∗) ≤ L (t∗∗, t∗∗)− L (t∗∗, t∗∗∗) +D (t∗, t∗∗) . (61)

Because L(t, t′) is continuous in t′ at t′ = t, there exists ϵ > 0 such that L (t∗∗, t∗∗) −

L (t∗∗, t∗∗∗) < −D (t∗, t∗∗) for all t∗∗∗ ∈ (t∗∗,min (ϵ+ t∗∗, t̄)). Here, note that −D (t∗, t∗∗) > 0

because D (t∗, t∗∗) < 0 by the contradiction premise. Next, note that because the points in

Szero−m are of zero measure, there exists a t∗∗∗ ∈ (t∗∗,min (ϵ+ t∗∗, t̄)) such that t∗∗∗ /∈ Szero−m.

Then (61) yields D (t∗, t∗∗∗) < 0, which contradicts Claim 2, proving Claim 3 in Scenario 1.

Scenario 2: t∗ < t∗∗. Because t∗ ≥ t, we have t∗∗ > t. Consider t∗∗∗ ∈ (t, t∗∗). By the

premises that (i) ∂
∂t
L(t, t′) weakly increases in t′, (ii) t∗ < t∗∗, and (iii) t∗∗∗ < t∗∗, equation

(59) from Scenario 1 also holds in Scenario 2. Similarly, (61) also holds in Scenario 2.
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Because L(t, t′) is continuous in t′ at t′ = t, there exists ϵ > 0 such that L (t∗∗, t∗∗) −

L (t∗∗, t∗∗∗) < −D (t∗, t∗∗) for all t∗∗∗ ∈ (max (t∗∗ − ϵ, t) t∗∗). Further, because the points in

Szero−m are of zero measure, there must exist some t∗∗∗ ∈ (max (t∗∗ − ϵ, t) , t∗∗) such that

t∗∗∗ /∈ Szero−m. Then (61) yields D (t∗, t∗∗∗) < 0, which contradicts Claim 2. This proves

Claim 3 for Scenario 2.

Claims 2 and 3 yield that D (t, t′) ≥ 0 for all t′ and t. This and the “only if” part of

Claim 1 establish the sufficiency of the conditions in 2. □

Proof of Proposition 2 (i): We use Lemma 1 to prove that mechanism A is ex-post incen-

tive compatible, interpreting L(t, t′) as Ui(ti, t
′
i; t−i) in (9), and taking t−i as given. Without

loss of generality, consider bidder i = 1 and assume t2 ≥ t3... ≥ tn.

We now show that Mechanism A satisfies the premises “a” – “c” of Lemma 1. Premise

(a) is satisfied since U1(t1, t
′
1; t−1) is continuous and differentiable with respect to t1. Premise

(b) is also satisfied: Szero−m consists of three points, i.e., Szero−m = {S−1 (t2, t3, ..., tn) , t2, S (t2, ..., tn)},

and U1(t1, t
′
1; t−1) is continuous and differentiable with respect to t′1 for all t′1 /∈ Szero−m.

Premise (c) is also satisfied: U1(t1, t
′
1; t−1) is independent of t

′
1 when t′1 is in any of the four

report-regions defined in the text, which are partitioned by the elements in Szero−m. Hence,

for all t1 /∈ Szero−m, U1(t1, t
′
1; t−1) is continuous in t

′
1 at t

′
1 = t1, and

∂
∂t′1
U1(t1, t

′
1; t−1)t′1=t1 = 0.

It is also easy to show that if t1 ∈ Szero−m, then U1(t1, t
′
1; t−1) is continuous in t

′
1 at t

′
1 = t1.

Next, refer to (9). For given t−1, we compute the derivative

∂

∂t1
U1(t1, t

′
1; t−1) ≡

∑
j

Rj(t
′
1; t−1)Qj1(t

′
1; t−1)

∂vj(t)

∂t1
. (62)

Mechanism A has the feature that a bidder receives neither control nor cash flows if his

reported type is not among the two highest reported types. Thus, in (62) we only have to

sum over j = 1, 2, because (a) bidders 2 through n report truthfully and t2 ≥ t3... ≥ tn, so t2

must be one of the two highest reported types, and (b) if bidder 1 is awarded any cash flows,

i.e., if Qj1(t
′
1; t−1) ̸= 0 for any j, then t′1 must be among the two highest reported types.

Thus, t3 through tn are outside the two highest reported types, so Rj(t
′
1; t−1) = 0 for j ≥ 3.

