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1 Infimum and Supremum

Definition 1. Fix a set Y ⊆ R. A number α ∈ R is an upper bound of Y if y ≤ α for all
y ∈ Y , and is a lower bound of Y if the opposite inequality holds.

Definition 2. Number α ∈ R is the least upper bound of Y , denoted α = supY , if:

(1) α is an upper bound of Y ; and

(2) γ ≥ α for any other upper bound γ of Y .

Definition 3. Analogously, number β ∈ R is the greatest lower bound of Y , denoted β =
inf Y , if:

(1) β is a lower bound of Y ; and

(2) if γ is a lower bound of Y , then γ ≤ β.

Theorem 1. α = supY if and only if for all ε > 0 it is true that

(a) y < α + ε for all y ∈ Y ; and

(b) α− ε < y for some y ∈ Y .

Proof: (⇒) Let α = supY and ε > 0 be arbitrary. Since α is an upper bound of Y , then
y ≤ α for all y ∈ Y . Thus, y ≤ α + ε for all y ∈ Y , that is, (a) is true. Suppose (b) is not
true, that is, α − ε ≥ y for all y ∈ Y . Then α − ε is an upper bound of Y that is strictly
smaller than α, a contradiction. We conclude that α− ε < y for some y ∈ Y .

(⇐) Suppose for all ε > 0, y < α+ ε for all y ∈ Y . This implies that α ≥ y for all y ∈ Y and
so it is an upper bound of Y . To get a contradiction, suppose α is not the supremum of Y.
Then, there must exist another upper bound α′ of Y such that α′ < α. Let ε′ = α−α′

2
. Then

there exists y
′

such that α
′

= α − (α′ − α′
) < α − ε′ < y′ which contradicts α′ is an upper

bound of Y . Q.E.D.

Corollary 1. Let Y ⊆ R and α ≡ supY . Then there exists a sequence {yn}∞n=1 in Y that
converges to α.

2 Maximisers

From now on, maintain the assumptions that set D ⊆ RK , for a finite K, is nonempty.
We need a stronger concept of extremum, in particular one that implies that the extremum

lies within the set. Thus,

Definition 4. A point x ∈ R is the the maximum of set Y ⊆ R, denoted x ≡ maxA, if
x ∈ Y and y ≤ x for all y ∈ Y .

1Based on notes by Andrés Carvajal
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The proofs of the following two results are left as exercises

Theorem 2. If maxY exists, then

(a) it is unique.

(b) supY exists and supY = maxY .

Proof: Suppose maxY exists.
(a) Suppose y1 6= y2 are maxima of the set Y . Then, y1 ∈ Y and y2 ∈ Y . But then, by
definition of maximum, y1 ≤ y2 and y2 ≤ y1 and we conclude that y1 = y2, a contradiction.
(b) Let γ be an arbitrary upper bound of Y . Since maxY ∈ Y , then γ ≥ maxY and maxY
is an upper bound of Y , it follows that supY exists and maxY = supY . Q.E.D.

Theorem 3. If supY exists and supY ∈ Y , then maxY exists and maxY = supY .

Proof: Suppose supY exists and supY ∈ Y . Then supY ≥ y for all y ∈ Y and supY ∈ Y .
Thus, maxY exists and maxY = supY . Q.E.D.

Now, it typically is of more interest in economics to find extrema of functions, rather than
extrema of sets. To a large extent, the distinction is only apparent: what we will be looking
for are the extrema of the image of the domain under the function.

Definition 5. A point x̄ ∈ D ⊂ RK is a a global maximizer of f : D → R if f(x) ≤ f(x̄)
for all x ∈ D.

Definition 6. A point x̄ ∈ D ⊂ RK is the a local maximizer of f : D → R if there exists
some ε > 0 such that f(x) ≤ f(x̄) for all x ∈ Bε(x̄) ∩D.

