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infinitely-lived securities.” by Huang and Werner, Economic Theory, 24, 2004.
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The Economy

There is a single perishable consumption good every period.

A consumption plan is a sequence {ct}∞
t=0 such that c0 ∈ R+ and

ct : S∞ → R+ is Ft−measurable for all t ≥ 1 and sup(t,s) ct(s) < ∞.

Let c(st) ≡ ct(s) for any t and st ∈ S t .

Given s0, C(s0) denotes the set of all consumption plans.

The economy is populated by I (types of) infinitely-lived agents
where i ∈ I = {1, ..., I} denotes an agent’s name.

Agent i is endowed with initial endowment ωi ∈ C(s0)

The aggregate endowment ω ≡ ∑i ωi .

An allocation is a collection of plans {ci}i∈I .
An allocation is feasible if ∑i ci (st) ≤ ω, ∀st , ∀t.

Asset Prices, Market Selection and Belief Heterogeneity Pablo F. Beker 2 of 20



Arrow Debreu and Sequential Markets Arrow-Debreu Markets

Arrow-Debreu Markets

There exists a market at the initial date 0 for consumption at date t
conditional on event st , for every date t and every event st .

Prices are described by a pricing functional, that is, a linear functional
P which is positive and well-defined (finitely valued) on each
consumer’s initial endowment.

It follows that a pricing functional is well-defined on the aggregate
endowment ω and, therefore, on each feasible allocation. It may or
may not be well-defined on the entire consumption set C(s0)

The price of one unit of consumption in event st under pricing
functional P is p(st) ≡ P(e(st)), where e(st) denotes the
consumption plan equal to 1 in event st at date t and zero in all
other events and all other dates.

A pricing functional P is countably additive if and only if
P(c) = ∑t ∑st p(st)c(st) for every c for which P(c) is well-defined.
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Arrow Debreu Budget Set

Trades occur only at date zero.

Agent i can only choose a consumption plan such that the value of
consumption does not exceed the value of agent i ’s endowment.

The agent chooses a plan on the budget set BAD(P, ωi ) where:

BAD(P, ωi ) ≡ {c ∈ C(s0) : P(c) ≤ P(ωi )}

=

{
c ∈ C(s0) :

∞

∑
t=0

∑
st∈S t

p(st)c(st) ≤
∞

∑
t=0

∑
st∈S t

p(st)ωi (s
t)

}

Consumer i ’s problem is to choose a consumption plan ci ∈ C(s0)
such that

ci %i c , ∀c ∈ BAD(P, ωi )
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Arrow Debreu Equilibrium

Agents trade at date zero under a single budget constraint.

Definition

An Arrow-Debreu equilibrium is a pricing functional P and a consumption

allocation
{

c i
}I
i=1

such that c i solves consumer i ’s problem and markets
clear.

The Arrow-Debreu model of contingent commodity markets is hardly
realistic.

Yet, it serves as an important tool for the analysis of infinite-time
security markets.

This is because one can show that Arrow-Debreu equilibria and
equilibria in sequential security markets with debt constraints have
the same consumption allocations when markets are dynamically
complete and debt bounds are nonbinding.
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Sequential Markets
There are J ≥ S infinitely-lived securities traded at every date.
Each security j is specified by a dividend process dj which is adapted
to {Ft}∞

t=0 and nonnegative.
The ex-dividend price of security j in event st is denoted by qj (st),
and qj is the price process of security j .
Portfolio strategy θ specifies a portfolio of J securities θ(st) held
after trade in each event st .
The payoff of portfolio strategy θ in event st at a price process q is

z(q, θ)(st) ≡
[
q(st) + d(st)

]︸ ︷︷ ︸
r (st )

θ(st−1)− q(st)θ(st)

Definition

Security price process q is one-period-arbitrage free in event st if there
does not exist a portfolio θ (st) such that:[

q(st , st+1) + d(st , st+1)
]

θ(st) ≥ 0 for all s and q(st)θ(st) ≤ 0,

with at least one strict inequality.
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No arbitrage
If q is arbitrage free in every event, then there exists a sequence of strictly
positive state prices

{
{πq(st)}st∈S t

}∞
t=0

with πq(s0) = 1 such that

πq(s
t)qj (s

t) = ∑
st+1∈S

πq(s
t , st+1)

[
qj (s

t , st+1) + dj (s
t , st+1)

]
∀st , ∀j

Definition

Security markets are one-period complete in event st at prices q if the
one-period payoff matrix [q(st , st+1) + d(st , st+1)]st+1∈S has rank S . Security
markets are complete at q if they are one-period complete at every event.