Therefore, (62) reduces to

∂

∂t1
U1(t1, t

′
1; t−1) = R1(t

′
1; t−1)Q11(t

′
1; t−1)

∂v1(t)

∂t1
+R2(t

′
1; t−1)Q21(t

′
1; t−1)

∂v2(t)

∂t1
. (63)
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We use (63) to show that Mechanism A satisfies the premise in part B of Lemma 1. In our con-

text this means that for all t1,
∂
∂t1
U1(t1, t

′
1; t−1) weakly increases in t′1 for t

′
1 ∈ [t, t̄]. For Mech-

anism A, recall that U1(t1, t
′
1; t−1) is independent of t

′
1 for t

′
1 in any of the four report-regions.

Hence, for all t′1 /∈ Szero−m,
∂
∂t1
U1(t1, t

′
1; t−1) is independent of t′1—and hence is weakly in-

creasing in t′1. Thus, we only need to show that for any given t−1, the right-hand side of (63)

is nondecreasing in t′1 when t
′
1 ∈ Szero−m. Consider, in turn, the three such realizations of t′1.

Scenario 1: t′1 = S−1 (t2, t3, ..., tn). If t
′
1 < S−1 (t2, t3, ..., tn), then bidder 1 would receive no

cash flows and hence ∂
∂t1
U1(t1, t

′
1; t−1) = 0; and if t′1 > S−1 (t2, t3, ..., tn), then the right-hand

side of (63) is nonnegative. Thus, ∂
∂t1
U1(t1, t

′
1; t−1) weakly increases when t′1 increases from

below S−1 (t2, t3, ..., tn) to above.

Scenario 2: t′1 = t2. Refer to the right-hand side of (63). When t′1 → t2 from below,

R1(t
′
1; t−1)Q11(t

′
1; t−1) = 1× q = q, and R2(t

′
1; t−1) = 0, so R2(t

′
1; t−1)Q21(t

′
1; t−1) = 0. Thus,

lim
t′1→t−2

∂

∂t1
U1(t1, t

′
1; t−1) = q

∂v1(t)

∂t1
,

where limt′1→t−2
denotes the left limit. When t′1 → t2 from above, R2(t

′
1; t−1)Q21(t

′
1; t−1) =

1− q, and R1(t
′
1; t−1) = 0 so R1(t

′
1; t−1)Q11(t

′
1; t−1) = 0. Thus,

lim
t′1→t+2

∂

∂t1
U1(t1, t

′
1; t−1) = (1− q)

∂v2(t)

∂t1
,

where limt′1→t+2
denotes the right limit. Hence,

lim
t′1→t+2

∂

∂t1
U1(t1, t

′
1; t−1)− lim

t′1→t−2

∂

∂t1
U1(t1, t

′
1; t−1) = (1− q)

∂v2(t)

∂t1
− q

∂v1(t)

∂t1

= q
∂v1(t)

∂t1

(
1− q

q

∂v2(t)

∂t1
/
∂v1(t)

∂t1
− 1

)
,

where the inequality follows from the premise that ρmin ≥ q
1−q

. Hence, ∂
∂t1
U1(t1, t

′
1; t−1)

weakly increases when t′1 increases from below t2 to above t2.

Scenario 3: t′1 > S(t2, ..., tn). When t′1 → S(t2, ..., tn) from below, R2(t
′
1; t−1)Q21(t

′
1; t−1) =

1−q, andR1(t
′
1; t−1) = 0 soR1(t

′
1; t−1)Q11(t

′
1; t−1) = 0. Thus, ∂

∂t1
U1(t1, t

′
1; t−1) → (1− q) ∂v2(t)

∂t1
.

When t′1 → S (t2, ..., tn) from above, R2(t
′
1; t−1)Q21(t

′
1; t−1) = 0, and R1(t

′
1; t−1)Q11(t

′
1; t−1) =

1. Thus, ∂
∂t1
U1(t1, t

′
1; t−1) → ∂v1(t)

∂t1
. Clearly, ∂v1(t)

∂t1
≥ (1− q) ∂v2(t)

∂t1
. Hence, ∂

∂t1
U1(t1, t

′
1; t−1)

weakly increases when t′1 increases from below S (t2, ..., tn) to above. □
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Proof of Proposition 2 (ii): Recall there exist n − 1 signals such that the strict single-

crossing condition (4) holds. Denote one such signal vector by t∗2, ..., t
∗
n, where t̄ > t∗2 ≥ t∗3 ≥

... ≥ t∗n > t.

For any ϵ ∈ (0,min {t̄− t∗2, t
∗
n − t}), define the set

Hϵ ≡
{

(t3, ..., tn) : ∃ (x∗3, ..., x
∗
n) that is a permutation of (t∗3, ..., t

∗
n) such that

ti ∈ [x∗i − ϵ, x∗i ] for all i = 3, ..., n

}
.

Hϵ includes all points (t3, ..., tn) in an ϵ-neighborhood of (t∗3, ..., t
∗
n) and their permutations.