When x̄ ∈ D is a local (global) maximizer of f : D → R, the number f(x̄) is said to
be a local (the global) maximum of f . Notice that, in the latter case, f(x̄) = max f [D],
although more standard notation for max f [D] is maxD f or maxx∈D f(x).2 Notice that there
is a conceptual difference between maximum and maximizer! Also, notice that a function
can have only one global maximum even if it has multiple global maximizers, but the same
is not true for the local concept. The set of maximizers of a function is usually denoted by
argmaxDf .

By analogy, b ∈ R is said to be the supremum of f : D → R, denoted b = supD f or
b = supx∈D f(x), if b = sup f [D]. Importantly, note that there is no reason why ∃x ∈ D such
that f(x) = supD f even if the supremum is defined.

3 Existence

Theorem 4 (Weierstrass). Let C ⊆ D ⊂ RK be nonempty and compact. If the function
f : D → R is continuous, then there are x̄, x ∈ C such that f(x) ≤ f(x) ≤ f(x̄) for all x ∈ C.

2 A point x̄ ∈ D is said to be a local minimizer of f : D → R if there is an ε > 0 such that for all
x ∈ Bε(x̄) ∩D it is true that f(x) ≥ f(x̄). Point x̄ ∈ D is said to be a global minimizer of f : D → R if for
every x ∈ D it is true that f(x) ≥ f(x̄). From now on, we only deal with maxima, although the minimization
problem is obviously covered by analogy.
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Proof: Since C is compact and f is continuous, then f [C] is compact. By Corollary 1, there is
{yn}∞n=1 in f [C] such that. yn → sup f [C]. Since f [C] is compact, then it is closed. Therefore,
sup f [C] ∈ f [C]. Thus, there is x ∈ C such that f(x) = sup f [C]. By def. of sup, f(x) ≥ f(x)
for all x ∈ C. Existence of x is left as an exercise. Q.E.D.

The importance of this result is that when the domain of a continuous function is closed
and bounded, then the function does attain its maxima and minima within its domain.

4 Characterizing maximizers

Even though maximization is not a differential problem, when one has differentiability there
are results that make it easy to find maximizers. For this section, we take set D to be open.

4.1 Problems in R
For simplicity, we first consider the case K = 1 and D ⊂ R.

Lemma 1. Suppose that f : D → R is differentiable. If f ′(x̄) > 0, then there is some δ > 0
such that for every x ∈ Bδ(x̄) ∩D we have f(x) > f(x̄) if x > x̄, and f(x) < f(x̄) if x < x̄.

Proof: Let ε ≡ f ′(x̄)
2

> 0. Then, f ′(x̄)− ε > 0 . By def. of f ′, there exists δ > 0 such that

|f(x)−f(x̄)
x−x̄ − f ′(x̄)| < ε, ∀x ∈ B′δ(x̄) ∩D.

Hence, f(x)−f(x̄)
x−x̄ > f ′(x̄)− ε > 0. Q.E.D.

The analogous result for the case of a negative derivative is presented, without proof, as
the following corollary.

Corollary 2. Suppose that f : D → R is differentiable. If f ′(x̄) < 0, then there is some
δ > 0 such that for every x ∈ Bδ(x̄) ∩D we have f(x) < f(x̄) if x > x̄, and that f(x) > f(x̄)
if x < x̄.

Theorem 5. Suppose that f : D → R is differentiable. If x̄ ∈ D is a local maximizer of f ,
then f ′(x̄) = 0.

Proof: Suppose not: f ′(x̄) 6= 0. If f ′(x̄) > 0, then, by Lemma 1, there is δ > 0 such that for
all x ∈ Bδ(x̄) ∩D satisfying x > x̄ we have that f(x) > f(x̄). Since x̄ is a local maximizer of
f , then there is ε > 0 such that f(x) ≤ f(x̄) for all x ∈ Bε(x̄) ∩D . Since x̄ ∈ int(D), there
is γ > 0 such that Bγ(x̄) ⊆ D. Let β = min{ε, δ, γ} > 0. Clearly, (x̄, x̄ + β) ⊂ B′β(x̄) 6= ∅
and B′β(x̄) ⊆ D. Moreover, B′β(x̄) ⊆ Bδ(x̄) ∩ D and B′β(x̄) ⊆ Bε(x̄) ∩ D. This implies that
there exists x such that f(x) > f(x̄) and f(x) ≤ f(x̄), an obvious contradiction. A similar
contradiction appears if f ′(x̄) < 0, by Corollary 2. Q.E.D.

