
Wiji Arulampalam, May 2006 

4. Binary Response Models – Static Models 

4.1 Introduction 

Examples:  (i) y=1 individual is unemployed; y=0 is employed 

(ii) y=1 union member; (iii) y=1 firm is still operating;  etc. 

Interested in the response probability: 

P(y=1|x) = P(y=1|x1,...., xk) 

Want the partial effect of xj on the response probability ( 1)
x j

P y∂ =
∂

. IMP 
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If xj is binary, then we would wish to calculate the difference in the response 

probability between x=1 and x=0 cases. 

NOTE: For binary variables, E(y|x)=P(y=1|x)=p say;   then Var(y|x)=p(1-p). 

MODELS 

Model   P(y=1|x) = E(y|x) =  G(xβ) 

• 0<G(.)<1;   xβ is called the index. 

• Better to take G to be a cdf.   
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1. Linear Prob Model (LPM):  P(y=1|x)=xβ; 

 Model specified as:  y = xβ + error 

 Advantage –  the techniques for linear panel models can be applied.  

 However, there are some problems with this model (heterosk, 

 forecasting, effects of a change in x being fixed…...   

2. Probit & Logit;   

 Std. Normal G – Probit;   Logistic G – Logit  [G(z)= ( )
1 ( )

exp z
exp z+

] 
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4.2 Latent variable model interpretation

Consider y* = xβ + e;   y=1[y*>0] 

• e is indep over i and cont distributed and indep of x.  

• Assume the dist of e is symmetric about 0    

• This implies….. [1-G(-z))=G(z) for all z]. 

• Thus, P(y=1|x) = P(y*>0|x) = P(e>- xβ|x) = 1-G(-xβ) = G(xβ) 

• G(.) is the distribution of e! 
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• Threshold value does not matter 

• Scale normalisation required:   P(y=1|x) = P(y*>0|x) = P(y*/σ>0) 

• So set probit: variance=1;    But logit: var = π2/3.  

• Sometimes written as:  y = 1{ xβ + e  > 0};  1{.} is called the indicator 

function. 
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4.3 Coefficient interpretation

( 1)
x j

P y∂ =
∂

=g(xβ) βj  where g(z)= dG ( )
dz

z  

Partial effects depend on x.  g(z) is positive. So sign of the partial effect is the 

same as the sign of the coefficient. 

Can evaluate the partial effects at different values of x. 
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4.4 Estimation

LPM can be estimated by OLS or WLS. 

Probit/Logit requires MLE. 

 

For each individual, density of y given x  

 = f(y|x; β) = [G(xi β)]y  [1-G(xi β)]1-y  y=0,1 

Likelihood function is globally concave and maximisation of this will give 

you the max-lik-est. 
slides4 7 



Wiji Arulampalam, May 2006 

Can use std tests such as Wald, LR or LM to test most of the hypotheses of 

interest. 

 

4.5 For Panel Data 

 yit
* = xitβ + ci + uit   yit =1[yit

*>0] 

 i.e. yit = 1{ xitβ + ci + uit >0}    (t=1,…,T; i=1,…, N)  

 Prob(yi1=1|xit,ci) = P(yit
* >0|xit,ci) = P(uit>- xitβ - ci|xit,ci)  

                     = 1 – G(-xitβ - ci) = G(xitβ + ci)    if the dist is sym  
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4.5.1 Probit  

P(yit|xi1,…,xiT, ci) = P(yit|xit,ci)=Φ(xitβ+ci)  t=1,..,T   (1)  

Assume  (i) st. exog xit.  (ii)  yi1,…, yiT  are indep conditional on xi and ci.   

This gives the density of (yi1,…., yiT) conditional on xi and ci  

 = f( yi1,…., yiT| xi,ci; β) = it i
1

(y | , c ; )
T

t

f
=

∏ itx β      (2) 

where ( ) ( )t ty 1-y
t t

1

(y | , c; ) c 1 c
T

t

f
=

⎡ ⎤ ⎡ ⎤= Φ + − Φ +⎣ ⎦ ⎣ ⎦∏ t tx β x β x β   (3) 
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NOTES: 

1. Called random effects probit.  

2. Can’t estimate the ci as parameters since as N gets larger, the number of ci 

 gets larger – incidental parameter problem. 

