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1 Introduction

As already noted by Doob in [11] (p. 102), processes with mutually independent random vari-

ables are only useful in the discrete parameter case. There are indeed essential measurability

difficulties associated with a continuous parameter process with random variables that are in-

dependent even in a weak sense. Two kinds of measurability problem usually arise. The first

concerns joint measurability; namely, except in some trivial cases, such a process can never

be jointly measurable with respect to the completion of the usual product σ-algebra on the

joint space of parameters and samples. This means that the conditions of independence and

joint measurability in the usual sense are incompatible with each other. Thus, one cannot

integrate the process or take its distribution as a function on the joint space. The second

problem concerns sample measurability; as noted in [10], with further elaborations in [17], the

collection of samples whose corresponding sample functions are not Lebesgue measurable has

outer measure one, so Lebesgue measure offers no basis for a meaningful concept of the mean

or the distribution of a sample function.

Nevertheless, in recent years a vast literature in economics has relied on an idealized

model with a continuum of individual consumers facing independent individual risks. The

underlying mathematical model does involve a continuum of independent random variables

or stochastic processes. The parameter space is often taken to be the Lebesgue unit interval

([0, 1],L, λ0). Despite the well known measurability problems associated with such a process,

it has been hypothesized that an exact version of the law of large number holds in the sense

that the observable mean or distribution of a sample function is essentially independent of the

particular sample realization — i.e., individual risks must cancel completely (see, for example,

[4], [6], [8], [9], [19]).

Furthermore, as noted in [14] (p. 238), the kinetic theory of gases depends on the as-

sumption that a very large number of molecules move independently, without any interaction

except with the fixed boundary of a containing vessel. Assuming some version of the exact law

of large numbers together with the ergodic hypothesis, the gas should be completely homo-

geneous in equilibrium. That is, one will have the standard idealized model in which the gas

molecules have locations within the container described by a uniform empirical distribution,

while their velocities have a stable distribution such that mean kinetic energy is proportional

to temperature above absolute zero — see, for example, [16]. Thus, some version of an exact

law of large numbers is needed to provide a firm mathematical foundation for the usual hy-

pothesis that there is a continuous density function over the six-dimensional space of position

and velocity components for each molecule.

In fact, the above two paragraphs merely describe two particular examples of the general
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hypothesis that a deterministic continuous density function is sufficiently accurate to describe a

very large finite random population. Such a hypothesis occurs not just in economics or physics,

but in many other scientific disciplines — including astronomy, biology, chemistry, etc.

In [21]–[24], some rich product probability structures on the joint space of parameters and

of samples are used to make independence compatible with joint measurability. Such enriched

product probability spaces extend the usual product probability spaces, retain the common Fu-

bini property, and also accommodate an abundance of nontrivial independent processes. The

existence of such enriched product probability spaces is guaranteed by the Loeb construction

that had been introduced in [18], before being used in [21]–[24] for the systematic study of

individual uncertainty. In particular, the stability of sample functions or empirical processes in

terms of means or distributions is characterized by the conditions of uncorrelatedness and inde-

pendence holding almost everywhere. This means that these conditions are not only sufficient

for the validity of the desired exact law of large numbers; they are also necessary. Note that

both the sample and joint measurability problems are automatically solved by Keisler’s Fubini

theorem in this richer analytic framework. Here we also point out that the consistency of the

independence condition with the essential constancy of sample distributions was discussed in

[1], [15] and [17] in terms of specific examples (also Remark 3.22 in [22]).

In this paper, we work with a different enrichment of the usual product probability space

— one for which the usual Fubini property may fail. Let (T, T , λ) be a probability space which is

to be used as a parameter space for a process. If one likes, T can be taken to be the unit interval

[0, 1], but (T, T , λ) is not restricted to be the Lebesgue measure structure. Let (Ω,A, P ) be a

sample probability space. For example, it can be the product of a continuum of copies of some

other basic probability space, or some extension of this product, or some other space entirely.

As usual in probability theory, it is not necessary to specify what the sample probability space

is provided some general existence issues are resolved. Let (T ×Ω, T ⊗A, λ× P ) be the usual

product probability space (see, for example, [20]). Let g be a process from T ×Ω to some Polish

space X with Borel σ-algebra B.

We make the following assumptions on g:

1. For λ-almost all t ∈ T , gt is a random variable defined on Ω whose distribution Pg−1
t on

X is denoted by µt.

2. For every B ∈ B, the mapping t 
→ µt(B) is T -measurable.

3. The random variables gt are almost surely pairwise independent in the sense that for

λ-almost all t1 ∈ T , gt1 is independent of gt2 for λ-almost all t2 ∈ T .
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By using Equation (6) on p. 236 in [5], it is easy to see that the second condition is equivalent to

the measurability of the distribution mapping t 
→ µt from T toM(X), where the spaceM(X)

of distributions on X is given the weak convergence topology and associated Borel σ-algebra.

The third condition is an idealized version of weak dependence in probability theory (see the

discussion in [23], p. 437). When λ is atomless, this condition is weaker than mutual indepen-

dence. One may simply observe that if the random variables gt are mutually independent, then

they are pairwise independent and hence also almost surely pairwise independent. When λ has

an atom A, then the third condition implies that for almost all t ∈ A, gt is independent of itself

and hence almost surely a constant. Note that g is not T ⊗A-measurable except in the trivial

case when, for almost all t ∈ T , gt is a.s. a constant (see [11], [23], and also Corollary 1 below).

As shown in [21]–[24], if the usual product probability space (T × Ω, T ⊗ A, λ × P ) is

enriched to a new product probability space (T × Ω,W, Q) with the (full) Fubini property

such that g is W-measurable, then many conventional measure-theoretic operations apply to g

directly. Here, the Fubini property requires that, for any real-valued W-integrable function f ,

the two functions ft and fω are integrable respectively on (Ω,A, P ) for λ-almost all t ∈ T and

on (T, T , λ) for P -almost all ω ∈ Ω; moreover,
∫
Ω ftdP and

∫
T fωdP are integrable respectively

on (T, T , λ) and on (Ω,A, P ), with
∫
T×Ω fdQ =

∫
T (

∫
Ω ftdP ) dλ =

∫
Ω (

∫
T fωdλ) dP . When the

parameter space (T, T , λ) is the usual Lebesgue unit interval and the process g is nontrivial, no

such enriched product probability space (T × Ω,W, Q) exists for any given sample space (see

the Appendix in [22]).

