An Introduction to Reinforcement Learning

March 11, 2024

This Course

What is Reinforcement Learning (RL)

Examples and Mathematical Definition

Supervised/Unsupervised Learning and RL

Dynamic Programming and RL

- RL in the Economics Literature
 - Single-Agent RL
 - Multi-Agent RL

What is RL

 Reinforcement Learning is about an Agent learns via interacting with an Environment

Literal Decomposition:

Reinforcement: Reward-Driven

- Learning: Optimal Policy
- Components:
 - State of the Environment
 - Action taken by the Agent
 - Reward as a sequence of the State and the Action

What is Reinforcement Learning?

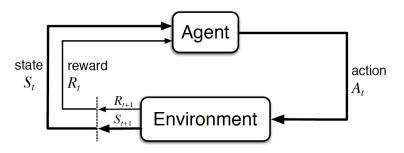


Figure: Agent-Envrionement Interaction by Sutton and Barto (2018)

What is RL: Example I

- State: current position
- Action: Up, Low, Left, Right
- Reward: ?

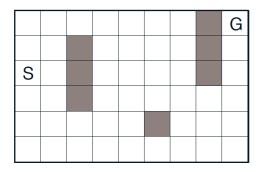


Figure: An Maze Problem

What is RL: Example II

► The *Frozen-Lake* Environment:

"The ice is slippery, so you won't always move in the direction you intend."

SFFF	(S: starting point, safe)
FHFH	(F: frozen surface, safe)
FFFH	(H: hole, fall to your doom)
HFFG	(G: goal, where the frisbee is located)

Figure: Frozen-Lake

What is RL: Example III

The Cart-Pole Environment: GIF

State:

- Cart Position: [-4.8, 4.8]
- Cart Velocity: [-Inf, Inf]
- Pole Angle: [-24°, 24°]
- Pole Angular Velocity: [-Inf, Inf]
- Action: 0 (Left) or 1 (Right)
- $\blacktriangleright \text{ Reward: } +1 \text{ for every step}$

What is RL: Example IV

- A consumption-saving model (finite or infinite horizon) in macroeconomics
- ▶ State: (k_t, ϵ_t) , where $k_t \in [k_{\min}, k_{\max}]$ is the capital holding, $\epsilon_t \in \{0, 1\}$ is the employment status
- Action: c_t, the consumption
- Reward: $u(c_t)$, the utility

What is RL: Mathematical Definition

- Definition: A Markov decision process (MDP) is a 4-tuple (S, A, P, R), where:
 - \blacktriangleright *S* is a set of states called the state space
 - A is a set of actions called the action space
 - P(s, a, s') = Pr(s_{t+1} = s' | s_t = s, a_t = a) is the prob. that action a in state s at time t will lead to state s' at time t + 1
 - R(s, a, s') is the immediate reward received after transitioning from state s to state s', due to action a

What is RL: Mathematical Definition

- Definition: A Markov decision process (MDP) is a 4-tuple (S, A, P, R), where:
 - \blacktriangleright *S* is a set of states called the state space
 - A is a set of actions called the action space
 - P(s, a, s') = Pr(s_{t+1} = s' | s_t = s, a_t = a) is the prob. that action a in state s at time t will lead to state s' at time t + 1
 - R(s, a, s') is the immediate reward received after transitioning from state s to state s', due to action a
- RL solves an MDP problem:
 - An Agent observes state s_t ∈ S, takes an action a_t ∈ A based on a policy g ∈ S → A, the environment produces a reward r_t and moves to s_{t+1}
 - ► The goal is to find an optimal policy that obtaining accumulative rewards ∑ⁿ_{i=1} γ^tR_t using a Training Algorithm