From the continuity of u(t1; ..., tn) and its derivatives, there exists an ω > 0 and an

ϵ ∈ (0,min {t̄− t∗2, t
∗
n − t}) such that for all t2 ∈ [t∗2, t

∗
2 + ϵ], t1 ∈ [t2, t

∗
2 + ϵ] and t3, ..., tn ∈ Hϵ,

inequality (4) holds with:

u1 (t1; t2, t3, ..., tn)− u2 (t2; t1, t3, ..., tn) > ω. (64)

Fix such an ϵ. For any δ ∈ (0, ϵ] and t2 ≥ t3 ≥ ... ≥ tn define the “δ-separation function”

Sδ (t2, ..., tn) by:

Sδ (t2, ..., tn) = t∗2 + δ if t2 ∈ [t∗2, t
∗
2 + δ] and t3, ..., tn ∈ Hϵ;

Sδ (t2, ..., tn) = t2 otherwise.

This δ-separation function has the feature that separation occurs if and only if the highest of

the n− 1 signals is in [t∗2, t
∗
2 + δ] and the other n− 2 signals are in Hϵ. Its inverse is given by

S−1
δ (t2, ..., tn) = t∗2 if t2 ∈ [t∗2, t

∗
2 + δ] and t3, ..., tn ∈ Hϵ;

S−1
δ (t2, ..., tn) = t2 otherwise.

We show that for all δ sufficiently small, the Mechanism A that uses the δ-separation

function generates strictly higher seller revenues than no-separation English auctions. Given

any n signals t1, ..., tn, denote seller revenue in the δ-separation mechanism minus that in the

no-separation English auction by D(t1, t2; t3, ..., tn). Note that D(t1, t2; t3, ..., tn) ̸= 0 only

when the second-highest signal among t1, ..., tn is in [t∗2, t
∗
2 + δ] and all lower signals are in Hϵ.

To fix ideas, consider n signals t1, ..., tn where t1 and t2 are the highest and second-highest

signals, with t2 ∈ [t∗2, t
∗
2 + δ] and (t3, ..., tn) ∈ Hϵ. Consider two cases:
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Case 1: t1 ≥ t∗2 + δ. Seller revenue in the δ-separation mechanism is bidder 1’s payment in

(17):

u (t∗2 + δ; t2, ..., tn)− (1− q)u (t2; t
∗
2 + δ, ..., tn) + (1− 2q)u (t2; t2, ..., tn)

+qu (t∗2, t2, ..., tn)− τ.

Revenue in a no-separation English auction is u(t2; t2, ..., tn)−τ . Algebra yields the difference:

D (t1, t2; t3, ..., tn) = D1 (t1, t2; t3, ..., tn) +D2 (t1, t2; t3, ..., tn) ,

where

D1 ≡ (1− q) [u (t∗2 + δ; t2, ..., tn)− u (t2; t
∗
2 + δ, ..., tn)] (65)

D2 ≡ q [u (t∗2 + δ; t2, ..., tn)− 2u (t2; t2, ..., tn) + u (t∗2; t2, ..., tn)] . (66)

Case 2: t1 ∈ [t2, t
∗
2 + δ). Seller revenue in the δ-separation mechanism is the sum of bidder

1’s payment in (18) and bidder 2’s payment in (19):

(1− 2q)u (t2, t2, ..., tn) + qu (t∗2, t2, ..., tn) + qu (t∗2, t1, t3, ..., tn)− τ.

Seller revenue in the no-separation English auction is u (t2, t2, ..., tn)− τ . The difference is

D(t1, t2; t3, ..., tn) = q [u(t∗2, t2, ..., tn) + u(t∗2, t1, t3, ..., tn)− 2u(t2, t2, ..., tn)] ≡ D3(t1, t2; t3, ..., tn)

(67)

We can write the expected revenue difference as:

E [D] = n (n− 1)

∫
Ωn−2

∫ t∗2+δ

t∗2

∫ t̄

t2

D(t1, t2; t3, ..., tn)f (t)1t3,...,tn∈Hϵdt1dt2dt3...dtn,

where Ωn−2 ≡ [t, t̄]n−2 is the space of integration for t3, ..., tn, and 1t3,...,tn∈Hϵ is an indica-

tor function that equals 1 if (t3, ..., tn) ∈ Hϵ, and zero if t3, ..., tn /∈ Hϵ (recall D = 0 if

(t3, ..., tn) /∈ Hϵ). The factor n reflects that any of the n signals, not necessarily t1, can be

the highest signal, and the factor n− 1 reflects that any of the remaining n− 1 signals, not

necessarily t2, can be the second-highest.

