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3. Dynamic Models
 
3.1 Introduction 
 
CHANGE OF NOTATION 
 
Consider yit = γ yit-1 + xitβ + ci + uit   t=2,…,T    (1) 
 
The assumption is (weak exog): 
 
E(yit|xit,yit-1,…., xi2,yi1|ci)=E(yit|xit,yit-1,ci) = γ yit-1 + xitβ + ci + uit  (2) 
 
Can’t justify strict exog assumption!  WHY?  
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Notes:   

1. Above does not require uit to be uncorrelated with the future values of x.  

i.e Feedback is allowed for from yit to xit+1,…, xiT.  If necessary we can 

impose additional orthogonality conditions to make u uncorrelated with 

past, current and future xs. 

 Example: 

 Static model with feedback:  [x is w.exog] 

 yit = δxit + ci + uit   and    xit = αyit-1+ φ ci + vit   
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 Here, strict exog assumption for x will not work! 

 Consider E(xit+1 uit)= α E(yituit)= α E(uit
2) ≠ 0 even if other terms are 0. 

2. With short panels we cannot calculate individual time series auto-

covariances using something like 1
2

1
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∑  for example.  very 

important!   
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3. Asymptotics based on large N and fixed T.  So NO need to bother with 

assumption about γ. Identification of parameters and small sample 

properties of the estimators - depend on the time series properties of the 

series. Influence of the initial observation cannot be ignored when T is 

small. 

4. Persistence can come from two different sources…. Heterogeneity or 

state dependence….. 
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 Have true state dependence when γ≠0.  When γ=0, we still observe 

 non-zero correlation (see RE model).  When this happens, we say that  we 

 have spurious state dependence.  

5. IDENTIFICATION 

 T=2   (becomes a cross-section model) 

 Consider   Model 1:  yit = c + uit ,     uit=ρuit-1+εit   

 Vs    Model 2:  yit = ci + uit        

 In Model 1:  corr(yi1, yi2)= corr(c + ui1, c + ui2)=  ρ        
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 In Model 2:  corr(yi1, yi2)= σ2
c /( σ2

c+ σ2
u) 

 Can’t distinguish between  ρ=0.4 and  σ2
c /( σ2

c+ σ2
u)=0.4  for eg. 

 Need at least T=3 here…… 

5. yit-1 and ci.  are correlated.  

6. Bias calculations for various estimators are based on the assumption 

about the initial condition of the process.  

7. Estimation: WG transformation to eliminate the ci will not help. The LDV 

in mean deviation will be correlated with the uit in mean deviation via the 
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means.  Thus WG is inconsistent (Nickell bias). Inconsistency vanishes as 

T→∞. i.e. need large T and large N.  with large σ2
c and fixed yi1 the bias 

in the WG est will be small.  WG biased downwards.   

8. Pooled OLS is also biased and inconsistent.  Here the bias is upwards. 

9. FD est is also biased downwards. 

10. MLE depends on the assumption about yi1  [fixed or stochastic, 

correlation with ci or not, stationarity….].   

11. So better to use IV 
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3.2 Estimation 

Take first differences and then use instrumental variable estimation.  

Consider the simpler model:  Δyit = γ Δyit-1 + Δuit    t=2,..,T   (3) 

Choice of instruments depends on the assumptions we make. 

Assump  (2)   E(uit| yit-1,..,yi1,ci) = 0   implies the following:  

1. E(yit-1 uit)=0  

2. E(yis Δuit)=0 s=1,.,t-2; t>2;    [note:  Δyit - γ Δyit-1 = Δuit] 

3. E(uit uit-j|yi1,..,yit-1,ci)=0 j>0  (serially uncorrelated conditionally) 
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4. E(uit uit-j)=0    (serially uncorrelated unconditionally too). 

5. E(ci uit) = 0  for all t. 

 Thus,  (yi1,….,yit-2)  are valid instruments at time t. 

 Instruments (Anderson & Hsiao (1981)):  (yit-2 - yit-3)  or  yit-2  for Δyit-1;  

 Δyit = γ Δyit-1 + Δxitβ + Δuit           (4) 

 In practice, the choice will obviously depend on the relevant correlations. 
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Arellano & Bond: use all available moment condition and do GMM. 
 
For fixed T (>2) and assuming predetermined yi1 (can be correlated with ci): 
 
Moments for t=3:   E[(ui3-ui2)yi1]=0 
 
For t=4;    E[(ui4-ui3)yi2]=0   &    E[(ui4-ui3)yi1]=0;    and so on…. 
 
Giving the matrix of instruments (when there are no xs): 
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So the set of moment conditions: E[Zi’Δui]=0  LINEAR in γ 
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In the simple model:   
 

1
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with the optimal weighting matrix given by: 
 

[ ] 1' 'i i i iE −= Δ ΔW Z u u Z   and is estimated by the sample equivalent 
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• AVAR γ̂   = ( ) ( )
11
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• T=3   Model is just identified; Over identified for T>3.  Can test for this 

using Sargan’s (Hansen’s) test. 

• Δuit is MA(1);  Under homoskedasticity assumption on uit,  
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⎢ ⎥−⎣ ⎦

H  Does not depend on any param. (9) 

• If Δuit is MA(1), the second order serial correlation should be zero. This 

can be tested using Arellano-Bond Test which uses the sample serial 

correlation coefficient. 
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• Use the first-step GMM with W=H to get the residuals for the two-step 

GMM.  