3. Can’t do a transformation to eliminate the ci prior to estimation (like the 

 WG). 

4. So assume c is random and integrate it out of the likelihood to get the 

 unconditional likelihood: 
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 f(yi1,…., yiT|xi; β) = it i i i
1

(y | , c ; )   (c ) c
T

t

f g
+∞

=

d
∞

⎡ ⎤
⎢ ⎥
⎣− ⎦
∏∫ itx β   (4) 

 where it is assumed that c|x ~ f(ci) with some parameters.  Also note, I 

 have assumed that c and x are independent (distributionally). 

 Zero correlation  assumption is not enough. 

5. The above integral may not have a closed-form.  If so, need to use 

 numerical approximation to the integral:  Gaussian-Hermite quadrature or 

 discrete approximation or use simulation methods….. 
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6. Some popular choices for g(c): Normal or discrete approximation. 

7. Under Normality assumption for g(c)  ci|xi ~N(0,σ2
c)    (5) 

 f(yi1,…., yiT|xi; β, σ2
c) = it i

1 c c

1 c(y | ,c ; )   φ d
T

t

f c
σ σ

+∞

=−∞

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥

⎣ ⎦ ⎝ ⎠
∏∫ itx β   (6) 

8. (5) implies that  c and x are indep and normal.  
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9. Can measure 
2
c

2
c

σρ=
1+σ

= correlation of (ci+uit) over time – fixed.  Can 

 generalise this by allowing different correlations between different 

 periods.  But will need to estimate using multivariate probit routines….. 

10. OR allow for correlation by assuming a special AR(1) type distribution 

 for uit.  

11. Can estimate a pooled probit. Because of the distributional assumptions, 

 ci+uit will be normally distributed.  Will get consistent parameter est of  
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 [β/(1+ )2
cσ

1/2] (Robinson 1982). But std. Errors will be wrong since the 

 serial correlation will not be accounted for. Use outer-product of the 

 score. 

11. If not happy with indep assumption, use Mundlak’s or Chamberlain’s 

 formulation to account for correlation: ci|xi ~N(ψ+ ix ξ , )   2
aσ

 ci = ψ + ix ξ  + ai         (7) 

 Note the problem with time-invariant variables! 
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4.5.2 Logit  

P(yit|xit,ci)= it i
it i

it i

( c ) ( c )
1 ( c )

exp
exp

+
= Λ +

+ +
x x

x
    (8) 

 

As before assume  yi1,…, yiT  are indep conditional on xi and ci.   

1. Can do what we did before with the probit…assume a dist for c and 

integrate it out of the likelihood function – see (4). Assumptions 

important! 
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2. OR (unlike in the probit model) we can use Conditional Max Lik to 

 estimate the β without specifying the distribution of c – FE logit!  

 (Chamberlain  (1980)). 

 The density of (yi1,…., yiT) conditional on xi and ci  

 = f( yi1,…., yiT| xi,ci; β) = it i
1

(y | , c ; )
T

t

f
=

∏ itx β      (2) 

where ( ) ( )t ty 1-y
t t

1

(y | , c; ) c 1 c
T

t

f
=

⎡ ⎤ ⎡ ⎤= Λ + − Λ +⎣ ⎦ ⎣ ⎦∏ t tx β x β x β   (9) 
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 Find a minimal set of sufficient statistics ti such that conditioning on ti  

 eliminates the c,  

 f(yi1,…., yiT|ti, xi,ci; β)= f(yi1,…., yiT| ti ,xi; β) 

 [example: WG estimation: t = y ] 

  

The contribution to the log-lik of the i-th individual [from (8)] is 

= i[ ]i it it
1 1 1

c y ( .y ) 1 ( c
T T T

t t t
log exp

= = =

⎡ ⎤
+ − + +⎢ ⎥ )

⎣ ⎦
∑ ∑ ∑it itx β x β   (10) 
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 The minimal sufficient statistic is  it
1

y
T

t=
∑ .  Conditioning on this will get-

 rid of the ci. 

