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This Course

▶ What is Reinforcement Learning (RL)

▶ Examples and Mathematical Definition

▶ Supervised/Unsupervised Learning and RL

▶ Dynamic Programming and RL

▶ RL in the Economics Literature

▶ Single-Agent RL

▶ Multi-Agent RL
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What is RL

▶ Reinforcement Learning is about an Agent learns via
interacting with an Environment

▶ Literal Decomposition:

▶ Reinforcement: Reward-Driven

▶ Learning: Optimal Policy

▶ Components:

▶ State of the Environment

▶ Action taken by the Agent

▶ Reward as a sequence of the State and the Action
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What is Reinforcement Learning?

Figure: Agent-Envrionement Interaction by Sutton and Barto (2018)
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What is RL: Example I

▶ State: current position

▶ Action: Up, Low, Left, Right

▶ Reward: ?

Figure: An Maze Problem
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What is RL: Example II

▶ The Frozen-Lake Environment:
“The ice is slippery, so you won’t always move in the direction
you intend.”

Figure: Frozen-Lake
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What is RL: Example III

▶ The Cart-Pole Environment:
GIF

▶ State:

▶ Cart Position: [-4.8, 4.8]

▶ Cart Velocity: [-Inf, Inf]

▶ Pole Angle: [-24°, 24°]

▶ Pole Angular Velocity: [-Inf, Inf]

▶ Action: 0 (Left) or 1 (Right)

▶ Reward: +1 for every step

7 / 22

https://gymnasium.farama.org/_images/cart_pole.gif


What is RL: Example IV

▶ A consumption-saving model (finite or infinite horizon) in
macroeconomics

▶ State: (kt , ϵt), where kt ∈ [kmin, kmax] is the capital holding,
ϵt ∈ {0, 1} is the employment status

▶ Action: ct , the consumption

▶ Reward: u(ct), the utility
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What is RL: Mathematical Definition

▶ Definition: A Markov decision process (MDP) is a 4-tuple
(S,A,P,R), where:

▶ S is a set of states called the state space

▶ A is a set of actions called the action space

▶ P (s, a, s ′) = Pr (st+1 = s ′ | st = s, at = a) is the prob. that
action a in state s at time t will lead to state s ′ at time t + 1

▶ R (s, a, s ′) is the immediate reward received after transitioning
from state s to state s ′, due to action a

▶ RL solves an MDP problem:

▶ An Agent observes state st ∈ S, takes an action at ∈ A based
on a policy g ∈ S → A, the environment produces a reward rt
and moves to st+1

▶ The goal is to find an optimal policy that obtaining
accumulative rewards

∑n
i=1 γ

tRt using a Training Algorithm
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Introduction: Agent

▶ The decision-making policy:

▶ Indirect: value function approach: V (s) or Q(s, a)

▶ Direct: policy function approach: a = g(s)

▶ How to parameterize the value/policy function?

▶ The behavioral policy:

▶ E.g., the ϵ-greedy policy:

π(a|s) =

{
1− ϵ+ ϵ

|A(s)| , if a = argmaxa′Q(s, a′)
ϵ

|A(s)| , otherwise

▶ The exploration-exploitation trade-off

▶ Other structures facilitate the solution: e.g. the “memory for
experiences”
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Introduction: Training Algorithm
▶ Define the accumulative reward Gt =

∑n
t=1 γ

tRt

▶ The celebrated Bellman Equation:

V∗(s) = max
a

E [Rt + γGt+1 | St = s,At = a]

= max
a

E [Rt + γV∗ (St+1) | St = s,At = a]

= max
a

Rt + γ
∑
s′

P(s ′|s, a)V∗(s
′)

▶ Version for State-Action Value Function (Q-Function):

Q∗(s, a) = R(s, a) + γ
∑
s′

P(s ′|s, a)max
a′

Q∗(s
′, a′)

▶ Another version of Bellman Equation for Policy Evaluation:

