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2. Static Linear Models

Linear (or log linear) static model.   

yit = xitβ + ci + uit             [xit is 1xK vector;   β is Kx1 vector] 

yi = Xiβ + ci + ui   [yi is T x 1;  Xi is T x K] 

 
Dependent variable  yit         i=1,.....,N   t=1,...,T. 

• No restriction on the values the dependent variable can take.  [v.imp] 
 
Explanatory variables  xit a vector of K variables. 
 (i) can vary over i,t.   
 (ii) can vary over i only. 
 (iii) can vary over t only. 
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TYPES OF MODELS

1.  Fixed Effects (FE) model.    

2.  Random Effects (RE) model. 

 

• Problem with the interpretation – a lot of confusion 

• To do with the estimation…… 

• Mainly dependent on whether E(ci | xi1,…, xiT) = E(ci) 

• Should treat the c as a random draw and then choose the estimation 

method depending on the assumption you make regarding various 

exogeneity statuses. 
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2.1. Fixed Effects (FE) Model

yit = xitβ + ci + uit                 (1) 

What does FE mean here?  Estimation does not depend on the 

specification of c. 

Assumptions 

FE1a. E(uit | xi1,…,xiT, ci) = 0   [st exog cond on c]   t=1,…,T. 

  Implies E(yit| xi1,…,xiT, ci) = xitβ + ci  

FE1b. E(ci | xi1,…,xiT ) ≠ E(ci)                Important assumption here. 

           [allows for arbitrary corr] 
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Problem:  Can’t distinguish time-invariant covariates from  c   here. 

Estimation 

Basic principle – find a transformation that will eliminate the ci.   

One such transformation is within transformation – takes within group 

mean deviations. 

Notation:   
.

. .. .;       ;          ;
T N

it i
t i

i it it i= = = −
∑ ∑x x

x x x x  x

 

Averaging (1) over i  gives 

yi. = xi.β + ci + ui.            (2) 
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Subtracting (2) from (1) now gives 

uit it ity = +x β              (3) 

 

Apply OLS to (3) to get .   ˆ
wβ

1

ˆ
w

i i

−
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑' ' -1

xi i i i xx yβ X X X y W w        { [ ] [ ]-1= '  X X X ' y } 

 

xit is  1 x K;   Xi is T x K;  X is NT x K; 

yi  is T x 1
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NOTES: 

(i) Under strict exogeneity assumption for the x, this would give you 

unbiased (conditional on x) and consistent estimator for β for large 

N or large T or large N & T.               WHY? 

(ii) Time invariant variable effects cannot be estimated.       WHY? 

(iii) The above is also known as within-group estimator (WG). 

(iv) If we assume that  

  FE3:  E(ui ui
’| xi, ci) = 2

uσ  IT,          [cond covar =  uncod covar] 

  then the WG estimator is also efficient (since uit have constant  

  variance and serially uncorrelated). 
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(v) Can show that ( ) ( )2 ' 1)]i i
ˆ ~ 0, [E(w uN Normal σ −−β β X X  [need the 

rank condition   FE2:   rank E(.)  is K].   

 

Thus,    Avar ( ) = ˆ
wβ

2 ' 1[E( )] /u i i Nσ −X X .    

 Sample analogue would be     2 ' 1ˆ [ ( )]u i i
i

σ −∑ X X  

 with  2 SSˆ
( 1)

w
u

SSRWGres
NT N K N T K

σ = =
− − − −

.   (4) 

 

(vi) If you assume ci is a parameter to estimate, you can create N-1 

dummies and use OLS.  PROPERTIES OF THE ESTIMATOR? 
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(vii) Same    as before – apply ˆ
Wβ Frisch-Waugh theorem -  LSDV 

model.  

  i . .
ˆˆ     i i wc y= − x β based on T observations. 

    is unbiased (conditional on the x s) but inconsistent for cîc i under 

fixed T and large N.  But consistent as T→∞. 

 (incidental parameter problem) 

 

(viii) If  T=2,  yit - yi. ≡ yi2 - yi1    (eq. in first differences) 
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2.2. Random Effects (RE) Model (Variance Components or Error 

Components)  

yit = xit β + ci + uit           (1)    

Assumptions   

RE1a. E(uit | xi1,…,xiT, ci) = 0         [had before – st exog] 

RE1b. E(ci | xi1,…,xiT ) = E(ci) =0               Important assumption here. 

