6. Other Models and Issues

6.1 Tobit model (censored model)

The RE Tobit is very similar to the RE probit with the difference being in the observation rule.
$y_{i t}^{*}=\mathbf{x}_{\mathrm{it}} \beta+\mathrm{c}_{\mathrm{i}}+\mathrm{u}_{\mathrm{it}}$
The observation rule: $\quad y_{i t}=y_{i t}^{*} \quad$ if $y_{i t}^{*}>0$

$$
\mathrm{y}_{\mathrm{it}}=0 \quad \text { otherwise }
$$

Also known as censored regression model.

Observations below 0 are censored at 0 .

Note, we know who these people are.

Make the same assumptions as before and use MLE
St. exog of $\mathbf{x} ; u_{i t} \sim N\left(0, \sigma_{u}^{2}\right)$ etc.
The joint density for the ith observation is:
$f\left(\mathrm{y}_{\mathrm{i} 1}, . ., \mathrm{y}_{\mathrm{iT}} \mid \mathbf{x}_{\mathrm{it}}, \mathrm{c}_{\mathrm{i}}\right)=\prod_{t}\left[\frac{1}{\sigma_{\mathrm{u}}} \varphi\left(\frac{\mathrm{y}_{\mathrm{it}}-\mathbf{x}_{\mathrm{it}} \boldsymbol{\beta}-\mathrm{c}_{\mathrm{i}}}{\sigma_{\mathrm{u}}}\right)\right]^{d_{i t}}\left[1-\Phi\left(\frac{\mathbf{x}_{\mathbf{i t}} \boldsymbol{\beta}+\mathrm{c}_{\mathrm{i}}}{\sigma_{\mathrm{u}}}\right)\right]^{1-d_{i t}}$
where $\mathrm{d}_{\mathrm{it}}=1 \quad$ if $\quad \mathrm{y}_{\mathrm{it}} *>0$
(i.e. $y_{i t}$ is observed and not censored)

Proceed as before by integrating out the c under a particular dist assumption or use a discrete approximation.

6.2 Incomplete panels and selection bias

- Reasons for incompleteness - attrition?
- Selection endog?

EG: Explaining performance of mutual funds - badly performing funds may not survive and therefore not appear in the sample.

- If observation missing, is it missing at random?

Consider $\mathrm{y}_{\mathrm{it}}=\mathbf{x}_{\mathrm{it}} \boldsymbol{\beta}+\mathrm{c}_{\mathrm{i}}+\mathrm{u}_{\mathrm{it}}$

Define $r_{i t}=1$ if $\left(y_{i t}, \mathbf{x}_{\mathrm{it}} \beta\right)$ is observed and $\mathrm{r}_{\mathrm{it}}=0$ if missing.

Observations ($y_{i t}, \mathbf{x}_{\mathrm{it}} \beta$) are missing at random if r_{it} is indep of c_{i} and $\mathrm{u}_{\mathrm{it} .}$

Simple tests (Verbeek and Nijmann, 1992)
(i) If you include some functions of the indicators r_{it}, it should not be significant.

- For example, can add r_{it} (observed in the last period); $\prod_{t=1}^{T} r_{i t}$ (observed in all the periods); or $\sum_{t=1}^{T} r_{i t}$ (total number of periods over i was observed).
- In the case of linear models, the model has to be a RE model.
- Rejection may not actually indicate no-selection bias - low power!
(ii) Comparison of the balanced vs unbalanced model estimates - use Hausman test.

Estimation in the presence of selection

Need to make extra assumptions.

Example: $\mathrm{r}_{\mathrm{it}}=1\left\{\mathbf{z}_{\mathrm{it}} \gamma+\mu_{\mathrm{i}}+\mathrm{e}_{\mathrm{it}}\right\}$

More complicated joint estimation.

- If selection is fully dependent on time-invariant characteristics, the problem becomes manageable!