Vg (s) = E [Rt + γGt+1 | St = s,At ∼ g(s)]

= E [Rt + γVg (St+1) | St = s,At ∼ g(s)]
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Machine Learning: SL, UL, RL

▶ Three broad categories: Supervised Learning (SL),
Unsupervised Learning (UL) and Reinforcement Learning (RL)

▶ SL: “You know what is true”

▶ Data: {xi , yi}i=1...N

▶ Task: find f : X → Y such that f (x) ≈ y

▶ UL: “You DON’T know what is true”

▶ Data: {xi}i=1...N

▶ Task: find some sort of underlying structure, correctly
label/group the data based on xi

▶ RL: “You know what SHALL be true”

▶ Data: {xt}t=1...T is our generated state, {rt}i=1...T “signals of
correctness”

▶ Task: find f : X → Y an optimal policy function
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Supervised Learning: An illustration

The ”Hello World” problem in supervised learning

Figure: MNIST data
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Unsupervised Learning: An illustration
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Optimal Control: DP and RL

▶ Recall the Bellman Equation in terms of Q-Function:
Q∗(s, a) = R(s, a) + γ

∑
s′ P(s

′|s, a)maxa′ Q∗(s
′, a′)

▶ Dynamic Programming (DP): P is known and closed-form

▶ In practice:

▶ P is not known or hard to express in closed-form

▶ S,A is continuous/high-dimensional

▶ the max operator is computationally expensive

▶ Problem 1: Simulation. The celebrated Q-learning algorithm:
Q i+1(s, a) = (1− α)Q i (s, a) + α(r + γmaxa′ Q

i (s ′, a′))

▶ Problem 2 & 3: we use Neural Network (Deep RL)

▶ Critic: A Value Network Qθ(s, a)

▶ Actor: A Policy Network gϕ(s)

15 / 22



RL in Economics: Literature

▶ DRL in a Monetary Model (Chen, Joseph, Kumhof, Pan and
Zhou, 2021)

▶ AI, algorithmic pricing and collusion (Calvano, Calzolari,
Denicolo and Pastorello, 2020)

▶ AI as structural estimation: Deep Blue, Bonanza, and
AlphaGo (Igami, 2020)

▶ RL for Optimization of COVID-19 Mitigation policies
(Kompella, Capobianco, Jong, Browne, Fox, Meyers, Wurman
and Stone, 2020)

▶ ...
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Multi-Agent Learning and Game Theory

▶ Link: Multi-Agent Hide and Seek

▶ The learning of other agents would make the Environment
non-stationary

▶ Many game-theory settings have been studied previously for
Multi-Agent learning, “Evolutionary Game Theory”

▶ It is non-trivial to build up learning algorithms even for those
simple games
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https://www.youtube.com/watch?v=kopoLzvh5jY


Multi-Agent Learning and Game Theory

Figure: Non-Convergence in Rock-Paper-Scissor
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Multi-Agent Learning and Game Theory

Figure: The ”Win-or-Learn-Fast” Algorithm
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Multi-Agent Learning and Game Theory

Figure: Convergence in Rock-Paper-Scissor with WoLF
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Multi-Agent Reinforcement Learning

▶ Link: AI-Economist with tax policies (Zheng, Trott, Srinivasa,
Naik, Gruesbeck, Parkes and Socher, 2020)

▶ MARL in Cheap Talk (Condorelli and Furlan, 2023)

▶ MARL in Stackelberg Game (my working paper)
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https://www.youtube.com/watch?v=4iQUcGyQhdA


Conclusion

▶ RL is nothing far away from economists

▶ RL could potentially help us to solve some complex settings
where we should rely on simulations to solve agents’
decision-makings

▶ MARL could even go further to study more interactive
settings

▶ policy-makers’ problem in macro

▶ strategic plays in game theory

▶ firms’ interaction in IO

▶ ...
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