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Motivation
Dynamic models incorporating both heterogeneity and aggregate uncertainty have
become one of the key areas of focus in macroeconomics

Figure 1: Year vs. Incremental Citation Count per Year (Blue Line)
Assumed 5% Annual Growth Rate Detrend (Orange Line)

Krusell and Smith (1998): 1998-2023 The HANK model (Kaplan, Moll
and Violante, 2018): 2017-2023 2 / 31
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Motivation

§ Some reasons for popularity

§ Empirical Justification: The implication of heterogeneity for aggregate behaviors
(Blundell, Pistaferri and Preston, 2008; Krueger and Perri, 2006)

§ Realistic Representation: Richer dynamics and more complex interactions (Cagetti
and De Nardi, 2008)

§ However, the computation of heterogeneous agent models is still challenging,
reflecting the inherent complexities of the models:

§ High Dimensionality: Numerous variables to capture diversity

§ Non-Linear Dynamics: For example, saving decisions of hand-to-mouth households

§ Policy Analysis: Reliant on simulations

3 / 31



Introduction The Economic Model Computational Strategy Implementation Results References

This Paper

§ Focuses on the numerical solution of a specific type of heterogeneous agent model
with aggregate shocks:

§ Discrete time, infinite horizon, and a continuum of agents

§ Key feature of the model: The agents’ state variables include not only their
individual state vectors but also the cross-sectional distribution of all agents’
individual states, an infinite-dimensional object

§ Intuition: Certain variables (e.g., prices) and their dynamics depend on the
aggregated distribution

§ Proposes a novel numerical method that is generally applicable and
computationally efficient for globally solving these models
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This Paper (cont.)
§ Considers a general case: policy function k1

i “ gpki,Γq

§ Where ki is the individual’s capital holding, and Γ is the distribution function of k

§ Novel contributions in three aspects:

§ Formulation of the Problem: Reformulate the agents’ policy function (more precisely,
functional) as a “policy operator” (mapping between function spaces)

§ gpki,Γq “ GpΓqpkiq

§ Numerical Approximation: Parameterize the policy operator using the neural
operator, an advanced neural network architecture from machine learning literature

§ GθpΓqpkiq

§ Implementation Algorithm: Design an optimization scheme to facilitate convergence
(not covered in this talk)

§ θ˚
“ argmin |GθpΓqpkiq ´ GpΓqpkiq|, where Γ P T , ki P rkmin, kmaxs
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Preview
§ Two current frameworks in the literature:

§ The Krusell-Smith Algorithm (KS): Computationally efficient but less generalizable
(Krusell and Smith, 1998; Maliar, Maliar and Valli, 2010).

§ Deep Learning with Feed-Forward Neural Network (NN): Generally applicable but
slower (Maliar, Maliar and Winant, 2021; Han, Yang et al., 2021)

§ The operator framework addresses their issues through both operator formulation
and operator parameterization

§ Experiments on a Bewley-Huggett-Aiyagari model with aggregate uncertainty:

§ KS framework: Approximately 5 minutes, error (relative Euler residual) at the level
of 0.1%

§ NN framework: Error remains high even after 30 minutes.

§ Operator framework: Approximately 10 minutes, error level between 0.1% and 1%
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Model Setup

§ The first benchmark model in the computational suite project for the comparison
of the properties of numerical algorithms (Den Haan, Judd and Juillard, 2011)

§ Lowercase letters for individual variables, uppercase letters for aggregate variables,
and bold letters for operations

§ A continuum of infinitely lived and ex-ante identical agents. Agent i in period t:

§ Receives a fixed time endowment ℓ̄

§ Earns the after-tax wage p1 ´ τtqℓ̄Wt if employed (ϵit “ 1)

§ Earns the unemployment benefit µWt if unemployed (ϵit “ 0)

§ Wt is the per unit of time wage rate, τt is the tax rate, and µ is a model parameter
denoting the fraction of the wage for subsidy
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Model Setup (cont.)