Suppose the security prices q are one-period arbitrage free and that
markets are complete at q. Then, the fundamental value of security j at
st is defined using the unique state prices as

1

πq(st)

∞

∑
τ=1

∑
sτ∈Sτ

πq(s
t , sτ)dj (s

t , sτ) (1)
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Sequential Markets

Each agent i has an initial portfolio αi ∈ <J at date 0.

The dividend stream αid on initial portfolio constitutes one part of
consumer i ’s endowment. The rest is yi ∈ C(s0) and becomes available to
the consumer at each date in every event. Thus,

ωi (st) = yi (s
t) + αid(s

t), ∀st ∈ S t

The supply of securities is α = ∑i αi .

The adjusted aggregate endowment is y = ∑i yi . Let’s assume α ≥ 0.
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Sequential Budget Set

θi supports ci at (q, yi ) if

ci ,0 + q(s0)θ(s0) ≤ yi (s0) + q(s0)αi

ci (s
t) + q(st)θ(st) ≤ yi (s

t) +
[
q(st) + d(st)

]
θ(st−1), ∀st 6= s0

Consumers must also face constraints in their portfolio strategies for
otherwise they would use Ponzi schemes. There is a set Θi of feasible
supporting portfolios.

The sequential budget set is:

B(q; yi ) ≡
{

ci ∈ C(s0) : ∃θi ∈ Θi 3 ci (s
t) + q(st) · θi (st) ≤

yi (s
t) + r(st) · θi (st−1), ∀ s ∈ S∞, ∀ t ≥ 0.

}
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The Wealth Constraint

A frequently used portfolio constraint is the so-called wealth constraint.
It prohibits a consumer from borrowing more than the present value of
his future endowment. Formally,

Definition

Portfolio θ satisfies the wealth constraint if

q(st)θ(st) ≥ −
∞

∑
τ=1

∑
sτ∈Sτ

πq(st , sτ)

πq(st)
y(st , sτ)

The set of Arrow-Debreu equilibrium allocations is the same as the set of
Sequential Markets equilibrium allocations under the wealth constraint
with no bubbles.

There always exist a sequential equilibria with price bubbles under the
wealth constraint if some securities are in zero net supply.
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Essentially Bounded Portfolios

A portfolio constraint for which neither price bubbles nor negative
security prices arise in equilibrium and AD equilibria can be implemented
in sequential markets.

Definition
A portfolio θ is bounded from below if minj inf(t,st ) θj (s

t) > −∞

Definition
A portfolio strategy θ is essentially bounded from below at q if there is a
bounded from below portfolio strategy b s.t. q(st)θ(st) ≥ q(st)b(st) ∀st .

Proposition

If security price vector q(st) is positive and nonzero for every partial history st , then

portfolio θ is essentially bounded if and only if infst
q(st )

∑j qj (st )
θ(st) > −∞.
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Euler Equations
We say that ci satisfies the Euler equation at the price process q if

u′i (ci ,t(s))qj ,t(s) = βi ·EPi
[rj ,t+1 ·u′i (ci ,t+1)|Ft ](s) ∀j ∈ J, ∀s ∈ S∞, ∀t ≥ 0.

ASSUMPTION U : ui : R++ → R is
(i) strictly increasing, strictly concave, C 1 & ui (0) ≡ limc→0+ui (c)
(ii) βi ∈ (0, 1).

Definition

For i , ci is a maximizer given q if

1 ci ∈ B(q; yi ) and

2 there is no c̃i ∈ B(q; yi ) for which

limT→+∞

T

∑
t=0

βt
i EPi

[ui (c̃i ,t)] > limT→+∞

T

∑
t=0

βt
i EPi

[ui (ci ,t)].
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Necessary Condition

Suppose the investor can freely buy or sell as much of asset j as she
wishes at a price qj ,t .

Denote by ci the optimal consumption plan.

She can alter her consumption plan as follows:

c̃i ,t = ct − qj ,t · ξt c̃i ,t+1 = ct+1 + rj ,t+1 · ξt

If ci maximises the consumer’s utility, then

qj ,t · u′i (ci ,t) = EPi

[
βi · u′i (ci ,t+1) · rj ,t+1

∣∣Ft

]
,
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Sufficient Conditions

Theorem

Suppose Assumption U . Given (q, yi ), let ci ∈ B(q; yi ) be such that

1 limT→+∞ ∑T
t=0 βt

i EPi
[ui (ci ,t)] > −∞,

2 satisfies the Euler equation at the price process q,

3 for every θ̃i that supports a c̃i ∈ B(q; yi ) the transversality condition at
date 0 holds,

lim
T→+∞

βT
i EPi

[
u′i (ci ,T ) · qT ·

(
θ̃i ,T − θi ,T

)]
≥ 0.