              (orthogonality) 

Write (1) as  

yit = xit β + vit            (5)    
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Assumptions 

RE2:  rank[ E(Xi’Ω−1Xi) ] = K     [OR rank[ E(Xi’ [plim Ω̂−1] Xi) ] = K] 

RE3:  (a) E(ui ui
’|xi, ci)=σ2

u IT ;    (b) E(ci
2|xi)=σ2

c 

E(vi vi’) ≡ Ω = 

2 2 2 2

2 2 2 2 2

2 2 2

...
...

. .

c u c c

c c u c c

c c u

σ σ σ σ
σ σ σ σ σ

σ σ σ

⎡ ⎤+
⎢ ⎥+⎢ ⎥
⎢ ⎥
⎢ ⎥

+⎣ ⎦

 = 2
uσ  ΙΤ + 2

cσ  JT JT’ 

 JT is a T x 1 vector of ones.             (6) 

Estimation       

Basic principle – use feasible GLS.   
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NOTES 

(i) Under the assumptions, FGLS is consistent and efficient.  The 

general form is 

  i

1
' 1

RE
ˆ ˆ ˆ

i i i

−

i i

−⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜

⎝ ⎠ ⎝
∑ ∑ ' -1β X Ω X X Ω y ⎟

⎠
      (7) 

 Consistency does not rely on E(vi vi’)=Ω.  If the prob limit of  is 

not the same as E(v

Ω̂

i vi’)  does not matter.  GLS is still consistent. 

 

 
1

' 1ˆ ˆv̂ar( )RE i i
i

A
−

−⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑β X Ω X  
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 Efficiency requires the assumption that the unconditional variance is 

equal to the conditional variance and the error structure is used in 

the estimation.   

(ii) Covar(vit,vis) = Covar(ci+uit,ci+uis) = Var(ci) = σ2
c  ≠ 0  AND   

 does not go to 0  as N→ ∞ or as T→ ∞. 

 Corr(vit,vis) = σ2
c / (σ2

c + σ2
u);    interpretation? 

 All observed correlation between two periods is due to 

heterogeneity. 

(iii)  For FGLS we require 2ˆcσ  and 2ˆuσ . 

(iv) Estimation of 2
cσ  and 2

uσ .  
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 Take (5)    yit = xit β + vit       (5) 

  

 OLS consistent but not efficient under our assumptions.  Use the 

OLS residuals to get a consistent estimator of  σ2
v .  

 ( )2ˆ pooled
v

SSR
NT K

σ =
−

           (8) 

   

 Can still use WG.  The SSR from this can be used to estimate 2
uσ  as 

 2ˆ
( )

WG
u

SSR
NT N K

σ =
− −

         (9) 
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 Hence  2ˆu
2 2ˆ ˆc vσ= −σ          (10) σ

 PROBLEM:  Might get a negative value for 2ˆcσ .   Set 2ˆcσ =0 and 

proceed. Your model is probably misspecified. 

 There are other ways to estimate these error components. 

 

v)Consider  yit  = xitβ  + ci + uit         (11)  

  

Ignore the randomness of c.  Estimate (11) by OLS  [pooled model] 

  
1

1
i i i i xx xy

ˆ
−

= ( ' ) ( ' )  =         p
i i

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑X X X y T tβ  
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(using NT obs.  df=NT-K in general ). Txx  is the total sum of squares 

Now consider   yi. = Xi.β + ci + ui.         (7)  

OLS on (7) gives (called Between Group (BG) estimator); 

  ( ) ( )
-1

-1
i. i. i. i. xx xy

i i

ˆ  = ' '  =    b T T⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑β X X X y B b      (df=N-K)  

Bxx  the between group sum of squares.   

  (NT obs.   df=NT-N-K ). 
-1

1
xx xy

i i

ˆ  = ' '  =       w i i i i
−⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑β X X X y W w

 Wxx is the within group sum of squares 
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You can show 

( ) ( )ˆ ˆ ˆ⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦

-1 -1
p xx xx xx w xx xx xx bβ = W + B W β + W + B B β    

(weights add up to 1) 

 

Therefore, ˆ
pβ  is a weighted average of   and ˆ

wβ bβ̂ . 

vii)Similarly we can show that the  is a weighted average of   and ˆ
glsβ ˆ

wβ

bβ̂  but with different set of weights. 