Suppose one can find an enriched product probability space (T × Ω,W, Q) whose Fu-

bini property is stated with respect to extensions (T, T ′, λ′) and (Ω,A′, P ′) of (T, T , λ) and

(Ω,A, P ) respectively. Provided that g is W-measurable, both the sample and joint measur-

ability problems will be solved in this extended framework. However, for any given atomless

parameter space (T, T , λ), Remark 3 in Section 5 below shows that such an extension does

not exist at all for an extended sample space based on the general product measure space, as

discussed in [5] (p. 230). This means that, for a general almost surely pairwise independent

process g that is not taken from a framework where the Fubini property is already satisfied, the

joint measurability and the sample measurability problems for such a process have not been

solved. That is, it is not known whether such a process g itself or its sample functions can

be made measurable on some meaningful measure space. Nor will this paper solve the sample

measurability problem. In fact, a significant open problem is to find conditions guaranteeing

the existence of a suitable extension having the desired Fubini property.

Instead, the purpose of this paper is to show that the joint measurability problem for g

can indeed be solved in a unique way by imposing a natural criterion, called the one-way Fubini
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property. In particular, if F is the smallest extension of the usual product σ-algebra T ⊗ A
such that g is F-measurable, then there is a unique probability measure ν on F such that the

integral of any ν-integrable function f on T ×Ω is equal to the double iterated integral in the

particular order
∫
T (

∫
Ω ftdP ) dλ. As emphasized in the above paragraph, it is in general false

that the sample function fω is T -measurable for P -almost all ω ∈ Ω, so the reverse order of

integration is meaningless. Of course, the Fubini property idealizes the usual rules governing

double or iterated sums in the discrete setting, so it should be imposed whenever possible.

From another point of view, the one-way Fubini property ensures that the extended measure

ν on F takes the correct values. Otherwise, as noted in Remark 1 below, one may obtain

completely arbitrary and meaningless extensions.

The rest of the paper is organized as follows. Section 2 presents the main result (Theo-

rem 1) on the unique extension. As a consequence, it is shown that for any T ⊗A-measurable

function h, the two random variables gt and ht are independent for λ-almost all t ∈ T . This

means that T ⊗ A-measurable functions differ fundamentally from the process g. The proof

of Theorem 1 is given in Section 3. Additional measure structures related to the extension

(T × Ω,F , ν) are discussed in Section 4. Section 5 shows that the extended framework with

the one-way Fubini property has many desirable features, including a new characterization of

the most basic probabilistic concept — stochastic independence in terms of regular conditional

distributions. In particular, it is shown that a process f is almost surely pairwise independent

if and only if the distribution mapping λf−1
t from T to M(X) provides a regular conditional

distribution of f conditioned on T ⊗ A.

2 The unique extension with the one-way Fubini property

Let g be the process defined in Section 1. Define the mapping H : T × Ω → T × Ω × X by

H(t, ω) := (t, ω, g(t, ω)). Note that for each t ∈ T , Ht is the mapping such that Ht(ω) =

(ω, gt(ω)).

Let E := T ⊗ A ⊗ B denote the product σ-algebra on T × Ω ×X. Let F := {H−1(E) :

E ∈ E}. Then it is clear that F is a σ-algebra. Also, the first two components of H(t, ω) are

given by the identity mapping idT×Ω on T × Ω, while the last component is g(t, ω). Hence, F
is the smallest σ-algebra such that idT×Ω and g are both measurable. This means that F is

the smallest extension of the product σ-algebra T ⊗ A such that g is measurable.

The following theorem shows that there is a unique probability measure ν on F which

extends λ×P on T ⊗A, and has the property that integrating a ν-integrable function f on T×Ω

is equivalent to evaluating an iterated double integral in the particular order
∫
T (

∫
Ω ftdP ) dλ

— i.e., integration w.r.t. ν satisfies the one-way Fubini property.
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Theorem 1 (1) For any E ∈ E = T ⊗A⊗B, for λ-a.e. t ∈ T the set H−1
t (Et) is A-measurable,

with P (H−1
t (Et)) = (P × µt)(Et); also, the mapping t 
→ (P × µt)(Et) is λ-integrable.

(2) There is a unique probability measure ν on the measurable space (T × Ω,F) such

that for any F ∈ F , the set Ft is A-measurable for λ-almost all t ∈ T , and t 
→ P (Ft) is a

λ-integrable function with ν(F ) =
∫
T P (Ft)dλ; then (T ×Ω,F , ν) is an extension of (T ×Ω, T ⊗

A, λ× P ).

(3) Let f be any integrable function on (T × Ω,F , ν). Then, for λ-almost all t ∈ T ,

ft is integrable on (Ω,A, P ), and Eft :=
∫
Ω ftdP is integrable on (T, T , λ), with

∫
T×Ω fdν =∫

T Eftdλ; moreover, ν is the unique extension of λ× P with this property.

The following proposition shows that, for any T ⊗ A-measurable function h, the two

random variables gt and ht are independent for λ-almost all t ∈ T . This means that any

T ⊗ A-measurable function differs fundamentally from the process g.

Proposition 1 Let h be a measurable function from the product space (T ×Ω, T ⊗A, λ×P ) to

a Polish space Y . Then, for λ-almost all t ∈ T , gt and ht are independent — i.e., P (h−1
t (D)∩

g−1
t (B)) = P (h−1

t (D))P (g−1
t (B)) for all Borel sets B in X and D in Y .

Proof. Let E := h−1(D) × B ∈ T ⊗ A ⊗ B = E . Then Et = h−1
t (D) × B and H−1

t (Et) =

h−1
t (D) ∩ g−1

t (B). So for λ-a.e. t ∈ T , part (1) of Theorem 1 implies that

P (h−1
t (D) ∩ g−1

t (B)) = P (H−1
t (Et)) = (P × µt)(Et) = P (h−1

t (D))µt(B)

= P (h−1
t (D))P (g−1

t (B)).