3. Conditional MLE   Example:  T=2 

 it
1

y
T

t=
∑ = yi1 + yi2   which is 0, 1 or 2. 

 First consider it
1

y
T

t=
∑ =1 :  

 P[yi1+yi2=1] = P[yi1=1 & yi2=0] + P[yi1=0 & yi2=1] = P(1,0)+P(0,1) 
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 Conditional on ci, the yi1 and yi2 are independent. 

 Hence, 

 P[yi1+yi2=1] = i i

i i

( c ) ( c )
[1 ( c )][1 ( c )]

exp exp
exp exp

+ + +
+ + + +

i1 i2

i1 i2

x β x β
x β x β

 

 and 

 P[(1,0)|yi1+yi2=1] 

 =
[ ]

i

i1 i2 i 2

(c ). ( )P[(1,0)]
P[y y 1] (c ) ( ) ( )

exp exp
exp exp exp

=
+ = +

i1

i1 i

x β
x β x β
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[ ] [ ]

2

2 2

( ) [( ) ]
( ) 1

2

{( ) } 1
exp exp

exp exp
− −

= =
− + −

i1 i i1 i

i1 i i1 i

x β x β x x β
x β x β x x β +

    (11) 

 Hence, P[(0,1)|yi1+yi2=1] does not contain ci. 

 This gives us the conditional log likelihood when T=2 as 

 i1 i2 2

2

y  ( ) y ( )
( ) ( )i

exp explog
exp exp

⎡ ⎤+
⎢ ⎥+⎣ ⎦

∑ i1 i

i1 i

x β x β
x β x β

       (12) 

• When yi1+yi2=0 or 2, the conditional likelihood contribution is 1. i.e. NO 

contributions from these individuals.  Hence, might have problems with 

rare incidents. 
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• For general T, we have to consider ity∑  =1,2,..,(T-1). 

• CMLE are consistent and the usual asy covar matrix can be used here. 

• Conditional MLE can be extended to multinomial logit too 

(Chamberlain, 1980). 

• Need variation in x. 

• Time invariant regressors dropout.  

• Only works in the case of a static model with logit assumption. 
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• Cannot do any predictions of prob(y=1) because of missing c.  

 4.6 Coefficient Interpretation  (Wooldridge) 

In cross-sectional models: 

Partial effects/Marginal effects = 

( 1)
x j

P y∂ =
∂

=g(xβ) βj  where g(z)= dG ( )
dz

z  

Now, have unobserved heterogeneity. 
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So calculate average partial effects APE – the expected value of PE over the 

dist of c  

=  Ec[PE]  =   c
j j

P(y=1| ,c) E(y| ,c)E E
x xc

⎡ ⎤ ⎡ ⎤∂ ∂
=⎢ ⎥ ⎢ ⎥

∂ ∂⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

x x    

Remember  P(y=1|x,c) = E(y| x,c).
        

 

Random Effects Probit with normally dist’d c and indep of x:    

yit
* = xitβ + ci + uit = xitβ + vit

Wooldridge (2002) section 2.2.5 shows how to calculate APE in general. 
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In this model, the APE can be obtained by working out the APE in the model 

with vit. 

Calculation: 

vit| xit ~ Normal(0,σ2
v);     σ2

v=1+ σ2
c           (σ2

u=1) 

P(yit=1|xit,ci) = P(xitβ + ci+ uit>0) = P(uit> -xitβ-ci) = Ε( yit=1|xit,ci) 

But  P(yit=1|xit) = P(xitβ + vit >0) = P(vit> -xitβ) = Ε(yit=1|xit) 

So,  E(yit=1|xit) = Φ(xitβ/σv) =  Ec[Ε( yit=1|xit,ci)] = Ec[Φ(xitβ+ci)]  

Hence APE evaluated at x0 =  ∂{Ec[Φ(xitβ+ci)]}/ ∂xj
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         = ∂Φ(xitβ/σv)/ x∂ j =  (βj/σv) φ(x0β/σv)  

• Calculation easy because of assumptions (heterogeneity is normally 

distributed independently of the x).   

• More difficult with different assumptions – will need to do simulations. 

• Can also use the effect on the log odds ratio in logit models. 
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