• Stop with the second step (not a lot of efficiency gains in continuing). 

• Simulation studies show - very little efficiency gain in doing 2-step GMM 

even in the presence of considerable heteroskedasticity. 

• Additionally, since 2-step GMM depends on 1st step coeff est, the std. error 

calculations tend to be too small…. Windmeijer provides a correction 

(now implemented in some software – PcGive). 
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• If we have st exog covariates x we can have further moment conditions. 

• Can end up with too many instruments and get inefficiency.  So might 

want to reduce the set of instruments – for eg use A-H.  Small sample 

biases when too many instruments are used can be large. 

• With additional assumptions, there are other moment conditions that can 

be used to improve the efficiency of the GMM.  Some of these are 

quadratic and some are linear in γ.   
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3.2.1 Weak instruments (Blundell and Bond) 

If {y} is very close to being a random walk or when σ2
c/σ2

u is becomes large, 

correlation between level of y and the difference of y will be weak.  IV 

methods will not work properly (weak instruments). 

• IV suffers from very serious finite sample bias when the instruments are 

weak. 
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• Solution: Under homoskedasticity assumption and that yi1 satisfies mean 

stationarity [E(yi1)=ci/(1-γ) for each i], can use Δyit-1 as an instrument for 

the levels equation.  To see this: 

 Write   yi1 = ci/(1-γ) + εi1   (under mean stationarity) 

 This gives,   E(ci εi1)=0 

 yi2 = γ yi1 + ci + ui2 = γ ci/(1-γ) +γεi1 + ci + ui2 = ci/(1-γ) + γεi1 +ui2 

 Thus, Δyi2=  γεi1 +ui2  giving you   E(Δyi2 ci )=0 

 Which in turn will give you (with the previous assumptions) 
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 E[(yit-1-yit-2)(ci+uit)] =  E(Δyit-1 (ci + uit))=0  t=3,4,…,T 

 Hence differences can be used as instruments for the levels giving you an 

additional (T-2)  LINEAR moment conditions.   

 [The conditions regarding the initial observation translates to other periods 

because Δyit can be written as a function of Δyi2 plus errors using repeated 

substitution.]  

 In summary, we use:  E(Zi’Δui)=0   &  E[Δyit-1 (ci + uit)]=0. 

 These make the quadratic moment conditions redundant. 
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• The estimation in the above case requires a combination of equations in 

FD as well as in levels.  The use of both reduces the problem of weak 

instruments. 

• For large T case, the consistency depends on T/N→constant <∞. 

 

Ref:  Arellano, M & Bond, S. (1991) – “Some tests of specification for panel 

data: Monte Carlo evidence and an application to employment equations”, 

Review of Economic Studies, 58, 277-297. 
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3.3 Other points 

• MLE and GLS require some assumptions regarding yi1 (stochastic or non-

stochastic, correlated with c or not, etc..).  

  

3.4 Test for over identifying restrictions [Sargan/ Hansen] 

Moment condition:  E(Zi’Δui)=0  L instruments for K covariates 

Min:  
'

1 1
i i

Q
N N

⎡ ⎤ ⎡ ⎤
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i i i iZ u W Z u  

⎣
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When L=K,  Q( )=0;    [β refers to all the coefficients now!] β̂

When L>K, then  Q( )>0  although  Q( )→0 in probability. β̂ β̂

So use this to derive the test by comparing the value of the criterion function 

Q with its expected value under the null that the restrictions are valid. 

This is simple when the optimal weighting matrix is used: 

 N Q( ) dist asym as a χβ̂ 2(L-K) under H0. 

Only use the two-step GMM results. 
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If you only suspect that L1  are ok but L2 are not (where L=L1 + L2) then Can 

use N(Q-Q1) is asymp χ2(L2) where Q1 is the minimand when the non-suspect 

instruments L1 are used. 

 

Sargan’s test uses the minimand from the 2-step GMM.  This has a 

convenient chi sq regardless of heterosk.  

 

Should use the same est of the optimal weighting matrix in the calculation. 
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Use different set of moment restrictions to see how the ests change since 

having too many inst can cause small sample bias and also ineff.  Also 

sargan’s test also has low power when too many inst are used. 

3.5 Test for serial correlation 

Should not have serial correlation in the Δuit. Use the sample correlation 

coefficients to test for H0: no correlation.  Arellano-Bond test.  Complicated 

formula.  Test statistic is std normally distributed under the null of no serial 

correlation  
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3.6 STATA 

In STATA you can do the following: 

• 1-step GMM – this uses the H matrix on page 14 to calculate the estimates.  

You can do this in 1-step since the H matrix does not depend on any 

parameters (see (8) and (9)). 

• 1-step GMM with robust covar matrix, estimates the parameters using the 

1-step method and then, instead of estimating the covar matrix as 
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 AVAR   =β̂ ( ) ( )
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 it uses the residuals to calculate (10). 

• 2-step GMM uses the optimal weighting matrix and calculates the AVAR 

as in (10). i.e uses the residuals from step 1 to calculate the optimal 

weighting matrix as in (6) and recalculates (5) using this new W.  The 

AVAR is then calculated as in (10) above using the new set of residuals. 
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