Now we can use an argument like that in the proof of Theorem 7.6 in [22]. There exist

countable open bases BX and BY for the respective topologies of the Polish spaces X and Y

such that each is closed under finite intersections. Because BX and BY are countable, the above

paragraph implies that there exists a λ-null set S0 such that, for all t /∈ S0,

P (g−1
t (OX) ∩ h−1

t (OY )) = P (g−1
t (OX)) · P (h−1

t (OY ))

holds simultaneously for all OX ∈ BX and all OY ∈ BY . Thus, for any t /∈ S0, the joint

distribution P (gt, ht)−1 on X×Y agrees with the product Pg−1
t ×Ph−1

t of its marginals on the

π-system {OX×OY : OX ∈ BX , OY ∈ BY } for X×Y . So by a result on the unique extension of

measures (see [13], p. 402), the two are the same on the whole product σ-algebra. This implies

that ht and gt are independent for all t /∈ S0, which completes the proof. ✷

This leads to the following obvious corollary, which was Proposition 1 in [23]. When λ is

Lebesgue measure and the process g is iid, a similar result was already noted by Doob in [11]

(p. 67).
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Corollary 1 If g is measurable on (T × Ω, T ⊗ A, λ × P ), then for λ-almost all t ∈ T , the

random variable gt is essentially constant.

Proof. Proposition 1 implies that for λ-a.e. t ∈ T , gt is independent of itself and hence a

constant. ✷

The following result extends Theorem 4.2 in the two-way Fubini framework of [3] to the

general case.

Corollary 2 Let C be a subset of T × Ω such that 0 < P (Ct) < 1 for λ-almost all t ∈ T .

Suppose the events Ct (t ∈ T ) are almost surely pairwise independent — i.e., for λ-almost all

t1 ∈ T , Ct1 is independent of Ct2 for λ-almost all t2 ∈ T . Then C has outer measure one and

inner measure zero with respect to λ× P .

Proof. Let g be the indicator function 1C of C. Then g is a process satisfying the assumptions

in Section 1. Also, the random variables gt are almost surely pairwise independent. Take

any D ∈ T ⊗ A and let h be 1D. Proposition 1 implies that, for λ-almost all t ∈ T , the

random variables gt and ht are independent. So therefore are the events Ct and Dt — i.e.,

P (Ct ∩Dt) = P (Ct)P (Dt).

Thus, if D ⊆ C, then for λ-almost all t ∈ T , P (Dt) = P (Ct)P (Dt). Since P (Ct) < 1 for

λ-almost all t ∈ T , it follows that P (Dt) = 0 for λ-almost all t ∈ T . By the Fubini theorem,

because D is an arbitrary T ⊗ A-measurable subset of C, it follows that (λ× P )∗(C) = 0.

On the other hand, if C ⊆ D, then for λ-almost all t ∈ T , P (Ct) = P (Ct)P (Dt). Since

P (Ct) > 0 for λ-almost all t ∈ T , it follows that P (Dt) = 1 for λ-almost all t ∈ T . By the

Fubini theorem, (λ× P )(D) = 1, because D ⊇ C is arbitrary in T ⊗ A, (λ× P )∗(C) = 1. ✷

Remark 1 Suppose the events Ct (t ∈ T ) are almost surely pairwise independent with identical

probability p for some 0 < p < 1. Let g = 1C , and let

F = {(D1 ∩ C) ∪ (D2 \ C) : D1, D2 ∈ T ⊗A}

be the smallest extension of the product σ-algebra such that g is measurable. If we require the

one-way Fubini property on (T × Ω,F), then the measure for C must be
∫
T (

∫
Ω 1CdP ) dλ =∫

T P (Ct)dλ = p. On the other hand, if we do not require the one-way Fubini property, then for

an arbitrarily given number r ∈ [0, 1], we can use the common procedure for extending measures

to define

σr((D1 ∩ C) ∪ (D2 \ C)) = r (λ× P )(D1) + (1− r) (λ× P )(D2)

for any D1, D2 ∈ T ⊗ A. This is easily seen to be a probability measure on (T × Ω,F), with

σr(C) = r. So the one-way Fubini property allows us to select the “correct” measure for the

extension and to ignore other completely meaningless extensions such as σr for any r �= p.
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3 Proof of Theorem 1

Lemma 1 Suppose that the random variables ft (t ∈ T ) are all square-integrable and are almost

surely uncorrelated — i.e., suppose each ft ∈ L2(Ω,A, P ) and, for a.e. t1 ∈ T , E(ft1ft2) =

Eft1 · Eft2 for a.e. t2 ∈ T . Then, for every A ∈ A,
∫
A ftdP = P (A)Eft for λ-a.e. t ∈ T .

Proof. Let T ′ be the set of all t′ ∈ T such that the random variables ft′ and ft are uncorrelated

for λ-a.e. t ∈ T . By hypothesis, λ(T ′) = 1.

Let L be the smallest closed linear subspace of L2(Ω,A, P ) containing both the family

{ft : t ∈ T ′} and the constant function 1 = 1Ω. Let h be the orthogonal projection of the

indicator function 1A onto L, with h⊥ as its orthogonal complement. Then 1A = h+h⊥ where

E(h⊥ft) =
∫
Ω h⊥ftdP = 0 for all t ∈ T ′, and also Eh⊥ =

∫
Ω h⊥dP = 0. It follows that

E(1A ft) = E(h ft) for all t ∈ T ′, and also E1A = P (A) = Eh.

Next, because h ∈ L, there exists a sequence of functions

hn = rn +
in∑

k=1

αk
n ftkn

(n = 1, 2, . . .)

with tkn ∈ T ′, as well as rn and αk
n (k = 1, . . . , in) all real, such that hn → h in L2(Ω,A, P ).

Let T k
n := {t ∈ T : ft and ftkn

are uncorrelated }. By hypothesis, λ(T k
n ) = 1 because each

tkn ∈ T ′. Define T ∗ := T ′ ∩
(
∩∞n=1 ∩in

k=1 T k
n

)
. Then λ(T ∗) = 1, because λ(T ′) = 1. Also, for any

t ∈ T ∗, one has
∫

A
ftdP = E(1A ft) = E(h ft) = lim

n→∞
E(hn ft)

= lim
n→∞

{
rn Eft +

in∑
k=1

αk
nE(ftkn

ft)

}
= lim

n→∞

{
rn Eft +

in∑
k=1

αk
n(Eftkn

) (Eft)

}

because ft and each ftkn
are uncorrelated. So

∫
A

ftdP = Eft lim
n→∞

(
rn +

in∑
k=1

αk
n Eftkn

)
= Eft lim

n→∞
Ehn = Eft Eh = P (A)Eft

for all t ∈ T ∗, where λ(T ∗) = 1. ✷

Note that the procedure used in the above proof is standard in the Hilbert space litera-

ture.