Theorem 6. Let f : D → R be C2. If x̄ ∈ D is a local maximizer of f then f ′′(x̄) ≤ 0.
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Proof: Since x̄ ∈ int(D), there is ε > 0 for which Bε(x̄) ⊆ D. Fix h ∈ Bε(0). Since f is twice
differentiable, Taylor’s Theorem implies there is some x∗h in the interval joining x̄ and x̄ + h,
such that

f(x̄+ h) = f(x̄) + f ′(x̄)h+
1

2
f ′′(x∗h)h

2

Since x̄ is a local maximizer, there is a δ > 0 such that f(x) ≤ f(x̄) for all x ∈ Bδ(x̄) ∩ D.
Let β = min{ε, δ} > 0. By construction, for any h ∈ B′β(0) one has that

f ′(x̄)h+
1

2
f ′′(x∗h)h

2 = f(x̄+ h)− f(x̄) ≤ 0.

By Theorem 5, since f is differentiable and x̄ is a local maximizer, f ′(x̄) = 0. Since
h ∈ B′β(0), then f ′′(x∗h)h

2 ≤ 0 and, hence, f ′′(x∗h) ≤ 0. Now, letting h → 0, we obtain
that limh→0 f

′′(x∗h) ≤ 0. It follows hence that f ′′(x̄) ≤ 0 because f ′′ is continuous and each xh
lies in the interval joining x̄ and x̄+ h. Q.E.D.

Notice that the last theorems only give us necessary conditions:3 this is not a tool that
tells us which points are local maximizers, but it tells us what points are not. A complete
characterization requires both necessary and sufficient conditions. We now find sufficient
conditions.

Theorem 7. Suppose that f : D → R is twice differentiable. If f ′(x̄) = 0 and f ′′(x̄) < 0,
then x̄ is a local maximizer.

Proof: Since f : D → R is twice differentiable and f ′′(x̄) < 0, by Corollary 2 there is δ > 0
such that for x ∈ Bδ(x̄) ∩D, (i )f ′(x) < f ′(x̄) = 0 if x > x̄; and (ii )f ′(x) > f ′(x̄) = 0, when
x < x̄. Since x ∈ int(D), there is an ε > 0 such that Bε(x̄) ⊆ D. Let β = min{δ, ε} > 0. By
the Mean Value Theorem, we have that,

f(x) = f(x̄) + f ′(x∗)(x− x̄) for all x ∈ Bβ(x̄),

for some x∗ in the interval between x̄ and x (why?). Thus, if x > x̄, we have x∗ ≥ x̄, and,
therefore, f ′(x∗) ≤ 0, so that f(x) ≤ f(x̄). On the other hand, if x < x̄, then f ′(x∗) ≥ 0, so
that f(x) ≤ f(x̄). Q.E.D.

Notice that the sufficient conditions are stronger than the set of necessary conditions: there
is a little gap that the differential method does not cover.

Example 1. Consider f(x) = x4 − 4x3 + 4x2 + 4. Note that

f ′(x) = 4x3 − 12x2 + 8x = 4x(x− 1)(x− 2).

Hence, f ′(x) = 0 if and only if x ∈ {0, 1, 2}. Since f ′′(x) = 12x2 − 24x+ 8,

f ′′(0) = 8 > 0, f ′′(1) = −4 < 0, and f ′′(2) = 8 > 0.

Note that x = 0 and x = 2 are local min of f and x = 1 is a local max. x = 0 and x = 2 are
global min but x = 1 is not a global max.