Breaking up the integration of t1 from t2 to t̄ into the sum of integrations from t2 to t
∗
2+δ

and from t∗2 + δ to t̄, and using (65), (66) and (67), we have

E [D] = n (n− 1) (ED1 + ED2 + ED3) ,
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where

EDi ≡
∫
Ωn−2

∫ t∗2+δ

t∗2

∫ t̄

t∗2+δ

Di (t1, t2; t3, ..., tn) f (t)1t3,...,tn∈Hϵdt1dt2dt3...dtn, for i = 1, 2.

ED3 ≡
∫
Ωn−2

∫ t∗2+δ

t∗2

∫ t∗2+δ

t2

D3 (t1, t2; t3, ..., tn) f (t)1t3,...,tn∈Hϵdt1dt2dt3...dtn.

Next, we show that for δ sufficiently small, ED1 exceeds a term that is positive and

quadratic in δ, and ED2 and ED3 each exceed a term that goes to zero at a rate faster than δ2.

Step 1: By (65) we have

ED1 ≡ (1− q)

∫
Ωn−2

∫ t∗2+δ

t∗2

∫ t̄

t∗2+δ

(u(t∗2 + δ; t2, ..., tn)− u(t2; t
∗
2 + δ, ..., tn))f(t)1t3,...,tn∈Hϵdt1dt2dt3...dtn.

Note that

u (t∗2 + δ; t2, ..., tn)− u (t2; t
∗
2 + δ, ..., tn) =

∫ t∗2+δ

t2

(u1 (t; t2, ..., tn)− u2 (t2; t, ..., tn)) dt

> ω (t∗2 + δ − t2) ,

where the inequality follows from (64). Defining fmin ≡ mint1,...,tn f(t), we have

ED1 > (1− q)ω

∫
Ωn−2

∫ t∗2+δ

t∗2

∫ t̄

t∗2+δ

(t∗2 + δ − t2) f (t)1t3,...,tn∈Hϵdt1dt2dt3...dtn

≥ (1− q)ωfmin

∫
Ωn−2

∫ t∗2+δ

t∗2

∫ t̄

t∗2+δ

(t∗2 + δ − t2)1t3,...,tn∈Hϵdt1dt2dt3...dtn

= (1− q)ωfmin (t̄− t∗2 − δ)

∫
Ωn−2

∫ t∗2+δ

t∗2

(t∗2 + δ − t2)1t3,...,tn∈Hϵdt2dt3...dtn

=
1

2
(1− q)ωfmin (t̄− t∗2 − δ) δ2

∫
Ωn−2

1t3,...,tn∈Hϵdt3...dtn

where we use
∫ t∗2+δ

t∗2
(t2 − t∗2) dt2 =

1
2
δ2. For δ <

t̄−t∗2
2
, we have (t̄− t∗2 − δ) > 1

2
(t̄− t∗2). Thus,

for δ <
t̄−t∗2
2
, the above yields

ED1 >

[
1

4
(1− q)ωfmin (t̄− t∗2)

∫
Ωn−2

1t3,...,tn∈Hϵdt3...dtn

]
δ2.

Step 2: Define

kmax(t3, t4, ...tn; δ) ≡ max
t1,t2∈[t∗2,t∗2+δ]

u1(t1; t2, ...tn) and kmin(t3, t4, ...tn; δ) ≡ min
t1,t2∈[t∗2,t∗2+δ]

u1(t1; t2, ...tn).

(68)
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Note that kmax and kmin are functions of δ, t3, ..., tn, and kmax ≥ kmin > 0. Using the Taylor

series expansions

u (t∗2 + δ, t2, ..., tn) ≥ u (t∗2, t2, ..., tn)+kminδ and u (t2, t2, ..., tn) ≤ u (t∗2, t2, ..., tn)+kmax (t2 − t∗2) .

for the right-hand side of (66), we have

u (t∗2 + δ, t2, ..., tn)− 2u (t2, t2, ..., tn) + u (t∗2, t2, ..., tn) ≥ q (kminδ − 2kmax (t2 − t∗2)) .

Thus,

ED2 ≥ q

∫
Ωn−2

∫ t∗2+δ

t∗2

∫ t̄

t∗2+δ

(kminδ − 2kmax (t2 − t∗2)) f(t)1t3,...,tn∈Hϵdt1dt2dt3...dtn

= q

∫
Ωn−2

∫ t̄

t∗2+δ

∫ t∗2+δ

t∗2

(kminδ − 2kmax (t2 − t∗2)) f(t)1t3,...,tn∈Hϵdt2dt1dt3...dtn,

where the second equation switches the order of integration. Define

fa (t1, t3, t4, ...tn; δ) ≡ min
t2∈[t∗2,t∗2+δ]

f(t1, t2, ...tn) and fb(t1, t3, t4, ...tn; δ) ≡ max
t2∈[t∗2,t∗2+δ]

f(t1, t2, ...tn).