§ Market is incomplete: non-zero capital holding kit ě 0

§ The net rate of return for capital: Rt ´ δ, where Rt is the market-determined
interest rate and δ is the fixed depreciation rate

§ Agents’ maximization problem:

E
8
ÿ

t“0

βt pcitq
1´γ ´ 1

1 ´ γ

subject to:

cit ` kit`1 “ Rtk
i
t

loomoon

capital gain

`

»

—

–

p1 ´ τtq ℓ̄ϵ
i
t

looooomooooon

labor income

` µ
`

1 ´ ϵit
˘

loooomoooon

unemployment subsidy

fi

ffi

fl

Wt ` p1 ´ δqkit
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Model Setup (cont.)

§ Firms: Use a Cobb-Douglas production function Yt “ ZtK
α
t pℓ̄Ltq

1´α

§ Kt is the per capita capital, Lt is the employment rate, and α P r0, 1s is the
capital share. Zt is a binary aggregate productivity shock: Zt P tZb, Zgu

§ Government: Maintains a balanced budget by redistributing all tax revenue

§ The system of prices is determined by firms’ first-order optimality and
government’s budget constraint:

Rt “ αZt

ˆ

Kt

ℓ̄Lt

˙α´1

, Wt “ p1 ´ αqZt

ˆ

Kt

ℓ̄Lt

˙α

, τt “
µp1 ´ Ltq

ℓ̄Lt
(1)

§ Agents’ decision-making processes are influenced by the current levels of
aggregate variables pKt, Lt, Ztq as well as their dynamics
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Model Setup (cont.)

§ Shocks: Zt is first-order Markovian. ϵit is first-order Markovian conditional on the
transition of Zt and conforms to the law of large numbers

§ pϵit, Ztq „ Π: The element πϵϵ1ZZ1 denotes Prpϵit, Ztq Ñ pϵit`1, Zt`1qs

§ To write down the recursive form:

§ Agents’ individual state vector pkit, ϵ
i
tq

§ Π is calibrated such that the employment rate Lt is a function of Zt: Lt P tLb, Lgu.
Agents do not need to know the distribution of ϵit for levels and motions of Lt

§ Kt “
ş

kitfpkitqdk, implying a requirement for the knowledge of fpkitq

§ The motion of Kt is more subtle: consider kit`1 “ gpkit, ϵ
i
tq. Then,

Kt`1 “
ş

gpkit, ϵ
i
tqfpkit, ϵ

i
tqdkdϵ
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Incomplete Information Assumption

§ A rational expectation equilibrium requires that agents observe pkit, ϵ
i
t, Zt, fpkit, ϵ

i
tqq

§ Incomplete information assumption for simplicity: agents observe only fpkitq, or
equivalently, fpkit, ϵ

i
tq “ fpkitqfpϵitq:

§ To be consistent with the implementation of the KS framework (Maliar, Maliar and
Valli, 2010), replacing fpkit, ϵ

i
tq with Kt

§ ϵit is binary: fpkit, ϵ
i
tq “

#

fpkit, 0q if ϵit “ 0

fpkit, 1q if ϵit “ 1
, resulting in two continuous

one-dimensional functions of kit. This assumption assists the discussion to focus on
fpkitq

§ Note that the proposed framework can effortlessly generalize to the case of
continuous shocks where fpkit, ϵ

i
tq is then a continuous two-dimensional function
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The Recursive Form
§ Denote Γ as the representation of the distribution of agents over capital k

§ Denote the law of motion of Γ by H : Γ1 “ HpΓ, Z, Z 1q

§ The agents’ problem can therefore be expressed recursively as

Vpki, ϵi;Z,Γq “ max
k1
i

␣

Upciq ` βE
“

Vpk1
i, ϵ

1
i;Z

1,Γ1q | ϵi, Z
‰(

(2)

subject to

ci ` k1
i “ Rki `

“

p1 ´ τqℓ̄ϵi ` µp1 ´ ϵiq
‰

W ` p1 ´ δqki, (3)

ϵ1
i, Z

1 „ Πpϵi, Zq, (4)

Γ1 “ HpΓ, Z, Z 1q, (5)

k1
i ě 0 (6)

