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GMM
1. OLS as a Method of Moment Estimator

Consider a simple cross-sectional case

Vi = XiBtuy i=1,..,N B true coeff
If E(x; w)=0 = E[x; (vi-x; B)]=0 [OLS assumption]

The MM estimator solves the sample moment condition:

5 x (v -xp)=0 giving you f=(X'X)" (X'y) [OLS]
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2. Instrumental Variable Estimation

Now assume that some of the x variables are correlated with the error term.
OLS estimator 1s inconsistent. We use instrumental variable estimation

using say z as instruments. Assume number of 1nstruments=L and L > K.

The population moment conditions are: E(z;’u;)=0

Then IV estimation solves: ﬁZzl (yi - XIB) =0 (1)
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The above involves L equations in K unknowns.
Note 1f L<K, we can’t solve for our estimates.

If L=K, we have K equations and K unknowns and hence have a unique

solution giving you
BZ(Z 'X)_1 (Z'y). [Simple IVE]

However, if L > K, then we have more equations than unknowns. One

inefficient solution would be to just select K instruments out of the set of



Wiji Arulampalam, May 2006

L. But instead, it 1s better to do something that 1s more efficient. This 1s

the GMM estimator.

GMM chooses B to make (1) as small as possible using quadratic loss. i.e.

GMM estimator B minimises

Sy —xm w LSy —x
Qn(B)= |:NZZi(yi XiB):| WN|:NZZi(yi XiB):|

Wy 1s an LxL matrix of weights which is chosen ‘optimally’ [1.e. giving

you the smallest variance GMM estimator].
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The solution 1s

| (s o ] [ o) vt

= (X'ZWZ'X) " (X'ZWZ'Y)

This optimal weighting matrix should be a consistent estimate up to a
multiplicative constant of the inverse of the variance of the orthogonality

conditions:
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W=A" where A= E(Z;’uu’Z;) = Var(Z;’uy)
Can show that the GMM estimator 1s consistent.

The asymptotic variance of the optimal GMM estimator is estimated using

- |

AVAR B = (X'Z)(ZZi'ﬁiﬁi'Zij (Z'X)|  (Ncancels) (2)
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-1
In order to generate the residuals, use GMM with W = {ﬁz Zi'Zi}

This 1s the GIVE (2SLS) estimator:
- (x'Z[2'Z)'Z'X) (X'Z[Z'Z]'Z'Y)
This 1s the same as assuming that

Var(Z;w) = E(Zyuu’Zy)= o~ (Z.Z,)

e Need to be able to invert the above matrices....rank condition!
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~1
e In order to generate the residuals, use GMM with W = {ﬁz Zi'Zi}

e Can think of the equation (2) as giving you a covar matrix under

heteroskedasticity and serial correlation of unknown form.

e When L=K and hence X’Z is a square, then W does not matter.
e Stop with the second step (not a lot of efficiency gains in continuing).

e Simulation studies show - very little efficiency gain in doing 2-step

GMM even 1n the presence of considerable heteroskedasticity.
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e Additionally, since 2-step GMM depends on 1% step coeff est, the std.
error calculations tend to be too small.... Windmeijer provides a

correction (now implemented in some software — PcGive).
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Test for over identifying restrictions (Sargan/Hansen)

Moment condition: E(z;’u;)=0 [has L eqns]
Min: Q = {ZZ;ui} W{Zl;ui}
e When L=K, Q(ﬁ)ZO;

e When L>K, then  Q(B)>0 although Q(B)—0 in probability.

e So use this to derive the test by comparing the value of the criterion
function Q with its expected value under the null that the restrictions are

valid.

e This is simple when the optimal weighting matrix is used:

N Q(ﬁ) dist asym as a y*(L-K) under Hy. (Only valid under homosk.)
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e [f you only suspect that L; are ok but L, are not (where L=L; + L,) then

can use N(Q-Q,) is asymp %*(L,) where Q, is the minimand when the non-

suspect instruments L are used.
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