Note that fa and fb are functions of t1, t3, ..., tn, and fb ≥ fa > 0. Integrating over t2 yields:∫ t∗2+δ

t∗2

(
kδminδ − 2kδmax (t2 − t∗2)

)
f(t)dt2 ≥

(
fak

δ
min − fbk

δ
max

)
δ2,

where we use
∫ t∗2+δ

t∗2
(t2 − t∗2) dt2 =

1
2
δ2.

Claim 1: For any constant κ > 0, there exists a δ(κ) > 0 such that fbk
δ
max − fak

δ
min ∈ [0, κ)

for all δ < δ(κ) and all t1, t3, ..., tn.

Proof of Claim 1: Define c1 ≡ maxt1,...,tn | d
dt1
u1 (t) | and c2 ≡ maxt1,...,tn | d

dt2
u1(t)|. Refer

to (68). It follows from the Taylor series expansion that kδmax − kδmin ≤ (c1 + c2) δ.
25 Thus,

fbk
δ
max − fak

δ
min = (fb − fa) k

δ
max + fa(k

δ
max − kδmin)

≤ (fb − fa)k
δ
max + fa(c1 + c2)δ.

25To see this, assume kδmax is obtained at (t1, t2) = (t∗∗∗1 , t∗∗∗2 ) so that kδmax ≡ u1 (t
∗∗∗
1 ; t∗∗∗2 , t3, ..., tn), and

assume that kδmin is obtained at (t1, t2) = (t∗∗1 , t∗∗2 ) so that kδmin ≡ u1 (t
∗∗
1 ; t∗∗2 , t3, ..., tn). Then

kδmax − kδmin = u1 (t
∗∗∗
1 ; t∗∗∗2 , t3, ..., tn)− u1 (t

∗∗
1 ; t∗∗2 , t3, ..., tn)

= (u1 (t
∗∗∗
1 ; t∗∗∗2 , t3, ...)− u1 (t

∗∗
1 ; t∗∗∗2 , t3, ...)) + (u1 (t

∗∗
1 ; t∗∗∗2 , t3, ...)− u1 (t

∗∗
1 ; t∗∗2 , t3, ...))

≤ c1|t∗∗∗1 − t∗∗1 |+ c2|t∗∗∗2 − t∗∗2 |.
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Because fa ≤ fmax and hence is bounded, the second term fa (c1 + c2) δ goes to zero as

δ → 0. For the first term, uniform continuity of f yields that fb − fa → 0 uniformly as

δ → 0. Since kδmax ≤ maxt1,...,tn u1(t1; t2, ..., tn) and hence is bounded, (fb − fa) k
δ
max → 0

uniformly as δ → 0. This establishes Claim 1.

By Claim 1, for any constant κ > 0, there exists a δ(κ) > 0 such that for all δ < δ(κ) :

ED2 ≥ −qκδ2
∫
Ωn−2

∫ t̄

t∗2+δ

1t3,...,tn∈Hϵdt1dt3...dtn.

Step 3: By (67) and t1 ≥ t2, we have:

D3 > 2q [u (t∗2, t
∗
2, t3, ..., tn)− u (t∗2 + δ, t∗2 + δ, ..., tn)] ≥ −2qk∗δ,

where

k∗ ≡ max
t1∈[t2,t∗2+δ],t3,...,tn∈Hϵ

d

dt1
u (t1, t1, t3, ..., tn) .

Define fmax ≡ maxt1,...,tn f(t). Then we have

ED3 ≥ −2qk∗δ

∫
Ωn−2

∫ t∗2+δ

t∗2

∫ t∗2+δ

t2

f (t)1t3,...,tn∈Hϵdt1dt2dt3...dtn

≥ −
(
2qk∗fmax

∫
Ωn−2

dt3...dtn

)
δ3,

where we use
∫ t∗2+δ

t∗2

∫ t∗2+δ

t2
f(t)dt1dt2 ≤ fmaxδ

2.

Step 4: Steps 2 and 3 show that when δ is small, ED2 and ED3 exceed a term that ap-

proaches zero faster than δ2. Hence, for δ sufficiently small, ED1 > |ED2+ED3|. Thus, the

expected revenue difference is strictly positive, i.e., the δ-separation mechanism generates

strictly higher expected revenues. □

Proof of Proposition 3: The proof for part (i) follows from the same logic as that for

Proposition 2 (i). The proof for part (ii) also uses a similar logic to that for Proposition 2

(ii). More specifically, we define ϵ, the set Hϵ, and the δ-separation function in the same way.