3 And there are further necessary conditions.
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4.2 Higher-dimensional problems

We now allow for functions defined on higher-dimensional domains (namely K ≥ 2 and D ⊂
RK). The results of the one-dimensional case generalize as follows.

Theorem 8. If f : D → R is differentiable and x ∈ D is a local maximizer of f , then
Df(x) = 0.

Theorem 9. If f : D → R is C2 and x ∈ D is a local maximizer of f , then D2f(x) is negative
semidefinite.

As before, these conditions do not tell us which points are maximizers, but only which
ones are not. Before we can argue sufficiency, we need to introduce the following lemma.

Theorem 10. Suppose that f : D → R is C2 and let x̄ ∈ D. If Df(x̄) = 0 and D2f(x̄) is
negative definite, then x̄ is a local maximizer.

Example 2. Consider f(x, y) = x3 − y3 + 9xy. Note that

f ′x(x, y) = 3x2 + 9y

f ′y(x, y) = −3y2 + 9x

Hence, f ′x(x, y) = 0 and f ′y(x, y) = 0 ⇐⇒ (x, y) ∈ {(0, 0), (3,−3)}.

D2f(x) =

(
f ′′xx f ′′yx
f ′′xy f ′′yy

)
=

(
6x 9
9 −6y

)
.

Note that
f ′′xx = 6x, |D2f(x, y)| = −36xy − 81.

At (0, 0) the two minors are 0 and −81. Hence, D2f(0, 0) is indef. At (3,−3) the two minors
are 18 and 243. Hence, D2f(3,−3) is positive definite and (3,−3) is a local min. (3,−3) is
not a global min since f(0, n) = −n3 → −∞ as n→∞.

5 Global Maxima

Note that the results that we obtained in the previous sections hold only locally. We now
study the extent to which local extrema are, in effect, global extrema.

Theorem 11. Suppose D ⊂ R and f : D → R is C1 in the interior of D and:

1. the domain of f is an interval in R.

2. x is a local maximum of f , and

3. x is the only solution to f ′(x) = 0 on D.

Then, x is the global maximum of f .

Proof: In order to get a contradiction, suppose there exists x∗ such that f(x∗) > f(x).
Without loss in generality, assume x∗ > x. Since x is a local maximum, there exists ε > 0
such that f(x) < f(x) for all x ∈ Bε(x) ∩ D. Hence, f is strictly decreasing to the right
of x and so f ′(x) < 0 for some x

′ ∈ Bε(x) ∩ D. Since f(x∗) > f(x), there must also exist
x

′
< x

′′
< x∗∗ such that f ′(x

′′
) > 0. But then, by continuity of f ′ there exists x

′
< x < x

′′

such that f ′(x) = 0, a contradiction. Q.E.D.
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To obtain further results, we need to introduce some definitions.

Definition 7. Let D be a convex subset of RK. Then, f : U → R is a

• concave function if for all x, y ∈ U , and for all θ ∈ [0, 1],

f(θx+ (1− θ)y) ≥ θf(x) + (1− θ)f(y)

• strictly concave function if for all x, y ∈ U , x 6= y, and for all θ ∈ (0, 1),

f(θx+ (1− θ)y) > θf(x) + (1− θ)f(y)

Definition 8. Let D be a convex subset of RK. Then, f : U → R is a

• quasi-concave function if for all x, y ∈ U , and for all θ ∈ [0, 1],

f(x) ≥ f(y) =⇒ f(θx+ (1− θ)y) ≥ f(y)

• strictly quasi-concave function if for all x, y ∈ U , x 6= y, and for all θ ∈ (0, 1),

f(x) ≥ f(y) =⇒ f(θx+ (1− θ)y) > f(y)

The following Theorem shows that quasi-concavity and strict quasi-concavity are ordinal
properties of a function.

Theorem 12. Suppose D ⊂ RK, f : D → R is quasi-concave and g : f(D) → R is nonde-
creasing. Then g ◦ f : D → R is quasi-concave. If f is strictly quasi-concave and g is strictly
increasing, then g ◦ f is strictly quasi-concave.