     

 

( ) ( )ˆ ˆ ˆ ˆ ˆθ θ θ (1 )gls κ κ⎡ ⎤ ⎡ ⎤ = + −⎣ ⎦ ⎣ ⎦
-1 -1

xx xx xx w xx xx xx b w bβ = W + B W β + W + B B β β β    
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  where, 
2

2 2θ u

u cT
σ

σ σ
=

+
. 

viii)When θ=1 (when σ2
c =0), ˆ ˆ

gls p=β β .  i.e. classical regression model 

under this assumption σ2
c =0,  OLS is BLUE. 

ix)When θ=0 (when T→ ∞ or when σ2
u =0), ˆ ˆ

gls W=β β .   

When T is large, we get more efficient estimators by using the within 

group variations.  Since the BG estimator ignores this variation, we set the 

weight attached to this to zero. 
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x)  Feasible GLS - 2 step estimation

θ is unknown.             Estimate θ.          Use a two-step method. 

 Step 1:  Est the variance components which will let you estimate θ. 

 Step 2:  Transform the variables and regress yit
*  on  xit

* s. 

   yit
* = yit - (1- θ ) yi.  and   xit

* = xit - (1- θ  ) xi.   (12) 

 2-step GLS is more efficient than the WG estimator even for moderate 

sample sizes such as T>= 3 when N-K >= 9 or T=2 when N-K >= 10.   

 Can continue with the iterations until convergence.  But this is not 

necessary. 
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 Estimation of σ σαu
2  and 2  - see above……… 

xi)Maximum Likelihood Estimation:  Under the assumption of Normally 

distributed errors, with N → ∞ and fixed T, ˆ
MLEβ  is consistent.  But 

when N is fixed and T → ∞, ˆ
MLEβ  →  but  ˆ

wβ
2ˆcσ  will be inconsistent 

since when N is fixed, there is not enough variation in the ci s to give 

consistent parameter estimator however large the T is! 
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1.3 First Differencing vs WG 

Another way to eliminate ci is to take first differences. 

Estimation equation:  Δyit = Δxit β + Δuit      (13) 

• lose one observation at the beginning 

• can’t estimate coefficients on time-invariant variables 

• need strict exog assumption in terms of differences  

 i.e. E(Δuit| Δxi2, …., ΔxiT)=0    FD1 

• rank( )
2

( '
T

t
E

=

Δ Δ∑ it itx x )=K     FD2 
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• E(Δuit Δuit’| xi1, …, xiT,ci)=σ2
e IT-1    where eit=Δuit 

 No serial correlation implies u is a random walk! 

• 2 1ˆˆ ˆvar( ) ( ' )FD eA σ −= Δ Δβ X X   with  2ˆeσ = SRRFD/[N(T-1)-K] 

• A powerful method used in program evaluation  

 Let T=2        Δyi2= α2 + Δzi2 β + δ progi2 + Δui2

 when β=0  estimate of  treated controly yδ = Δ − Δ     (DID estimator) 

• WG more efficient when uit are serially uncorrelated and FD more 

efficient when uit is a random walk.  Very different est can imply 

failure of strict exog assumption. 

     



Wiji. Arulampalam, May 2006 22 

2.4 Summary on Estimators

 it it i ity c u= + +x β        (1) 

 i i i T ic= + +y X β J u  

Estimating equation:  it it ity u= +w γ    

All equations estimated by OLS 

 

Pooled: it ity y=  ; Same for the w.   

 No transformation needed;  

 All variables in the model.  
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WG:  .it it iy y y= −    

 Variables in mean deviations 

 Only time varying variables are in the equation 

GLS  .
ˆ(1 ) it it iy y yθ= − −    (

2

2 2θ u

u cT
σ

σ σ
=

+
) 

 Variables in special deviations 

 All variables in the equation 
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FD   1it it ity y y −= −  

 Variables in first differences 

 Only time varying variables are in the equation 

 Also lose the first observations. So have only T-1 obs per i. 