So, too, we consider n signals t1, ..., tn where t1 and t2 are the highest and second-highest

signals, with t2 ∈ [t∗2, t
∗
2 + δ] and (t3, ..., tn) ∈ Hϵ. There are two cases:

Case 1: t1 ≥ t∗2 + δ. Seller revenue in the δ-separation mechanism is bidder 1’s payment in

(22):

(1− q)u (t∗2 + δ; t2, ..., tn) + (2q − 1)u (t2; t2, ..., tn) + (1− q)u (t2; t
∗
2, ..., tn)− τ.
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Revenue in a no-separation English auction is: u(t2; t2, ..., tn)− τ . The revenue difference is

D (t1, t2; t3, ..., tn) = (1− q) [u (t∗2 + δ; t2, ..., tn)− 2u (t2; t2, ..., tn) + u (t2; t
∗
2, ..., tn)]

= D1 (t1, t2; t3, ..., tn) +D2 (t1, t2; t3, ..., tn) ,

where

D1 ≡ (1− q) [u (t2; t
∗
2, ..., tn)− u (t∗2; t2, ..., tn)]

D2 ≡ (1− q) [u (t∗2 + δ; t2, ..., tn)− 2u (t2; t2, ..., tn) + u (t∗2; t2, ..., tn)] .

Case 2: t1 ∈ [t2, t
∗
2 + δ). Seller revenue in the δ-separation mechanism is the sum of bidder

1’s payment in (23) and bidder 2’s payment in (24):

(2q − 1)u (t2; t2, ..., tn) + (1− q) [u (t2; t
∗
2, ..., tn)]− τ + (1− q)u (t1; t

∗
2, t3, ..., tn)

Seller revenue in the no-separation English auction is u (t2, t2, ..., tn)−τ . Thus, the difference

in revenues is

D(t1, t2; t3, ..., tn) = (1− q) (u (t2; t
∗
2, ..., tn) + u (t1; t

∗
2, t3, ..., tn)− 2u (t2; t2, ..., tn))

≥ 2 (1− q) (u (t2; t
∗
2, ..., tn)− u (t2; t2, ..., tn)) ≡ D3 (t1, t2; t3, ..., tn) ,

where the inequality follows from t1 ≥ t2 and that u weakly increases in its arguments.

Using a similar logic to that in the proof for Proposition 2 (i), one can show that for

δ sufficiently small, the contribution to the expected revenue difference from D1 exceeds a

term that is positive and quadratic in δ, while the (possibly negative) contributions from

D2 and D3 exceed terms that go to zero at rates faster than δ2. Hence, for δ sufficiently

small, the expected revenue difference is strictly positive, i.e., the δ-separation mechanism

generates strictly higher expected revenues. □

Proof of Lemma 2:

πs =

∫ ∑
j,i

Rj(t)Qji(t)vj(t)Π
n
i=1g(ti)dt−

∑
i

∫ t̄

t

(∫ ti

t

Ji(t̃)dt̃+ Ūi(t, t)

)
g(ti)dti−τ

∑
i

∫
Ωn

Ri(t)Π
n
i=1g(ti)dt,

where Ωn ≡ [t, t̄]n denotes the space of integration for all n bidders. That is, expected seller

revenue equals the expected increase in social welfare gross of the costs of running the project

(first term on the right-hand side) less the sum of bidders’ expected rents (second term) less

50



the expected costs of running the project (third term). Applying integration by parts to the

second term on the right-hand side (without the summation) yields:∫ t̄

t

(∫ ti

t

Ji(t̃)dt̃+ Ūi(t, t)
)
g(ti)dti = −

∫ t̄

t

(∫ ti

t

Ji(t̃)dt̃+ Ūi(t, t)

)
d (1−G(ti))

= Ūi(t, t) +

∫ t̄

t

(1−G(ti)) d

(∫ ti

t

Ji(t̃)dt̃+ Ūi(t, t)

)
= Ūi(t, t) +

∫ t̄

t

1−G(ti)

g(ti)
Ji(ti)g(ti)dti. (69)

Substituting (26) for Ji(ti) into the right-hand side of (69) yields∫ t̄

t

(∫ ti

t

Ji(t̃)dt̃+ Ūi(t, t)
)
g(ti)dti = Ūi(t, t) +

∫ t̄

t

1−G(ti)

g(ti)

(∫
Ωn−1

∑
j

Rj(t)Qji(t)
∂vj(t)

∂ti
f−i(t−i)dt−i

)
g(ti)dti

= Ūi(t, t) +

∫ t̄

t

∫
Ωn−1

1−G(ti)

g(ti)

(∑
j

Rj(t)Qji(t)
∂vj(t)

∂ti

)
f−i(t−i)g(ti)dt−idti

= Ūi(t, t) +

∫
Ωn

1−G(ti)

g(ti)

(∑
j

Rj(t)Qji(t)
∂vj(t)

∂ti

)
Πn

i=1g(ti)dt.