Proof: Consider any x, y ∈ U . If f is quasi-concave, then f(θx+(1−θ)y) ≥ min{f(x), f(y)}.
Therefore, g nondecreasing implies

g(f(θx+ (1− θ)y)) ≥ g(min{f(x), f(y)}) = min{g(f(x)), g(f(y))}.

If f is strictly quasi-concave, then for x 6= y, we have f(θx + (1 − θ)y) > min{f(x), f(y)}.
Therefore, if g is strictly increasing, we have

g(f(θx+ (1− θ)y)) > g(min{f(x), f(y)}) = min{g(f(x)), g(f(y))}.

Q.E.D.

Theorem 13. Suppose that D ⊂ RK is convex and f : D → R is a concave function. If
x̄ ∈ D is a local maximiser of f , it is also a global maximiser.

Proof: We argue by contradiction: suppose that x̄ ∈ D is a local maximizer of f , but it is
not a global maximizer. Then, the proof follows from four steps:
1. There is ε > 0 such that f(x) ≤ f(x̄) for all x ∈ Bε(x̄) ∩D;
2. There is x∗ ∈ D such that f(x∗) > f(x̄). Clearly, x∗ /∈ Bε(x̄), and so ‖x∗ − x̄‖ ≥ ε.
3. Now, since D is convex and f is concave, we have that for θ ∈ [0, 1],

f(θx∗ + (1− θ)x̄) ≥ θf(x∗) + (1− θ)f(x̄),
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but, since f(x∗) > f(x̄), we further have that if θ ∈ (0, 1], then θf(x∗) + (1− θ)f(x̄) > f(x̄),
so that f(θx∗ + (1− θ)x̄) > f(x̄).
4. Now, consider θ∗ ∈ (0, ε/‖x∗ − x̄‖). Clearly, θ∗ ∈ (0, 1), so f(θ∗x∗ + (1 − θ∗)x̄) > f(x̄).
However, by construction,

‖(θ∗x∗ + (1− θ∗)x̄)− x̄‖ = θ∗‖x∗ − x̄‖ < (
ε

‖x∗ − x̄‖
)‖x∗ − x̄‖ = ε,

which implies that (θ∗x∗ + (1 − θ∗)x̄) ∈ Bε(x̄), and, moreover, by convexity of D, we have
that (θ∗x∗ + (1 − θ∗)x̄) ∈ Bε(x̄) ∩ D. This contradicts the fact that f(x) ≤ f(x̄) for all
x ∈ Bε(x̄) ∩D. Q.E.D.

An analogous reasoning let us show that strict quasi concavity implies that a local max-
imiser is also a global maximiser. Note that the result does not hold if we just assume
quasi-concavity (why?).

Theorem 14. Suppose that D ⊂ RK is convex and f : D → R is a strictly quasi-concave
function. If x̄ ∈ D is a local maximizer of f , then it is also a global maximizer.

Proof: The proof follows by steps 1, 2 and 4 in the proof of Theorem 13. Q.E.D.

For the sake of practice, it is a good idea to work out an exercise like Exercise 3.9 in pages
57 and 58 of Simon and Blume.

6 Uniqueness

Theorem 15. Suppose U ⊂ RK, f : U → R attains a maximum on U .
(a) If f is quasi-concave, then the set of maximisers is convex.
(b) If f is strictly quasi-concave, then the maximiser of f is unique.

Proof: (a) Suppose x and y are maximisers of f . Let z ∈ U and θ ∈ [0, 1] be arbitrary. Since
f(x) = f(y), f is quasi-concave and x is a maximiser, then

f(θx+ (1− θ)y) ≥ f(x) ≥ f(z)

and so it follows that θx+ (1− θ)y is a maximiser of f .
(b) Suppose x and y are maximisers of f but x 6= y. Then,

f

(
1

2
x+

1

2
y

)
> min{f(x), f(y)} = f(x)

which implies that x is not a maximiser of f , a contradiction. Q.E.D.
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