 

Now, write  it it ity u= +w γ  as 

    i i i= +y W γ u  

OLS est  ' i
1ˆ ( ' ) ( )i i i

i i

−= ∑ ∑γ W W W y  
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 Asy Covar matrix  i
2 1ˆ ˆ ( ' )u i

i

σ −= ∑V W W  

 Or in the general case:  

 1 1
i i

ˆ ( ' ) '  E( ' | ) ( ' )i i i i i i i
i i i

− −⎡ ⎤
= ⎢ ⎥⎣ ⎦

∑ ∑ ∑V W W W u u W W W W  

 

2.5 Robust Covariances

• Issue:   Robust covariances vs GLS 

• What do we want to use for i i'  E( ' | )i i i
i

⎡ ⎤
⎢ ⎥⎣ ⎦
∑W u u W W ? 
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• Use '
i i it is

ˆ ˆ ˆ ˆ'  ( ')i i it is
i i t s

⎡ ⎤
=⎢ ⎥⎣ ⎦

∑ ∑∑∑W u u W w w u u   

• allows for arbitrary serial correlation and time-varying variances 

• but note, the above is calculated under large N and fixed T 

asymptotics as well as independence over i  

• can be calculated using cluster-robust command using clustering at the 

individual level. 
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Also note 

• GLS (RE):  ⎟    ordinary case 
1

' 1ˆ ˆv̂ar( )gls i i
i

A
−

−⎛ ⎞
= ⎜

⎝ ⎠
∑β X Ω X

 Here:  
1 1

' 1 ' 1 ' 1 ' 1ˆ ˆ ˆ ˆˆ ˆi i i i i i i i
i i i

− −
− − − −⎛ ⎞ ⎛ ⎞⎛ ⎞

⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑ ∑X Ω X X Ω u u Ω X X Ω X  

• Can’t use residual sums of squares to test restrictions re coefficients. 

Need to use the general Wald test:  H0: Rβ=r 

 W = ( ) ( ) ( )1 2ˆ ˆˆ' ' ~   (s )r r a y qχ
−

− −Rβ RVR Rβ  
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• For large T and small N, you will have to specify a particular form of 

correlation such as ARMA for example. 

 

2.6 Other considerations

Mundlak (1978) E’trica 

Approximate ci =  + v.ix π i   vi ~ iid   

Including this in the equation and estimating by GLS gives you the same 

WG estimators for β. 

i.e. OLS estimation of  (see (12)) 
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 yit
* = xit

* β +  + error        .ix π

ˆ ˆ
gls w=β β   and   ˆ ˆˆ b w= −π β β

(what does this mean?   BLUE of the RE model when the correlation is 

allowed for gives you the WG est.) 

Can test for π=0  Wu-Hausman test for strict exog. 

 

Chamberlain (1982, 1984) 

ci = x1i π1 + .......+ xTi + vi  vi ~ iid   (more general than Mundlak) 

Use Minimum Distance methods. This gives WG for β.
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2.7 Tests

2.7.1 Wu-Hausman Test

This is a test for strict exogeneity. 

First consider the general test. 

Consider two estimators  and  say, such that ˆ  1β ˆ
2β

 Under H0         Under H1

 is consistent and efficient   is inconsistent ˆ   1β ˆ   1β

 is consistent      is consistent ˆ  2β ˆ  2β

 Let         ˆ ˆˆ 2 1q = β -β
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then,      m= [ ] 1ˆ ˆ ˆ ˆ' −q Varq q     ~   asy χ2
(K)   on H0.        (K restrictions)  

 

It is easily shown that    Var [ ] = Var[ ] - Var[ ].   q̂ ˆ  2β ˆ
1β  

 

Var [ ] is positive definite (i.e will have an inverse which is needed) but 

the estimated  Var [ ] need not be!   

q̂

q̂

 

This is a problem with this test.  But there are regression based versions. 
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Example 1 – WG vs GLS 

Maintained Hypotheses:   

RE1a. E(uit | xi1,…,xiT, ci) = 0         [st exog] 

RE3:  (a) E(ui ui
’|xi, ci)=σ2

u IT ;    (b) E(ci
2|xi)=σ2

c 

 

NOTE:       RE3 gives GLS more efficient than WG 

Want to test:   RE1b.   E(ci | xi1,…,xiT ) = E(ci)              

For the test     is our       and      is our . 2
ˆ   β ˆ  wβ ˆ  1β ˆ

REβ
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Notes:  

• The null can fail for many reasons such as simultaneity, measurement 

errors, omitted variables etc. 

• When T→∞ and N is fixed, ≅  and hence the test will have low 

power. 

βGLS βw   

• Regression based test (no problem with –ve variance): 

  yit
* = yit - (1- θ ) yi.  and   xit

* = xit - (1- θ  ) xi. 

  yit* = ………. + (xit- xi.) δ + error   and test for H0: δ=0 
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 Can have individual specific variables in the RE part (assuming that 

they are not correlated with the unobs heterogeneity) and include the 

time varying covariates in mean deviations as extra variables and do the 

same test. 