Hence, expected seller revenue is:

πs =

∫
Ωn

∑
ji

Rj(t)Qji(t)vj(t)Π
n
i=1g(ti)dt−

∑
i

∫
Ωn

1−G(ti)

g(ti)

(∑
j

Rj(t)Qji(t)
∂vj(t)

∂ti

)
Πn

i=1g(ti)dt

− τ
∑
j

∫
Ωn

Rj(t)Π
n
i=1g(ti)dt−

∑
i

Ūi(t, t). □

Proof of Lemma 3: Claim 1: For any given j∗, consider any vector Qj∗i(t) (where i runs

from 1 through n) that satisfies (7) and (8) (i.e.,
∑n

i=1Qj∗i(t) = 1 and Qj∗j∗(t) ≥ qmin).

Then,
∑n

i=1Qj∗i(t)ϕj∗i(t,Q) ≤ ψȷ̂̂ı(t).

To prove the Claim, note that (29) and (7) yield∑
i

Qj∗i(t)ϕj∗i(t,Q) = vj∗(t)− τ −
∑
i

Qj∗i(t)
1−G(ti)

g(ti)

∂vj∗(t)

∂ti

= vj∗(t)− τ − qmin
1−G(tj∗)

g(tj∗)

∂vj∗(t)

∂tj∗
+ (Qj∗j∗(t)− qmin)

(
1−G(tj∗)

g(tj∗)

∂vj∗(t)

∂tj∗

)
−
∑
i ̸=j∗

Qj∗i(t)

(
1−G(ti)

g(ti)

∂vj∗(t)

∂ti

)
. (70)

Define

i∗ ≡ argmin
i

1−G(ti)

g(ti)

∂vj∗(t)

∂ti
. (71)
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Then given the constraints Qj∗j∗(t) ≥ qmin and Qj∗i ≥ 0 for all i, (70) yields∑
i

Qj∗i(t)ϕj∗i(t,Q) ≤ vj∗(t)− τ − qmin
1−G(tj∗)

g(tj∗)

∂vj∗(t)

∂tj∗

−

(
(Qj∗j∗(t)− qmin) +

∑
i ̸=j∗

Qj∗i(t)

)(
1−G(ti∗)

g(ti∗)

∂vj∗(t)

∂ti∗

)
= vj∗(t)− τ − qmin

1−G(tj∗)

g(tj∗)

∂vj∗(t)

∂tj∗
− (1− qmin)

(
1−G(ti∗)

g(ti∗)

∂vj∗(t)

∂ti∗

)
= ψj∗i∗(t) ≤ ψȷ̂̂ı(t),

where the first inequality follows from (71) that 1−G(ti∗ )
g(ti∗ )

∂vj∗ (t)

∂ti∗
≤ 1−G(ti)

g(ti)

∂vj∗ (t)

∂ti
for all i (in-

cluding when i = j∗), and the first equality follows from
∑

iQj∗i = 1. This yields Claim 1.

We now prove Part (i) of the lemma by contradiction. Suppose to the contrary that

some vector of control rightsR(t) and cash flow rights matrixQ(t) satisfy
∑

j,iRj(t)Qji(t)ϕji(t,Q) ≥

0. Then there must exist a j such that
∑

iQji(t)ϕji(t,Q) ≥ 0. Then Claim 1 yields that

ψȷ̂̂ı(t) ≥
∑

iQji(t)ϕji(t,Q) ≥ 0, contradicting the premise of Part (i) that maxj,i ψji(t) < 0.

To prove Part (ii), consider any vector R(t) and any matrix Q(t) such that (6), (7) and

(8) hold. Then ∑
j,i

Rj(t)Qji(t)ϕji(t,Q) ≤
∑
j

Rj(t)ψȷ̂̂ı(t) ≤ ψȷ̂̂ı(t).

The first inequality follows from Claim 1, and the second follows from (6) and the premise of

Part (ii) that ψȷ̂̂ı(t) ≥ 0. This means that no assignment can achieve a higher value of π̂s(t)

than assigning control and qmin cash flows to ȷ̂ and assigning 1− qmin cash flows to ı̂. □

Proof of Lemma 4. Claim 1: Assigning all cash flow rights and control to h achieves a

higher π̂s(t) than assigning all cash flow rights and control to any other bidder.