Proposition 2 For every E ∈ E = T ⊗ A⊗B, the following properties hold:

(i) the mapping t 
→ (P × µt)(Et) is T -measurable;

(ii) for λ-a.e. t ∈ T , the set H−1
t (Et) is A-measurable, and P (H−1

t (Et)) = (P ×µt)(Et).
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Proof. Let D be the collection of sets E ∈ E satisfying properties (i) and (ii).

First, we show that each measurable triple product set E = S × A × B ∈ E satisfies

(i)–(ii), implying that E ∈ D. Indeed:

(i) If t �∈ S, then Et = ∅ and (P × µt)(Et) = 0. On the other hand, if t ∈ S, then

Et = A×B and (P×µt)(Et) = P (A)µt(B) for all t ∈ T . Hence, (P×µt)(Et) = 1S(t)P (A)µt(B)

for all t ∈ T . Because S ∈ T and t 
→ µt(B) is T -measurable, so is t 
→ (P × µt)(Et).

(ii) If t �∈ S, then Et = ∅, and P (H−1
t (Et)) = 0 = (P × µt)(Et). On the other hand, if

t ∈ S, then Et = A × B, so H−1
t (Et) = A ∩ g−1

t (B) ∈ A. In this case, applying Lemma 1 to

the square-integrable and almost surely uncorrelated random variables 1g−1
t (B) (t ∈ T ) implies

that, for λ-a.e. t ∈ S, one has

P (H−1
t (Et)) = P (A ∩ g−1

t (B)) =
∫

A
1g−1

t (B)dP = P (A)
∫
Ω

1g−1
t (B)dP

= P (A)µt(B) = (P × µt)(A×B) = (P × µt)(Et).

It remains to verify that the family D is a Dynkin (or λ-) class in the sense that:

(a) T × Ω×X ∈ D;

(b) if E, E′ ∈ D with E ⊃ E′, then E \ E′ ∈ D;

(c) if En is an increasing sequence of sets in D, then ∪∞n=1E
n ∈ D.

Then we can apply Dynkin’s π–λ theorem to establish that D = E = T ⊗ A ⊗B, because the

set of products of measurable sets is a π-system — i.e., closed under finite intersections (see

[7], p. 44 and [13], p. 404). In fact:

(a) T × Ω×X ∈ D as a triple product of measurable sets.

(b) If E, E′ satisfy properties (i) and (ii) with E ⊃ E′, then (E \ E′)t = Et \ E′
t and so:

(i) the mapping

t 
→ (P × µt)(E \ E′)t = (P × µt)(Et)− (P × µt)(E′
t)

is T -measurable.

(ii) for λ-a.e. t ∈ T , the set H−1((E \E′)t) = H−1
t (Et) \H−1

t (E′
t) is A-measurable, with

P (H−1((E \ E′)t)) = P (H−1
t (Et))− P (H−1

t (E′
t) = (P × µt)(Et)− (P × µt)(E′

t)

= (P × µt)((E \ E′)t)

Hence, E \ E′ ∈ D.

(c) If En is an increasing sequence in D, then:

8



(i) the mapping

t 
→ (P × µt)(∪∞n=1E
n
t ) = lim

n→∞
(P × µt)(En

t )

is T -measurable;

(ii) for λ-a.e. t ∈ T , the set H−1
t (∪∞n=1E

n
t ) = ∪∞n=1H

−1
t (En

t ) is A-measurable, and

P (H−1
t (∪∞n=1(E

n
t )) = lim

n→∞
P (H−1

t (En
t )) = lim

n→∞
(P × µt)(En

t )

= (P × µt)(∪∞n=1E
n
t )

Hence, ∪∞n=1E
n ∈ D. ✷

Proof of Theorem 1: Part (1) was proved as part of Proposition 2.

To prove part (2), note that given any F ∈ F , there exists at least one E ∈ E such

that F = H−1(E). Then Ft = H−1
t (Et) ∈ A for λ-a.e. t ∈ T , by Proposition 2. The same

result implies that P (Ft) = P (H−1
t (Et)) = (P × µt)(Et), and that this is a T -measurable

function of t. So we can define a unique set function ν on the measurable space (T × Ω,F)

by ν(F ) :=
∫
T P (Ft)dλ. Note that ν(T × Ω) = 1, and, whenever Fn (n = 1, 2 . . .) is a disjoint

countable collection of sets in F , then

ν(∪∞n=1F
n) =

∫
T

P (∪∞n=1F
n
t )dλ =

∫
T

∞∑
n=1

P (Fn
t )dλ =

∞∑
n=1

∫
T

P (Fn
t )dλ

=
∞∑

n=1

ν(Fn)

So ν is a uniquely defined probability measure.

Also, whenever F ∈ T ⊗A, then ν(F ) =
∫
T P (Ft)dλ = (λ×P )(F ). It follows that λ×P

is the restriction to the product σ-algebra T ⊗ A of the probability measure ν on F .

The proof of part (3) is virtually identical to that of the usual Fubini Theorem. For

the sake of completeness, we include a proof adapted from [20] (p. 308). Let V ⊆ L1(T ×
Ω,F , ν) denote the set of all ν-integrable functions f that satisfy the one-way Fubini property∫
T×Ω fdν =

∫
T (

∫
Ω ftdP ) dλ. Then V includes every measurable indicator function 1F (F ∈ F)

because

ν(F ) =
∫

T×Ω
1F dν =

∫
T

P (Ft)dλ =
∫

T

[∫
Ω
(1F )tdP

]
dλ

Indeed, these equations show that the one-way Fubini property determines ν uniquely on

(T ×Ω,F). Also, that ν(F ) =
∫
T P (Ft)dλ = (λ×P )(F ) whenever F ∈ T ⊗A, so ν does extend

λ× P .
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Next, V is obviously closed under linear combinations — i.e., V is a linear subspace. In

particular, V includes all measurable simple functions, and all differences between members

of V . Also, any ν-integrable function is the difference between two non-negative ν integrable

functions, and any non-negative ν-integrable function f is the limit of an increasing sequence

fn of non-negative simple functions. So it remains only to show that V contains the limit of

any increasing sequence fn of functions in V .

Indeed, suppose f ∈ L1(T × Ω,F , ν) and fn ∈ V (n = 1, 2, . . .) with fn ↑ f as n → ∞.