Introduction: Agent

- The decision-making policy:
 - Indirect: value function approach: V(s) or Q(s, a)
 - Direct: policy function approach: a = g(s)
 - How to parameterize the value/policy function?
- ► The behavioral policy:
 - E.g., the ϵ -greedy policy:

$$\pi(a|s) = \begin{cases} 1 - \epsilon + \frac{\epsilon}{|\mathcal{A}(s)|}, & \text{if } a = \operatorname{argmax}_{a'} Q(s, a') \\ \frac{\epsilon}{|\mathcal{A}(s)|}, & \text{otherwise} \end{cases}$$

The exploration-exploitation trade-off

Other structures facilitate the solution: e.g. the "memory for experiences"

Introduction: Training Algorithm

• Define the accumulative reward $G_t = \sum_{t=1}^{n} \gamma^t R_t$

The celebrated Bellman Equation:

$$V_*(s) = \max_a \mathbb{E} \left[R_t + \gamma G_{t+1} \mid S_t = s, A_t = a \right]$$

=
$$\max_a \mathbb{E} \left[R_t + \gamma V_* \left(S_{t+1} \right) \mid S_t = s, A_t = a \right]$$

=
$$\max_a R_t + \gamma \sum_{s'} P(s'|s, a) V_*(s')$$

► Version for State-Action Value Function (Q-Function): $Q_*(s, a) = R(s, a) + \gamma \sum_{s'} P(s'|s, a) \max_{a'} Q_*(s', a')$

► Another version of Bellman Equation for Policy Evaluation: $V_g(s) = \mathbb{E} \left[R_t + \gamma G_{t+1} \mid S_t = s, A_t \sim g(s) \right]$ $= \mathbb{E} \left[R_t + \gamma V_g \left(S_{t+1} \right) \mid S_t = s, A_t \sim g(s) \right]$

Machine Learning: SL, UL, RL

- Three broad categories: Supervised Learning (SL), Unsupervised Learning (UL) and Reinforcement Learning (RL)
- SL: "You know what is true"
 - ▶ Data: {x_i, y_i}_{i=1...N}
 - Task: find $f : \mathbb{X} \to \mathbb{Y}$ such that $f(x) \approx y$
- UL: "You DON'T know what is true"
 - ▶ Data: {x_i}_{i=1...N}
 - Task: find some sort of underlying structure, correctly label/group the data based on x_i
- RL: "You know what SHALL be true"
 - Data: {x_t}_{t=1...T} is our generated state, {r_t}_{i=1...T} "signals of correctness"
 - ▶ Task: find $f : \mathbb{X} \to \mathbb{Y}$ an optimal policy function

Supervised Learning: An illustration

The "Hello World" problem in supervised learning

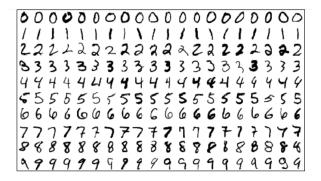
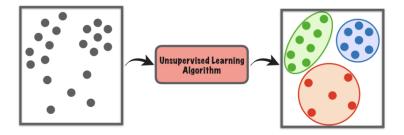


Figure: MNIST data

Unsupervised Learning: An illustration



Optimal Control: DP and RL

- Recall the Bellman Equation in terms of Q-Function: $Q_*(s, a) = R(s, a) + \gamma \sum_{s'} P(s'|s, a) \max_{a'} Q_*(s', a')$
- Dynamic Programming (DP): P is known and closed-form
- In practice:
 - P is not known or hard to express in closed-form
 - ► S, A is continuous/high-dimensional
 - the max operator is computationally expensive
- ► Problem 1: Simulation. The celebrated Q-learning algorithm: $Q^{i+1}(s, a) = (1 - \alpha)Q^i(s, a) + \alpha(r + \gamma \max_{a'} Q^i(s', a'))$
- Problem 2 & 3: we use Neural Network (Deep RL)
 - Critic: A Value Network $Q_{\theta}(s, a)$
 - Actor: A Policy Network $g_{\phi}(s)$

