GMM

1. OLS as a Method of Moment Estimator

Consider a simple cross-sectional case

$$
\mathrm{y}_{\mathrm{i}}=\mathbf{x}_{\mathrm{i}} \beta+\mathrm{u}_{\mathrm{i}} \quad \mathrm{i}=1, . ., \mathrm{N} \quad \beta \text { true coeff }
$$

$$
\text { If } E\left(\mathbf{x}_{\mathbf{i}}^{\prime} u_{i}\right)=0 \Rightarrow E\left[\mathbf{x}_{\mathbf{i}}^{\prime}\left(y_{i}-\mathbf{x}_{\mathrm{i}} \boldsymbol{\beta}\right)\right]=0
$$

[OLS assumption]

The MM estimator solves the sample moment condition:

$$
\frac{1}{N} \sum_{i} \mathbf{x}_{i}^{\prime}\left(y_{i}-\mathbf{x}_{i}^{\prime} \hat{\beta}\right)=0 \quad \text { giving you } \hat{\beta}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\prime} \mathbf{y}\right)[\mathrm{OLS}]
$$

2. Instrumental Variable Estimation

Now assume that some of the \mathbf{x} variables are correlated with the error term. OLS estimator is inconsistent. We use instrumental variable estimation using say \mathbf{z} as instruments. Assume number of instruments $=\mathrm{L}$ and $\mathrm{L} \geq \mathrm{K}$.

The population moment conditions are: $\quad \mathrm{E}\left(\mathbf{z}_{\mathbf{i}}{ }^{\prime} \mathrm{u}_{\mathrm{i}}\right)=0$

Then IV estimation solves: $\quad \frac{1}{N} \sum_{i} \mathbf{z}_{\mathbf{i}}^{\prime}\left(y_{i}-\mathbf{x}_{i} \dot{\boldsymbol{\beta}}\right)=0$

The above involves L equations in K unknowns.

Note if $\mathrm{L}<\mathrm{K}$, we can't solve for our estimates.

If $\mathrm{L}=\mathrm{K}$, we have K equations and K unknowns and hence have a unique solution giving you

$$
\tilde{\beta}=\left(Z^{\prime} \mathbf{X}\right)^{-1}\left(Z^{\prime} \mathbf{y}\right) . \quad[\text { Simple IVE }]
$$

However, if $\mathrm{L}>\mathrm{K}$, then we have more equations than unknowns. One inefficient solution would be to just select K instruments out of the set of
L. But instead, it is better to do something that is more efficient. This is the GMM estimator.

GMM chooses $\tilde{\beta}$ to make (1) as small as possible using quadratic loss. i.e. GMM estimator $\tilde{\beta}$ minimises

$$
\mathrm{Q}_{\mathrm{N}}(\beta)=\left[\frac{1}{\mathrm{~N}} \sum_{i} \mathbf{z}_{i}^{\prime}\left(y_{i}-\mathbf{x}_{i}^{\prime} \beta\right)\right]^{\prime} \mathbf{W}_{N}\left[\frac{1}{\mathrm{~N}} \sum_{i} \mathbf{z}_{i}^{\prime}\left(y_{i}-\mathbf{x}_{i}^{\prime} \beta\right)\right]
$$

$\mathbf{W}_{\mathbf{N}}$ is an LxL matrix of weights which is chosen 'optimally' [i.e. giving you the smallest variance GMM estimator].

The solution is

$$
\begin{aligned}
\hat{\boldsymbol{\beta}}= & {\left[\left(\sum_{i} \mathbf{X}_{\mathbf{i}}^{\prime} \mathbf{Z}_{\mathbf{i}}\right) \mathbf{W}\left(\sum_{i} \mathbf{Z}_{\mathbf{i}}^{\prime} \mathbf{X}_{\mathbf{i}}\right)\right]^{-1}\left[\left(\sum_{i} \mathbf{X}_{\mathbf{i}}^{\prime} \mathbf{Z}_{\mathbf{i}}\right) \mathbf{W}\left(\sum_{i} \mathbf{Z}_{\mathbf{i}}^{\prime} \mathbf{y}_{\mathbf{i}}\right)\right](\mathrm{N} \text { cancels }) } \\
& =\left(\mathbf{X}^{\prime} \mathbf{Z} \mathbf{W} \mathbf{Z} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\prime} \mathbf{Z} \mathbf{W} \mathbf{Z}^{\prime} \mathbf{Y}\right)
\end{aligned}
$$

This optimal weighting matrix should be a consistent estimate up to a multiplicative constant of the inverse of the variance of the orthogonality conditions:
$\mathbf{W}=\Lambda^{-1} \quad$ where $\Lambda \equiv \mathrm{E}\left(\mathbf{Z}_{\mathbf{i}}{ }^{\prime} \mathbf{u}_{\mathbf{i}} \mathbf{u}_{\mathbf{i}}{ }^{\prime} \mathbf{Z}_{\mathbf{i}}\right)=\operatorname{Var}\left(\mathbf{Z}_{\mathbf{i}}{ }^{\prime} \mathrm{u}_{\mathbf{i}}\right)$

Can show that the GMM estimator is consistent.