Then the monotone convergence theorem implies that limn→∞
∫
T×Ω fndν =

∫
T×Ω fdν. Since

fn is in V , and so satisfies the one-way Fubini property, we know that fn
t is in L1(Ω,A, P )

for λ-a.e. t ∈ T . It is obvious that for λ-a.e. t ∈ T , fn
t ↑ ft, and hence ft is A-measurable

with
∫
Ω ftdP = limn→∞

∫
Ω fn

t dP . In fact, one must have have
∫
Ω fn

t dP ↑
∫
Ω ftdP . Hence, the

monotone convergence theorem and the one-way Fubini property for fn imply that
∫

T

(∫
Ω

ftdP

)
dλ = lim

n→∞

∫
T

(∫
Ω

fn
t dP

)
dλ = lim

n→∞

∫
T×Ω

fndν =
∫

T×Ω
fdν.

So f also satisfies the one-way Fubini property. This shows that V = L1(T × Ω,F , ν). ✷

4 Some associated measure structures

It has already been shown that, given any set E in the product σ-algebra E on T × Ω × X,

the mapping t 
→ (P × µt)(Et) is T -measurable. So one can define the set function τ on E by

τ(E) :=
∫
T (P×µt)(Et)dλ, which must equal the triple integral

∫
T [

∫
Ω (

∫
X 1E(t, ω, x)dµt) dP ] dλ.

Then (T × Ω ×X, E , τ) is obviously a probability space. Also, by the usual (two-way) Fubini

property, interchanging the order of integration implies that

τ(E) =
∫
Ω

[∫
T

(∫
X

1E(t, ω, x)dµt

)
dλ

]
dP =

∫
Ω

[∫
T

µt(Etω)dλ

]
dP =

∫
Ω

γ(Eω)dP

where γ is a well-defined probability measure on (T ×X, T ⊗ B) given by γ(J) :=
∫
T µt(Jt)dλ

for all J ∈ T ⊗ B. So τ equals the product measure P × γ on (T × Ω×X, E).

The following Lemma helps establish later that ν is the unique measure satisfying

ν(H−1(E)) = τ(E) for every E ∈ E :

Lemma 2 If E, E′ ∈ E satisfy H−1(E) = H−1(E′), then the symmetric difference E � E′

satisfies τ(E � E′) = 0.

Proof. Here H−1(E \ E′) = H−1(E) \H−1(E′) = ∅. Because of Proposition 2, this implies

that

(P × µt)(Et \ E′
t) = P (H−1

t (Et \ E′
t)) = 0
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for λ-a.e. t ∈ T . It follows that τ(E \ E′) =
∫
T (P × µt)(Et \ E′

t)dλ = 0. Interchanging E and

E′ in this argument shows that τ(E′ \ E) = 0 as well. ✷

Obviously, E ⊆ H−1(E) × X for all E ∈ E . The following shows that any F ∈ F is

product measurable in T ⊗ A only if F = H−1(E) where E ∈ E “fills” F ×X.

Corollary 3 Suppose F = H−1(E) ∈ T ⊗A, where E ∈ E. Then τ(E) = τ(F ×X).

Proof. If F = H−1(E) ∈ T ⊗A, then F ×X ∈ E . Because F = H−1(E) = H−1(F ×X), the

result follows from Lemma 2. ✷

Proposition 3 The mapping H from (T ×Ω,F , ν) to (T ×Ω×X, E , τ) is measure-preserving

— i.e., ν(H−1(E)) = τ(E) for all E ∈ E; moreover, this equality defines ν uniquely.

Proof. For any E ∈ E ,

ν(H−1(E)) =
∫

T
P (H−1

t (Et))dλ =
∫

T
(P × µt)(Et)dλ = τ(E)

by definition of τ . Uniqueness of ν follows immediately from Lemma 2. ✷

Define M := H(T × Ω), which is the graph of g. Then:

Proposition 4 The set M has outer measure τ∗(M) = 1.

Proof. Suppose M ⊆ E ∈ E . Then the complements satisfy Ec ⊆ M c with Ec ∈ E . So

H−1(Ec) ⊆ H−1(M c) = ∅. Because H is measure-preserving, τ(Ec) = ν(H−1(Ec)) = ν(∅) = 0,

so τ(E) = 1.

It has been proved that τ(E) = 1 for any E ⊇M , so τ∗(M) = 1. ✷

Proposition 5 If M ∈ E, then µt is degenerate for λ-a.e. t ∈ T .

Proof. If M ∈ E , then 1 = τ∗(M) = τ(M) =
∫
T×Ω×X 1M (t, ω, x) dτ . Now Fubini’s theorem

implies that

1 =
∫

T×Ω

[∫
X

1M (t, ω, x)dµt

]
d(λ× P ) =

∫
T×Ω

µt(Mtω) d(λ× P )

So µt(Mtω) = 1 for (λ × P )-a.e. (t, ω) ∈ T × Ω. But Mtω = {gt(ω)} for all (t, ω) ∈ T × Ω. It

follows that for λ-a.e. t ∈ T , µt is degenerate, with µt({gt(ω)}) = 1. ✷

The next proposition shows how much the outer measure τ∗ of the graph M can differ

from the inner measure in nontrivial cases.
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Proposition 6 Suppose µt is non-degenerate for λ-a.e. t ∈ T . Then the graph M has inner

measure τ∗(M) = 0.

Proof. Take any E ∈ E . By Theorem 1, H−1
t (Et) is A-measurable for λ-a.e. t ∈ T , and

P (H−1
t (Et)) = (P × µt)(Et) =

∫
Ω

µt(Etω)dP

by the usual Fubini theorem. Suppose E ⊆ M . Then Etω ⊆ Mtω = {g(t, ω)} for all (t, ω) ∈
T × Ω. Thus Etω = {g(t, ω)} or ∅. So

Etω �= ∅ ⇐⇒ g(t, ω) ∈ Etω ⇐⇒ (ω, gt(ω)) ∈ Et ⇐⇒ ω ∈ H−1
t (Et)

Hence {ω ∈ Ω | Etω �= ∅} = H−1
t (Et), implying that

P (H−1
t (Et)) =

∫
Ω

µt(Etω)dP =
∫

H−1
t (Et)