where θi supports ci at (q, yi ). Then ci is the maximiser on B(q; yi ).
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Bubbles

If the fundamental value (1) is finite, the price bubble σqj (st) is

σqj (s
t) ≡ qj (s

t)− 1

πq(st)

∞

∑
τ=1

∑
sτ∈Sτ

πq(s
t , sτ)dj (s

t , sτ) (2)

Proposition

If the price of security j is nonnegative in every event, then the fundamental
value of security j is finite and does not exceed the price of security j, i.e.
0 ≤ σqj (st) ≤ qj (st) for every st . If the fundamental value of security j is
finite and σqj (st) ≥ 0 for every st , then qj (st) ≥ 0 for every st .

Note that (1) and (2) implies that

σqj (s
t) =

1

πq(st)
∑

st+1∈S
πq(s

t , st+1)σqj (s
t , st+1)

σqj (s
t) = lim

T→∞

1

πq(st)
∑

sT∈ST

πq(s
t , sT )qj (s

t , sT )
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Bubbles under the Wealth Constraint

A representative agent economy without uncertainty: yt = y for all t ≥ 0.

A consol pays dt = d < y , is in zero net-supply and trades at price qc
t .

In any equilibrium ct = y and θt = 0 for all t ≥ 0.

qc
t = β

1−β d + εt where εt = ε0
(

1
β

)t
. Hence, πq(st) = βt .

The wealth constraint: qc(st)θ(st) ≥ −∑∞
τ=1

πq(st ,sτ)
πq(st )

y(st , sτ) = −y
β

1−β

c satisfies the Euler equation:

qc
t = β

(
1

1−β d + ε0
(

1
β

)t+1
)
= β

(
β

1−β d + d + εt+1

)
= β (qc

t+1 + d)

c satisfies the TC:

lim
T→∞

βTqc
T

(
θ̃T − θT

)
= lim

T→∞
βTqc

T θ̃T ≥ lim
T→∞

βT

(
−y

β

1− β

)
= 0.
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Bubbles under the Wealth Constraint

Suppose there is a risk-free bond with price qb
t . Clearly, qb

t = β.

Let qt =
(
qc
t , qb

t

)
.

Suppose the agent shorts the consol in one unit and invest
β

1−β d units of

the bond at zero to meet the consol payments?

θ̃t =
(
−1,

β
1−β

d
β

)
for all t ≥ 0.

q0θ̃0 = −qc0 +
β

1−β d = ε0 > 0.[
(qct + d) θ̃ct−1 + θ̃bt−1

]
−
[

qct θ̃ct + qbt θ̃bt

]
= −d + β

1−β d + β
β

1−β
d
β = 0

θ̃t supports c̃0 = c0 + ε, c̃t = ct .

How is this compatible with c being optimal?

The key is that θ̃ violates the wealth constraint and so c̃ 6∈ B(q, y).

qt θ̃t = −qct + qbt
β

1−β
d
β = −

(
β

1−β d + εt
)
+ β

1−β d = −ε0

(
1
β

)t
→ −∞.
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No Bubbles with Essentially Bounded Portfolios

Theorem

If q is an equilibrium price process such that θ is essentially bounded and
security markets are complete at q, then q(st) ≥ 0 and σqj (st) = 0 for
every st .
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Equivalence I

Theorem

Let allocation {ci}Ii=1 and pricing functional P be an Arrow-Debreu
equilibrium. If P is countably additive, P(dj ) < ∞ for each j, security
markets are complete at prices q given by

qj (s
t) =

1

p(st)

∞

∑
τ=t+1

p(sτ)dj (s
τ) ∀st , ∀j (3)

and there exists an essentially bounded portfolio strategy η such that

− 1

p(st)

∞

∑
τ=t+1

∑
sτ∈Sτ

p(sτ)y(sτ) ≥ q(st)η(st) ∀st , ∀j (4)

then there exists a portfolio allocation {θi}Ii=1 such that q and the

allocation {ci , θi}Ii=1 are a sequential equilibrium with essentially bounded
portfolios.
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Equivalence II

Theorem

Let security prices q and {ci , θi}Ii=1 be a sequential equilibrium with
essentially bounded portfoilios. If security markets are complete at q and
there exists an essentially bounded portfolio strategy η such that

− 1

πq(st)

∞

∑
τ=t+1

∑
sτ∈Sτ

πq(s
τ)y(sτ) ≥ q(st)η(st) ∀st , (5)

then {ci , θi}Ii=1 and pricing functional P given by

P(c) = ∑
t

∑
st∈S t

πq(s
t)c(st) (6)

are an Arrow-Debreu equilibrium.
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