§ Denote the solution to (2) subject to (3), (4), (5), and (6) as V˚p¨q and the
corresponding policy function as g˚p¨q
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Literature: The KS Framework

§ We are interested in the recursive policy function: k1
i “ g˚pki, ϵi, Z,Γq

§ (Krusell and Smith, 1998):
gKSpki, ϵi, Z,mq

where m “ pm1,m2, . . . ,mLq is a vector of moments

§ In implementation:

§ Manage a cross-section of N simulated agents pk1, k2, . . . , kN q

§ m ” K “ 1
N

řN
i“1 ki

§ Pros: Tractable, intuitive, and fast

§ Cons: Incomplete information of the distribution
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Literature: The NN Framework

§ Deep Learning with feed-forward neural network (Maliar, Maliar and Winant,
2021):

gNN pki, ϵi, Z, pk1, k2, ..., kN qq

§ Γ is represented by a “plug-in” vector pk1, k2, ..., kN q

§ Feed-forward neural network to overcome the curse-of-dimensionality (Goodfellow
et al., 2016)
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This Paper: The Operator Framework

§ Reformulate the policy function as the policy operator:

gpki, ϵi, Z,Γq :“ GpΓqpki, ϵi, Zq “ GpΓqpki | ϵi, Zq (7)

§ Two-step decomposition of processing pki, ϵi, Z,Γq:

§ Input Γ to an operator G for a conditional policy function GpΓq

§ Input pki, ϵi, Zq to GpΓq for k1
i “ GpΓqpki | ϵi, Zq

§ Represent Γ by the cumulative distribution function (CDF)

§ Parameterize the operator G by the neural operator Gθ

§ The superiority of this framework is driven by three properties:

§ Sharing-Aggregation, Permutation-Invariance, Discretization-Invariance
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Sharing-Aggregation
§ Consider gNN pki, ϵi, Z, pk1, k2, . . . , kN qq

§ In simulation, we process each agent’s pki, ϵi, Z, pk1, k2, . . . , kN qq to determine
policy gNN for k1

i

§ The computational cost is OpN2q

§ However, this approach does not utilize the information that agents share the
same aggregation

Figure 2: Illustration of the Computational Complexity
16 / 31
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Sharing-Aggregation (cont.)

§ In the neural operator formulation GpΓqpki | ϵi, Zq, we only need to process the
distribution function part once

§ The computational cost is therefore OpNq

Figure 3: Neural Operator Process Illustration
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Permutation-Invariance

§ Consider k1
i “ gNN pki, ϵi, Z, pk1, k2, . . . , kN qq

§ k1
i should be invariant to the ordering of pk1, k2, . . . , kN q. For example,

pk1 “ a, k2 “ b, . . . , kN q and pk1 “ b, k2 “ a, . . . , kN q should yield the same k1
i

for a fixed pki, ϵi, Zq.

§ Simulated data and training time required to learn this pattern are extensive

§ In the operator framework, pk1, k2, . . . , kN q is used to construct an empirical CDF
Γ̂ with sorted values, resulting in invariance to ordering
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Discretization-Invariance
§ Revisiting gNN pki, ϵi, Z, pk1, k2, . . . , kN qq.

§ There’s a trade-off: a larger N provides a better approximation of the continuous
distribution Γ but increases the complexity of gNN

§ Additional issue: the approach may not be applicable to varying N

Figure 4: Neural Network Architecture for 5 Agents
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Discretization-Invariance (cont.)
§ In the operator framework, the operator G is parameterized by the neural
operator Gθ, specifically, the Fourier neural operator as per (Li et al., 2020).

§ The size of the neural operator Gθ is invariant, regardless of the discretization of
input and output functions.

§ Gθ essentially consists of a sequence of convolutions parameterized in the Fourier
domain.

Figure 5: Fourier Neural Operator Architecture
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Discretization-Invariance (cont.)
§ The discretization in the spatial domain does not impact the parameterization in
the Fourier domain.