µt(Etω)dP

for λ-a.e. t ∈ T . Therefore, for λ-a.e. t ∈ T one has
∫
H−1

t (Et)
[1 − µt(Etω)]dP = 0. But

Etω = {g(t, ω)} or ∅ for all (t, ω) ∈ T ×Ω. Hence, non-degeneracy implies that for λ-a.e. t ∈ T ,

µt(Etω) < 1 for all ω ∈ Ω, so P (H−1
t (Et)) = 0. It follows that

τ(E) = ν(H−1(E)) =
∫

T
P (H−1

t (Et))dλ = 0

whenever E ⊆M , implying that τ∗(M) = 0. ✷

Define M := {E ∩M : E ∈ E}. Then M is a σ-algebra on M , and the outer measure

τ∗ is a measure on M satisfying τ∗(E ∩M) = τ(E) for all E ∈ E . Because τ∗(M) = 1, it

follows that (M,M, τ∗) is a probability space. But M = H(T ×Ω), so H−1(E) = H−1(E∩M)

for all E ∈ E . It follows that ν(H−1(E ∩M)) = τ(E) = τ∗(E ∩M) for all E ∈ E . Hence,

H : T × Ω → M is a measure isomorphism between the probability spaces (T × Ω,F , ν) and

(M,M, τ∗).

Next, define the standard extension R := {(E1 ∩M) ∪ (E2 \M) : E1, E2 ∈ E}. This

is clearly a σ-algebra on T × Ω × X that extends E to include M, and will differ from E iff

M �∈ E — i.e., except in the degenerate case covered by Proposition 5. Also, define the set

function ρ on R to satisfy ρ((E1 ∩M) ∪ (E2 \M)) = τ(E1) for all E1, E2 ∈ E . Obviously, ρ

is a probability measure on (T × Ω ×X,R). Hence, (T × Ω ×X,R, ρ) is another probability

space which extends (T × Ω×X, E , τ), and whose restriction to M is (M,M, τ∗).

Proposition 7 Suppose f is real-valued and integrable on (T × Ω,F , ν). Then there is an

essentially unique integrable function φ on (T ×Ω×X, E , τ) such that f(t, ω) = φ(t, ω, g(t, ω)),

while the conditional expectations E(f |T ⊗A) and E(f |{T,∅}⊗A) are equal almost everywhere to∫
X φ(t, ω, x)dµt and

∫
T×X φ(t, ω, x)dγ respectively.

12



Proof. Let ψ(t, ω, x) := 1M (t, ω, x)f(t, ω). Then ψ is integrable on (T × Ω×X,R, ρ). Define

φ as the conditional expectation E(ψ|E). Because H is a measure isomorphism and φ is E-
measurable, for any F ∈ F with F = H−1(E) where E ∈ E , one has

∫
F

φ(H(t, ω)) dν =
∫

E∩M
φdτ∗ =

∫
E

φdτ =
∫

E
ψdρ =

∫
E∩M

fdτ∗ =
∫

F
fdν

It follows that φ(H(t, ω)) = f(t, ω) ν-a.e.

Moreover, for every C ∈ T ⊗ A one has C = H−1(C ×X), so replacing F by C and E

by C ×X implies that
∫

C
fdν =

∫
C×X

φdτ =
∫

C

(∫
X

φdµt

)
d(λ× P ) =

∫
C

(∫
X

φdµt

)
dν

by Fubini’s Theorem. This proves that
∫
X φ dµt is one version of E(f |T ⊗A).

Finally, for any A ∈ A, by putting C = T × A and applying Fubini’s Theorem once

again, we obtain
∫

T×A
fdν =

∫
T×A

(∫
X

φdµt

)
d(λ× P ) =

∫
A

[∫
T

(∫
X

φdµt

)
dλ

]
dP =

∫
A

(∫
T×X

φ dγ

)
dP

This proves that
∫
T×X φ dγ is one version of E(f |{T,∅}⊗A). ✷

Finally, we give a different estimate of the measure of M , the graph of the process g. This

involves yet another measure structure on T × Ω × X, this time using the product σ-algebra

F ⊗ B. Indeed, consider the set function τ̃(G) :=
∫
T×Ω µt(Gtω)dν, defined on the domain G of

all sets G ∈ F ⊗ B for which the integral exists.

Lemma 3 The domain G of sets G ∈ F ⊗ B for which τ̃(G) is well defined is the whole of

F ⊗ B.

Proof. Suppose G is a measurable rectangle F ×B, with F ∈ F and B ∈ B. Then µt(Gtω) =

1F (t, ω)µt(B) for all (t, ω) ∈ T×Ω. But P (Ft) and µt(B) must be bounded integrable functions

of t, implying that P (Ft)µt(B) is also. Then the one-way Fubini property implies that
∫

T
P (Ft)µt(B) dλ =

∫
T

[∫
Ω

1F (t, ω) dP

]
µt(B) dλ =

∫
T×Ω

1F (t, ω)µt(B) dν =
∫

T×Ω
µt(Gtω)dν

and so F × B ∈ G. Hence, G includes the family of all measurable rectangles, which is closed

under intersections and so forms a π-system.

As in the proof of Proposition 2, it is easy to show that G is a Dynkin or λ-class. So

G must be a σ-algebra which includes the π-system of all measurable rectangles. But then

G = F ⊗ B, the product σ-algebra generated by the measurable rectangles. ✷
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After this preliminary result, it is easy to check that τ̃ is a probability measure on F⊗B.

In fact, it is a natural extension of τ defined on the triple product E . Obviously, when µt = µ

for all t ∈ T , independent of t, then τ̃ = ν × µ.

Suppose the function f : T ×Ω→ X is T ⊗A-measurable. For each t ∈ T , let µf
t denote

the distribution of ft. Because (X,B) is a Polish space with its Borel σ-algebra, Theorem 8.1.4

in [2] implies that f has a graph Γf which is measurable w.r.t. the triple product σ-algebra E
on T × Ω×X. Then a routine calculation shows that this graph has measure

τ(Γf ) =
∫

T×Ω
µf

t ({f(t, ω)})d(λ× P ) =
∫

T

[∫
X

µf
t ({x})dµf

t

]
dλ =

∫
T

∑
a∈Af

t

[µf
t ({a})]2dλ

where Af
t is the set of atoms of µf

t (which must be countable). The following shows that the

process g has the same property, provided one uses the extended measure τ̃ instead of τ , and

then calculates the appropriate integral (w.r.t. ν) using the one-way Fubini property.