Proof: Consider any bidder k ̸= h. Then (32) yields

ψhh(t)− ψkk(t) = An(1− ρ) (th − tk) + An (L (tk)− L (th)) > 0,

where the inequality follows from th > tk and L (tk) > L (th) from Assumption 2. □

Claim 2: In the π̂s(t)-maximizing allocation characterized in Lemma 3, a bidder who is not

among the two highest receives neither cash flow rights nor control.

Proof: Let k be a bidder who is not among the two highest. We must show that k ̸= ȷ̂ and

k ̸= ı̂, where (ȷ̂, ı̂) maximize ψji(t) as in (31).
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Case 1: Suppose instead that k = ȷ̂ (i.e., k receives control in the π̂s(t)-maximizing alloca-

tion). Then ı̂ ̸= k by Claim 1. Then ψkı̂(t) = vk(t)−qminL (tk)Anρ−(1− qmin)L (tı̂)Anρ−τ .

Clearly, either ı̂ ̸= s or ı̂ ̸= h (or both) must hold. If ı̂ ̸= s, then ψsı̂(t) − ψkı̂(t) =

An(1 − ρ) (ts − tk) + qminAnρ (L (tk)− L (ts)) > 0 (because ts > tk and L (tk) > L (ts)).

Thus, assigning control to k does not maximize π̂s(t), because assigning control to s (leaving

ı̂ unchanged) would do better. An analogous contradiction arises if ı̂ ̸= h.

Case 2: Suppose instead that k = ı̂. We next assume ȷ̂ ̸= ı̂, which is without loss of gen-

erality (since the proof in Case 1 applies if ȷ̂ = ı̂). Then ȷ̂ ̸= k by Claim 1. Clearly, either

ı̂ ̸= s or ı̂ ̸= h (or both) must hold. If ȷ̂ ̸= s, then ψȷ̂s(t)−ψȷ̂k(t) = (L (tk)− L (ts))Anρ > 0.

This implies that ı̂ = k does not maximize π̂s(t), because ı̂ = s (leaving ȷ̂ unchanged) would

do better. An analogous contradiction arises if ȷ̂ ̸= h.

This completes the proof. □

Proof of Proposition 5: We have shown that if qmin ≥ 0.5, then ρ̄ ≥ 1 ≥ ρ for all th > ts,

where ρ̄ is defined in (41) and used in Proposition 4.

Claim 1: If qmin < 0.5, then for all th > ts,

1− (1− 2qmin)

(1− qmin)− δ2
≤ ρ̄ ≤ 1− (1− 2qmin)

(1− qmin)− δ1
.

Proof: Rewrite (41) as

ρ̄ = 1− (1− 2qmin)

(1− qmin)− 1
L(th)−L(ts)

th−ts

,

which increases in L(th)−L(ts)
th−ts

under the premise qmin < 0.5. This and (42) yield Claim 1.

Claim 2: (i) If ρ̄ ≥ ρ for all th > ts, then KB(ts) ≥ KA(ts) so that K(ts) = KB(ts), where K

is defined in (39). (ii) If ρ̄ ≤ ρ for all th > ts, then KB(ts) ≤ KA(ts) so that K(ts) = KA(ts).

Proof: The right-hand side of (40) strictly decreases in ρ, and it equals zero at ρ ≤ ρ̄. Thus,

for any th > ts,

ψhs ≥ ψsh if ρ̄ ≥ ρ and ψhs ≤ ψsh if ρ̄ ≤ ρ. (72)

Next, fix a given ts and consider th = KB(ts). Then (36) and (37) yield ψhh = ψhs. If ρ̄ ≥ ρ for

all th > ts, then (72) yields ψhs ≥ ψsh, hence we have (by ψhh = ψhs) ψhh ≥ ψsh. Hence (38)

yields th ≥ KA (ts), which yields (by our assumption that th = KB (ts)) KB (ts) ≥ KA (ts).

This establishes part (i) of Claim 2. A similar argument establishes part (ii) of Claim 2.
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Next refer to (27). Note that the second term of the right-hand side of (27) is zero for

both Mechanisms A and B. Further, Mechanism A is incentive compatible if ρ ≥ q
1−q

(by

Proposition 2) and Mechanism B is incentive compatible if ρ ≤ q
1−q

(by Proposition 3). These

properties, combined with Claims 1 and 2 and Proposition 4, establishes Proposition 5. □

Proof of Proposition 6: From the proof of Proposition 2, Mechanism A satisfies ex post

local IC, regardless of whether ρmin ≥ q
1−q

holds (i.e., ρmin ≥ q
1−q

is only needed to ensure

global ex post IC). Hence, Mechanism A satisfies local interim IC with q = qmin, regardless

of the value of qmin. Similarly, Mechanism B satisfies local interim IC with q = qmin. With

these results and Lemma 5, the same logic as that for parts (ii) and (iii) of Proposition 5

implies the result. □
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