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This lecture is based on “Market Selection and Asset Pricing,” by Blume and
Easley (2009).
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Represenation
Subject Expected Utility

@ STATES: s € S.

e Prizes: C.

o Acrts: f:5— C.

@ SET OF AcTs: L

e PREFERENCES: 77, a binary relation on L.

Definition

The preference relation 2~ on £ has a subjective expected utility (SEU)

representation if there is a function v : C — R and a probability
distribution 7T on S such that

frege ) nls)u(f(s) =) n(s)u(g(s))

seS seS
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Rz
Bayesian Updating

o Let A C S such that r(A) > 0.

o 71(B|A) = ML
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cekplrsallecne
SEU and Bayesian Updating

@ Every expected utility maximiser is a Bayesian.
@ For acts f and h, define:

[ f(s) ifseA
fah(s) = { h(s) ifsgA

Definition
f is at least as good as g given A, denoted f 4 g, if for all acts h € L,
fah(s) 7 gah(s).

Theorem
Suppose - has an SEU representation. Then,

fZag e Exaulf(s)) = Eqxjayulg(s)).
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Subject Expected Utlity SEU and Bayesian Updating

@ PROOF: Let he L .

fah 22 gah
T
2 TT(S fAh Z 2 7T S gAh )
seS seS

IV =

Y, i(s)u(f(s)) + ) m(s)u(h(s))

sEA SZA s€A sZA

Y 7i(s)u(f(s)) Y 7i(s)u(g(s))

seA seA

vV <=

vV <

seA sEA
T
) m(s|A ) > ) n(s|A)u(g(s))
seEA seEA
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Subject Expected Utlity Bayesian Learning

Bayesian Learning: Simple Case

@ An agent believes flips of a coin are i.i.d. and that the probability of
H is either p > % or g < % He believes in p with probability «.

e S={HT}.
° =5
e 7T are beliefs on w € {p, q} x O
n(p) = « n(q) =1—a.
n(Hlp) = p n(H|q) = q
n(p, H) = ap n(q, H) = (1—a)q
mt(H) ap+(1—a)q
n(plH) = mp. H) i >a = 7(p)
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Subject Expected Utlity Bayesian Learning

Bayesian Learning: Simple Case

(p,H,T)
(pIH.T) _ =HT _ 7(p.H.T)
nt(g|H, T) ﬂn?}f'TT)) n(q,H, T)
_ n(Tlp. H)r(p|H)m(H)
n(Tlq, H)m(q|H)mt(H)
_ n(Tlp)n(plH) _ <1—p> mt(plH)
n(Tlq)m(q|H) 1—q) n(q|H)
In general,
m(plst) _ mlplstlse) _ m(selp)m(plstTh)
7(qlst) m(qlst=tse)  7(selq)m(qlst—t)

ph(sd (1 — )(st (pls'™)
gtls) (1 — q)tr(s) 7r(glst)

- (87 () e
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Bayesian Learning
Bayesian Learning: Simple Case

o = (7 620" e
- (e
- (762"

7(p) 1—p
lo = lo + Ty (sk) lo —Hl si)lo
T = e lule ont +Irlslor 12
1 m(pls) _ n(p) | 1-p
tlog (a5 Iog 7T(q) Z]IH sk) log = +]1-r(sk)|og 4
— rlog=+(1—r)log 1 P (SLLN).
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Relative Entropy
Definition

The relative entropy of p with respect to r is

r 1—r
I(p) = rlog;+(1—f) log 7

@ /(p)>0.
(2] Ir(p):0<:>p:r

o Posteriors converge:

1. m(p|st
E IOgnEgIst; — Ir(q) - /r(p)
@ Posteriors concentrate on the points of the support with lowest entropy.
o I(p) < I(q) = m(p|ht) — L.
o I(p) > I(q) = m(q|ht) = 1
@ If the true distribution is in the support, posteriors converge to the truth:
o If r=p,I(p) =0< I (q) = n(p|ht) — 1.
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GENERAL SETUP

@ X is a finite set and (X, .A) is a measurable space.
@ O is the space of all probability measures on (X, A).

@ 0: A [0,1] is a probability measure on X (an element of the #£X — 1
dimensional simplex).

@ {Xn},_; is a sequence of X—valued random variables that are iid as 6.
@ "= X"and ) = X*.

@ Pp°is thei.i.d. product measure on A%.
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BELIEFS

@ 7T is the prior, a probability measure on (©, B(®)).

@ A is the joint distribution on (® x O, B(©) x A%) given by:

A(B x A) = /B PE(A)dr(6)  forall Bx Ac B(@) x A.

o 71(-|-): B(®) x Q" — [0, 1] is the posterior given X" if

_ S ITi—1 0(Xy)d7t(6)
Jo TTi=1 0(Xy)d7(6)

m(B| X™) for all B € B(O©).
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CONSISTENCY
Definition
The sequence 77(-| X") is consistent at 6, if for every neighbourhood B of 6,:
(B X"(w)) — 1, Py —a.s. w

There are several consistency theorems due to:
e Doob (1949),
@ Schwartz (1965),
e Wald (1949).

Theorem
Let X be a finite set and I1 be a prior on ®. Then the posterior is consistent
at all points in the support of T1.
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Subject Expected Utlity Consistency in the Parametric case

SKETCH OF PROOF

n(BIXT) _ [eT1 09 Xe)(do) Je Tl 09€>Xt n(do) féelog(nzzo‘i(i)ggt)))”(de)
m( Be|XT) Joe I_of(Xe)(d0) — [ 11T 09 >) 7(df) fBCelog<HZ=o%)ﬂ(d9)
o)y e o)
et ) e o () i)
g )
- [sce el (egoét)))n(de

@ Choose 4 such that &1 = supgep, l, (0) < infocpe Iy, (0) = €2. Then,

(x

TZXEX Tx Iog< €9 )

7(BIXT) fBae
BXT) = - T
n(BeIXT) fee Lo T og( 2555 )
o Note that ¥, o x = — log ( ))) — Ip,(0). Use the uniform SLLN to argue that:
n(BIXT) T1(B;) e 71 _ T1(By) —T(e1—
7(BXT) mEY =75 = mege | e
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