Proposition 8 The set M is measurable in F ⊗ B and

τ̃(M) =
∫

T

[∫
x∈X

µt({x})dµt

]
dλ =

∫
T

∑
a∈At

[µt({a})]2dλ

where At is the set of atoms of µt.

Proof. Because M is the graph of the measurable mapping g from (T × Ω,F) to (X,B),

Theorem 8.1.4 in [2] implies that M is measurable w.r.t. F ⊗ B. Then, by definition of τ̃ , the

one-way Fubini property, and the definition of µt, we have

τ̃(M) =
∫

T×Ω
µt({g(t, ω)})dν =

∫
T

[∫
Ω

µt({gt(ω)})dP

]
dλ =

∫
T

[∫
X

µt({x})dµt

]
dλ.

Evidently,
∫
X µt({x})dµt =

∑
a∈At

[µt({a})]2, so the proof is complete. ✷

The following is now obvious:

Corollary 4 There are the following three possibilities:

(i) τ̃(M) = τ∗(M) = 0 iff µt is atomless for λ-a.e. t ∈ T .

(ii) τ̃(M) = τ∗(M) = 1 iff for λ-a.e. t ∈ T , the measure µt is degenerate — i.e., there exists a

single atom at such that µt({at}) = 1.

(iii) Otherwise 0 = τ∗(M) < τ̃(M) < τ∗(M) = 1.

5 Conditional expectations and distributions

Let (T×Ω,F ′, ν ′) be a probability space extending the usual product space (T×Ω, T ⊗A, λ×P )

such that the one-way Fubini property still holds. Note that (T ×Ω,F ′, ν ′) could be a further
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extension of (T×Ω,F , ν). Let f be a process on (T×Ω,F ′, ν ′). If f is real-valued and integrable,

then the one-way Fubini property says that Ef =
∫
T×Ω f dν ′ =

∫
T (

∫
Ω ftdP ) dλ =

∫
T Eft dλ.

The following proposition generalizes part of Theorem 4.6 in [22] to the one-way Fu-

bini framework. It characterizes uncorrelatedness in the almost sure sense via the conditional

expectation with respect to the relatively smaller σ-algebra T ⊗ A.

Proposition 9 Assume that f is real-valued and square-integrable on (T × Ω,F ′, ν ′). Then

the random variables ft (t ∈ T ) are almost surely uncorrelated iff E(f |T ⊗A) = Eft.

Proof. Suppose the random variables ft (t ∈ T ) are a.s. uncorrelated. Given any A ∈ A,

Lemma 1 implies that
∫
A ftdP = P (A)Eft for almost all t ∈ T . Hence, for any S ∈ T , the

one-way Fubini property for (T × Ω,F ′, ν ′) implies that∫
S×A

E(f |T ⊗A)dν ′ =
∫

S×A
fdν ′ =

∫
S

(∫
A

ftdP

)
dλ =

∫
S

P (A) Eft dλ =
∫

S×A
Eftdν ′.

This shows that the two signed measures which are defined on (T × Ω, T ⊗ A) by integrating

E(f |T ⊗A) and Eft respectively on sets in T ⊗A must agree on all measurable rectangles S×A

(S ∈ T , A ∈ A). Since these rectangles form a π-system that generates T ⊗ A, Dynkin’s π– λ

theorem (see [7], p. 44 and [13], p. 404) implies that the two signed measures are equal to each

other on the whole of T ⊗ A. Thus, both E(f |T ⊗A) and Eft are Radon–Nikodym derivatives

of the same signed measure. By uniqueness of the Radon–Nikodym derivative, it follows that

E(f |T ⊗A) = Eft.

Conversely, suppose E(f |T ⊗A) = Eft. Take any fixed r ∈ T such that fr is square-

integrable on Ω. Because f is square-integrable on T × Ω, it follows that, for λ-a.e. t ∈ T ,

ft is square-integrable and, by applying the Cauchy–Schwartz inequality, that frft is inte-

grable. Also, fr is trivially measurable w.r.t. T ⊗ A, so a standard result on conditional

expectations implies that E(frf |T ⊗A) = fr E(f |T ⊗A) — see, for example, [12] (p. 266). Hence,

E(frf |T ⊗A) = fr Eft. By definition of conditional expectation and the one-way Fubini prop-

erty, integrating w.r.t. t over any S ∈ T gives∫
S

E(frft)dλ =
∫

S

[∫
Ω

fr(ω)f(t, ω)dP

]
dλ =

∫
S×Ω

frf dν ′

=
∫

S×Ω
fr Eft d(λ× P ) =

∫
Ω

frdP

∫
S

Eft dλ =
∫

S
Efr Eft dλ.

This implies that, for almost all t ∈ T , one has E(frft) = Efr Eft, so fr and ft are uncorrelated.

The result follows because, if f is square-integrable on T × Ω, then fr is square-integrable on

Ω for almost all r ∈ T . ✷

Lemma 4 Suppose that f is real-valued and integrable on (T×Ω,F ′, ν ′), and that E(f |T ⊗A) =

Eft. Then E(f |{T,∅}⊗A) = Ef .
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Proof. Given any A ∈ A, one has T × A ∈ T ⊗ A. So the one-way Fubini property and the

hypotheses together imply that∫
T×A

f dν ′ =
∫

T×A
Eft d(λ× P ) = P (A)

∫
T

Eft dλ = P (A) Ef =
∫

T×A
Ef d(λ× P )

This confirms that E(f |{T,∅}⊗A) = Ef . ✷

The following proposition characterizes almost sure pairwise independence through the

regular conditional distribution with respect to the relatively smaller product σ-algebra T ⊗A.

Proposition 10 Let f be a process from (T ×Ω,F ′, ν ′) to a Polish space Y . Then the condi-

tional distribution ν ′(f−1|T ⊗A) = Pf−1
t if and only if the random variables ft are almost surely

pairwise independent.

Proof. Given any Borel set B in Y , applying Proposition 9 to the F ′-measurable process

1f−1(B) implies that the random variables 1f−1
t (B) (t ∈ T ) are a.s. uncorrelated iff the conditional

probability ν ′(f−1(B)|T ⊗A)(B) = Pf−1
t (B). Note that the one-way Fubini property implies

that Pf−1
t (B) is measurable with respect to T and thus with respect to T ⊗ A.