Figure 6: Illustration of the Fourier Neural Operator Layer

21 / 31



Introduction The Economic Model Computational Strategy Implementation Results References

Discretization-Invariance: an example

Figure 7: Handwriting Recognition as an Example
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The Neural Operator Framework: Summary

Table 1: Comparison of Three Numerical Frameworks for the
Desirable Properties

Property
Framework

KS1 NN2 Operator3

Full Information of Distribution ˆ ✓ ✓
Discretization-Invariance ✓ ˆ ✓
Permutation-Invariance ✓ ˆ ✓
Sharing-Aggregation ✓ ˆ ✓
1 Krusell-Smith
2 Deep Learning with feed-forward neural network
3 Deep Learning with neural operator (This Paper)
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Implementation: The Objective Function

§ The unique solution that solves the Bellman equation must satisfy the derived
Euler equation in the absence of a borrowing constraint:

du

dc
pcq “ βErp1 ´ δ ` R1q

du

dc
pc1qs (8)

§ For a given state pk, ϵ, Z,Γq and a neural operator parameterized policy
k1 “ gθpk, ϵ, Z,Γq, define the unit-free Lagrange multiplier:

h ” 1 ´
βErp1 ´ δ ` R1qdudc pwealth1 ´ k2qs

du
dc pwealth ´ k1q

(9)

where wealth “ Mpk, ϵ, Z,Γq is agents’ total budget
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Implementation: The Objective Function (cont.)

§ Agents’ optimality can be expressed in terms of the Kuhn-Tucker conditions:

h ě 0, k1 ě 0, hk1 “ 0 (10)

§ Apply the Fischer-Burmeister (FB) transformation to make the Kuhn-Tucker
conditions differentiable:

ΨFBpk1, hq “ k1 ` h ´
a

k12 ` h2 “ 0 (11)
with a “ k1 and b “ h.

§ The objective function for a particular state ω “ pk, ϵ, Z,Γq is:

ξpω, θq ” }ΨFBpk1, hq}2 (12)

25 / 31



Introduction The Economic Model Computational Strategy Implementation Results References

Implementation: The Objective Function (cont.)

§ In iteration ℓ, suppose there is a set of collected states tω : ω P Ωℓu, then the
objective function is:

Ξℓpθq “
1

|Ωℓ|

ÿ

ωPΩℓ

ξpω, θq (13)

§ Parameters in the neural operator are updated using the gradient descent method:

θℓ`1 Ð θℓ ´ λℓ∇θΞ
ℓpθℓq (14)
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Results
§ Benchmark case of the neural operator

§ In around 10 minutes, the optimization loss reaches a level of 10´4 to 10´5

(corresponding to 0.1% to 1% relative Euler error)

Figure 8: Training Losses vs. Time (seconds)

27 / 31



Introduction The Economic Model Computational Strategy Implementation Results References

Results: Operator vs. NN
§ The optimization in the NN framework remains at a high loss level at around 30
minutes

Figure 9: Comparison of the Operator Framework and the NN Framework
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Results: Operator vs. KS
§ To visualize how the operator framework solution compares to that of KS

§ Select a random period with the simulated distribution Γ as input

§ Compare the conditional function gθpk, ϵ, Z|Γq to the policy gKSpk, ϵ, Z,Kq.

§ The converged relative Euler loss of gKS is around 0.1%

Figure 10: An Instance of Conditional Policy Function
29 / 31
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Results: Operator vs. KS
§ To visualize the similarity of the operator framework solution to that of KS

§ Simulate the economy using both gθ and gKS with the same initialization

Figure 11: The Simulated Aggregate Capitals
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Conclusion

§ This paper presents a novel approach to solving heterogeneous agents models
with aggregate shocks in a discrete time, infinite horizon, and continuum agent
setting. The approach incorporates the cross-sectional distribution of all individual
states as part of the agents’ state variable and leverages neural operator learning

§ Computational advancements are attributed to the sharing-aggregation and
parameterization-invariance property of operator formulation, as well as the
discretization-invariance property in the proposed parameterization

§ An optimization scheme tailored for this problem is formulated to facilitate the
convergence of training

§ Experiments on a Bewley-Huggett-Aiyagari model with aggregate uncertainty
demonstrate computational efficiency compared to contemporary frameworks
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