The asymptotic variance of the optimal GMM estimator is estimated using
$\operatorname{AVAR} \hat{\boldsymbol{\beta}}=\left[\left(\mathbf{X}^{\prime} \mathbf{Z}\right)\left(\sum_{i} \mathbf{Z}_{\mathbf{i}}{ }^{\prime} \hat{\mathrm{u}}_{\mathrm{i}} \hat{\mathbf{u}}_{\mathrm{i}} \mathbf{Z}_{\mathbf{i}}\right)^{-1}\left(\mathbf{Z}^{\prime} \mathbf{X}\right)\right]^{-1} \quad(\mathrm{~N}$ cancels)

In order to generate the $\underline{\text { residuals }}$, use GMM with $\mathbf{W}=\left[\frac{1}{N} \sum \mathbf{Z}_{\mathbf{i}}{ }^{\prime} \mathbf{Z}_{\mathbf{i}}\right]^{-1}$

This is the GIVE (2SLS) estimator:
$=\left(\mathbf{X}^{\prime} \mathbf{Z}\left[\mathbf{Z}^{\prime} \mathbf{Z}\right]^{-1} \mathbf{Z} \mathbf{\prime} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\prime} \mathbf{Z}\left[\mathbf{Z}^{\prime} \mathbf{Z}\right]^{-1} \mathbf{Z}^{\prime} \mathbf{Y}\right)$
This is the same as assuming that

$$
\operatorname{Var}\left(\mathbf{Z}_{\mathbf{i}}^{\prime}{ }^{\prime} \mathbf{u}_{\mathbf{i}}\right)=\mathrm{E}\left(\mathbf{Z}_{\mathbf{i}}{ }^{\prime}{ }_{\mathbf{u}}^{\mathbf{i}} \mathbf{u}_{\mathbf{i}}{ }^{\prime} \mathbf{Z}_{\mathbf{i}}\right)=\sigma^{2}\left(\mathbf{Z}_{\mathbf{i}}^{\prime} \mathbf{Z}_{\mathbf{i}}\right)
$$

- Need to be able to invert the above matrices....rank condition!
- In order to generate the $\underline{\text { residuals, }}$, use GMM with $\mathbf{W}=\left[\frac{1}{N} \sum \mathbf{Z}_{\mathbf{i}}{ }^{\prime} \mathbf{Z}_{\mathbf{i}}\right]^{-1}$
- Can think of the equation (2) as giving you a covar matrix under heteroskedasticity and serial correlation of unknown form.
- When $\mathrm{L}=\mathrm{K}$ and hence $\mathbf{X}^{\prime} \mathbf{Z}$ is a square, then W does not matter.
- Stop with the second step (not a lot of efficiency gains in continuing).
- Simulation studies show - very little efficiency gain in doing 2 -step GMM even in the presence of considerable heteroskedasticity.
- Additionally, since 2 -step GMM depends on $1^{\text {st }}$ step coeff est, the std. error calculations tend to be too small.... Windmeijer provides a correction (now implemented in some software - PcGive).

Test for over identifying restrictions (Sargan/Hansen)

Moment condition: $E\left(\mathbf{z}_{\mathbf{i}}^{\prime} u_{i}\right)=0$
[has L eqns]
Min: $Q=\left[\sum_{i} \mathbf{Z}_{\mathbf{i}}^{\prime} \mathbf{u}_{\mathbf{i}}\right] \mathbf{W}\left[\sum_{i} \mathbf{Z}_{\mathbf{i}}^{\prime} \mathbf{u}_{\mathbf{i}}\right]$

- When $\mathrm{L}=\mathrm{K}, \mathrm{Q}(\hat{\boldsymbol{\beta}})=0$;
- When $\mathrm{L}>\mathrm{K}$, then $\mathrm{Q}(\hat{\boldsymbol{\beta}})>0$ although $\mathrm{Q}(\hat{\boldsymbol{\beta}}) \rightarrow 0$ in probability.
- So use this to derive the test by comparing the value of the criterion function Q with its expected value under the null that the restrictions are valid.
- This is simple when the optimal weighting matrix is used:
$\mathrm{N} \mathrm{Q}(\hat{\boldsymbol{\beta}})$ dist asym as a $\chi^{2}(\mathrm{~L}-\mathrm{K})$ under H_{0}. (Only valid under homosk.)
- If you only suspect that L_{1} are ok but L_{2} are not (where $\mathrm{L}=\mathrm{L}_{1}+\mathrm{L}_{2}$) then can use $\mathrm{N}\left(\mathrm{Q}-\mathrm{Q}_{1}\right)$ is asymp $\chi^{2}\left(\mathrm{~L}_{2}\right)$ where Q_{1} is the minimand when the nonsuspect instruments L_{1} are used.