Now, if the random variables ft (t ∈ T ) are a.s. pairwise independent, then the indi-

cator functions 1f−1
t (B) (t ∈ T ) are a.s. uncorrelated for all Borel sets B in Y , implying that

ν ′(f−1(B)|T ⊗A)(B) = Pf−1
t (B). This means that the conditional distribution ν ′(f−1|T ⊗A) =

Pf−1
t .

On the other hand, suppose ν ′(f−1|T ⊗A) = Pf−1
t . For every Borel set B in Y , it

follows that E(1f−1(B)|T ⊗A) = E1f−1
t (B). So applying Proposition 9 to the indicator function

1f−1(B) implies that the random variables 1f−1
t (B) (t ∈ T ) are a.s. uncorrelated. For any

fixed Borel set C in Y , the one-way Fubini property implies that f−1
r (C) is measurable with

respect to A for λ-a.e. r ∈ T ; fix any such r. By taking A = f−1
r (C) in Lemma 1, we

obtain, for λ-a.e. t ∈ T , that
∫
f−1

r (C) 1f−1
t (B)dP = P (f−1

r (C))
∫
Ω 1f−1

t (B)dP , which implies that

P (f−1
r (C)∩ f−1

t (B)) = P (f−1
r (C))P (f−1

t (B)). This is true for arbitrary Borel sets B, C in Y .

As in the proof of Theorem 7.6 in [22], take a countable open base BY for the topology of

the Polish space Y such that it is closed under finite intersections. By grouping countably many

null sets together, one can find a λ-null set R0 such that, for all r /∈ R0 and all O1, O2 ∈ BY ,

P (f−1
r (O1) ∩ f−1

t (O2)) = P (f−1
r (O1))P (f−1

t (O2))

holds for all t /∈ Sr, where Sr is a λ-null set. Fix any r /∈ R0 and t /∈ Sr. Then the joint

distribution P (fr, ft)−1 on X ×X agrees with the product Pf−1
r × Pf−1

t of its marginals on

the π-system {O1 × O2 : O1, O2 ∈ BX}. So by a standard result on the uniqueness of an
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extended measure (see [13], p. 402), the two measures are the same on the whole product σ-

algebra. This implies that fr and ft are independent, for all r /∈ R0 and t /∈ Sr. This proves

that the random variables ft (t ∈ T ) are a.s. pairwise independent. ✷

Corollary 5 Suppose that f is real-valued and integrable on (T × Ω,F ′, ν ′), and the random

variables ft (t ∈ T ) are a.s. pairwise independent. Then E(f |T ⊗A) = Eft and E(f |{T,∅}⊗A) =

Ef .

Proof. By the last proposition, ν(f−1|T ⊗A) = Pf−1
t , so

E(f |T ⊗A) =
∫
�

x dν(f−1|T ⊗A) =
∫
�

x d(Pf−1
t ) =

∫
Ω

ftdP = Eft

The other equality follows from Lemma 4. ✷

Corollary 6 Suppose ψ is a real-valued integrable function on (T × X, T ⊗ B, γ) such that

f(t, ω) = ψ(t, g(t, ω)). Then E(f |T ⊗A) = Eft and E(f |{T,∅}⊗A) = Ef .

Proof. Because the variables gt are a.s. pairwise independent, so are the variables ft = ψt(gt).

The result follows immediately from Corollary 5. ✷

Corollary 7 If g is real-valued and ν-integrable, then E(g|T ⊗A) = Egt and E(g|{T,∅}⊗A) = Eg.

Proof. Apply Corollary 6 with ψ(t, x) = x and so f = g. ✷

Remark 2 As shown in [21] and [22], if the product probability space (T × Ω, T ⊗ A, λ × P )

can be extended to a probability space (T × Ω,W, Q) so that the full Fubini property holds

for Q-integrable functions, then one can obtain immediately the exact law of large numbers in

terms of sample means. Indeed, suppose that the process f on T ×Ω is Q-integrable. Then one

simply observes that for the process f in Proposition 9, given any A ∈ A, Corollary 5 with ν′

replaced by Q implies that
∫

A
Efω dP =

∫
T×A

fdQ =
∫

T×A
Ef d(λ× P ) =

∫
A

Ef dP

By the uniqueness of Radon–Nikodym derivatives, Efω = Ef for P -almost all sample real-

izations ω ∈ Ω. Using exactly the same argument as in the proof of Theorem 5.2 in [22],

λf−1
ω = Qf−1. Thus, the other half of the full Fubini property is enough to guarantee the

validity of the exact law of large numbers in terms of means and distributions.
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Remark 3 Let (T, T , λ) be any atomless probability space. Let f be an iid process obtained

from the coordinate functions on the sample space Λ = IRT endowed with the product σ-algebra

G and the product probability measure µ (see [5], p. 230). Based on the simple idea used in

[10] (see also [17]), it is pointed out in [24] that, for any given real-valued function h on T , the

collection Mh of those sample functions that differ from h at countably many points in T has

µ-outer measure one (see Remark 1 in [24]). One can extend the measure µ to a new measure

µ̄ on the σ-algebra Ḡ generated by sets in G andMh so that µ̄(Mh) = 1. Thus, one establishes

the absurd claim that almost all sample functions are essentially equal to an arbitrarily given

function h. Now assume that the common mean of the random variables ft is m. Take h to be

any function whose mean
∫
T hdλ is different from m. Since fω is h for µ̄-almost all ω ∈ Λ, it

is not true that the sample mean
∫
Λ fωdλ = m for µ̄-almost all ω ∈ Λ — i.e., the exact law of

large numbers fails. Therefore, Remark 2 implies that (T × Λ, T ⊗ Ḡ, λ× µ̄) has no extension

(T × Λ,W, Q) whose full Fubini property is stated with respect to extensions (T, T ′, λ′) and

(Λ, Ḡ′, µ̄′) of (T, T , λ) and (Λ, Ḡ, µ̄) respectively such that f is W-measurable. However, it does

have an extension which satisfies the one-way Fubini property, as shown in Theorem 1.

Remark 4 Even with only the one-way Fubini property, Corollary 5 implies that the condi-

tional expectation E(f |T ⊗A) of a real-valued integrable function f is equal to the expectation

Eft =
∫
Ω ft(ω)dP of ft, with all uncertainty about ω removed. Thus, while the exact law of

large numbers fails for fω, which is generally non-measurable, it does hold (though in a sig-

nificantly weaker sense) for the conditional expectation E(f |T ⊗A) we have defined through the

one-way Fubini property.
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