 It can be shown that in the above regression, 

    (between group)     and ˆ ˆ
b=β β ˆ ˆ ˆ

WG b= −δ β β  

 

 Since b            we can do the same test by comparing 

different estimators as follows: 

ˆ ˆ ˆ(1 )gls κ κ+ −wβ = β β
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ˆ ˆ
gls wg−β β    ;   β  ;      ˆ ˆ

gls b−β ˆ ˆ
wg b−β β   ;     ˆ ˆ

gls p−β β

All estimators are consistent under the null and therefore should converge 

under the null. 

If there is heteroskedasticity and serial correlation, then WG or GLS are 

not optimal under H0 or H1 and we cannot rank these in terms of 

asymptotic efficiency.  Can use White’s robust covar – Arellano. 
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2.7.2 Test for Random Effects 

Breusch & Pagan Test (1980 R E Studies)

H0: 2
cσ =0  in the RE Model.     LM test. 

Then,          m=

22

2
02

ˆ
NT - 1  asy~ (1) on H

ˆ2(T 1)

it
i t

it
i i

u

u
χ

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑
∑∑

. 

where, uit= residuals from the pooled model regression (OLS).  This is so 

since under H0 the RE model collapses to the pooled model. 
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Unfortunately this does not account for the fact that 2
cσ >0 under H1.

Improved one sided test: 

HONDA=

2

02

ˆ
NT - 1  asy~ (0,1) on H

ˆ2(T 1)

it
i t

it
i i

u
N

u

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑
∑∑

 

 

Generally has low power.  Better to use the CHOW test for this…WG 

residuals vs pooled OLS residuals. 
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2.8 Model Specification and Estimation – extension

RE Model  

Some regressors correlated with the ci. 

Important model: For eg. in earnings equations.   

Consider  yit = β’xit + γ’zi + ci + uit        

Remember!  No correlation between the regressors and ci

The efficient estimation is the GLS.   

 

Some time varying regressors correlated with the ci 

Can do WG estimation but this will not let us estimate γ.   
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Use a two-step method as follows: 

 Step 1:  Get the . ˆ  wβ

 Step 2:  Estimate the γ by doing an OLS of 

   yi. - xˆ   wβ i. = γ zi + error. 

 As N→ ∞  and  βw γ  are consistent. 

But for a fixed N and T→ ∞, is consistent but not βw γ  -  because 

equation uses N observations. 

 

Some xit and some zi are correlated with ci  (Hausman & Taylor 1981 

Econometrica) 
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Write equation as  yit = β1’x1it + β2’x2it+ γ1’z1i + γ2’z2i +  ci + uit   () 

Assume there are  

• k1 variables in x1;   k2 variables in x2;   

• g1 variables in z1;  g2  variables in z2. 

• x1 and z1 are uncorrelated with the ci and x2 and z2 are correlated with the 

ci. 

• E(uit | xi1,..,xiT, ci)=0   [strict exog conditional on c] 

GLS inconsistent.  

Use instrumental variable estimation (IV) along with GLS    

Need instruments. 
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Step 1:  Obtain    and    ˆ  1wβ ˆ  2wβ

Step 2:  Write equation as              yi. - xˆ
wβ i. = γ1 z1i + γ1 z2i +error. 

  Use IV to estimate the γ coefficients (OLS inconsistent). 

Step 3: Obtain the variance components as before  

  2ˆuσ   and    2 2ˆ ˆu cTσ σ+    (assumes RE spec correct!) 

Step 4: Use the step 3 ests to transform the variables to yit* etc. 

Step 5: apply IV -  HT  showed that  x1i. are valid instruments for z2i.  

 

Must have  k1 ≥ g2. 

One big advantage:  instruments are from within the model……. 
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STATA – use xthtaylor 

STATA – xtreg with the RE option 

STATA – xtreg with the FE option 

 

Test for over-identification 

ˆ ˆˆ HT w ;  then   q = β -β 2ˆuσ  [  1 2ˆ ˆˆ ˆ ˆ ˆ'[var( ) var( )] ~  ( )w HT asy kχ−−q β β q

where k=min[k1-g2, NT-k1-k2] 

 

Notes:  Found to be sensitive to the assumptions of exogeneity of the 
different sets of x and z variables.  Chowdhury & Nickell, 1985, Journal 
of Labor Economics is a very good example of this. 
     