RL in Economics: Literature

- DRL in a Monetary Model (Chen, Joseph, Kumhof, Pan and Zhou, 2021)
- AI, algorithmic pricing and collusion (Calvano, Calzolari, Denicolo and Pastorello, 2020)
- AI as structural estimation: Deep Blue, Bonanza, and AlphaGo (Igami, 2020)
- RL for Optimization of COVID-19 Mitigation policies (Kompella, Capobianco, Jong, Browne, Fox, Meyers, Wurman and Stone, 2020)

Link: Multi-Agent Hide and Seek

- The learning of other agents would make the Environment non-stationary
- Many game-theory settings have been studied previously for Multi-Agent learning, "Evolutionary Game Theory"
- It is non-trivial to build up learning algorithms even for those simple games

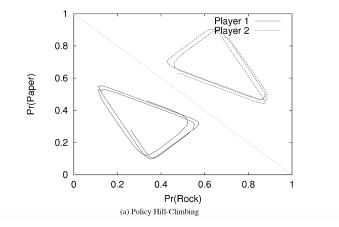


Figure: Non-Convergence in Rock-Paper-Scissor

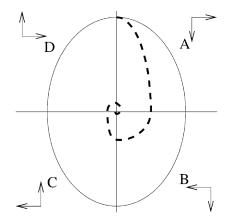


Figure: The "Win-or-Learn-Fast" Algorithm

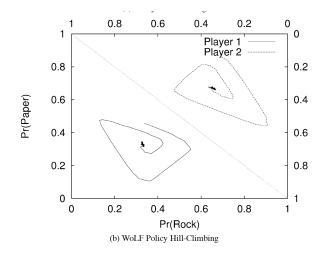


Figure: Convergence in Rock-Paper-Scissor with WoLF

Multi-Agent Reinforcement Learning

- Link: Al-Economist with tax policies (Zheng, Trott, Srinivasa, Naik, Gruesbeck, Parkes and Socher, 2020)
- MARL in Cheap Talk (Condorelli and Furlan, 2023)
- MARL in Stackelberg Game (my working paper)

Conclusion

- RL is nothing far away from economists
- RL could potentially help us to solve some complex settings where we should rely on simulations to solve agents' decision-makings
- MARL could even go further to study more interactive settings
 - policy-makers' problem in macro
 - strategic plays in game theory
 - firms' interaction in IO

- Calvano, Emilio, Giacomo Calzolari, Vincenzo Denicolo, and Sergio Pastorello, "Artificial intelligence, algorithmic pricing, and collusion," *American Economic Review*, 2020, *110* (10), 3267–3297.
- Chen, Mingli, Andreas Joseph, Michael Kumhof, Xinlei Pan, and Xuan Zhou, "Deep reinforcement learning in a monetary model," *arXiv preprint arXiv:2104.09368*, 2021.
- **Condorelli, Daniele and Massimiliano Furlan**, "Cheap Talking Algorithms," *arXiv preprint arXiv:2310.07867*, 2023.
- **Igami, Mitsuru**, "Artificial intelligence as structural estimation: Deep Blue, Bonanza, and AlphaGo," *The Econometrics Journal*, 2020, *23* (3), S1–S24.
- Kompella, Varun, Roberto Capobianco, Stacy Jong, Jonathan Browne, Spencer Fox, Lauren Meyers, Peter Wurman, and Peter Stone, "Reinforcement learning for optimization of COVID-19 mitigation policies," *arXiv preprint arXiv:2010.10560*, 2020.
- Sutton, Richard S and Andrew G Barto, Reinforcement *learning: An introduction*, MIT press, 2018.

Zheng, Stephan, Alexander Trott, Sunil Srinivasa, Nikhil Naik, Melvin Gruesbeck, David C Parkes, and Richard Socher, "The ai economist: Improving equality and productivity with ai-driven tax policies," *arXiv preprint arXiv:2004.13332*, 2020.