The Economic Model

Computational Strategy

Implementation

Results 00000 References

Operator Learning in Macroeconomics

Yaolang Zhong

University of Warwick

Introduction	
00000	

Computational Strategy

Implementation

Results

References

Motivation

Dynamic models incorporating both heterogeneity and aggregate uncertainty have become one of the key areas of focus in macroeconomics

Figure 1: Year vs. Incremental Citation Count per Year (Blue Line) Assumed 5% Annual Growth Rate Detrend (Orange Line)

Krusell and Smith (1998): 1998-2023

The HANK model (Kaplan, Moll and Violante, 2018): 2017-2023

Implementation 000 Results 00000 References

Motivation

- Some reasons for popularity
 - Empirical Justification: The implication of heterogeneity for aggregate behaviors (Blundell, Pistaferri and Preston, 2008; Krueger and Perri, 2006)
 - Realistic Representation: Richer dynamics and more complex interactions (Cagetti and De Nardi, 2008)
- However, the computation of heterogeneous agent models is still challenging, reflecting the inherent complexities of the models:
 - High Dimensionality: Numerous variables to capture diversity
 - Non-Linear Dynamics: For example, saving decisions of hand-to-mouth households
 - Policy Analysis: Reliant on simulations

Computational Strategy

Implementation 000 Results 00000 References

This Paper

- Focuses on the numerical solution of a specific type of heterogeneous agent model with aggregate shocks:
 - Discrete time, infinite horizon, and a continuum of agents
 - Key feature of the model: The agents' state variables include not only their individual state vectors but also the cross-sectional distribution of all agents' individual states, an infinite-dimensional object
 - Intuition: Certain variables (e.g., prices) and their dynamics depend on the aggregated distribution
- Proposes a novel numerical method that is generally applicable and computationally efficient for globally solving these models

Results

References

This Paper (cont.)

- Considers a general case: policy function $k_i' = \mathbf{g}(k_i, \mathbf{\Gamma})$
 - Where k_i is the individual's capital holding, and $oldsymbol{\Gamma}$ is the distribution function of k
- Novel contributions in three aspects:
 - Formulation of the Problem: Reformulate the agents' policy function (more precisely, functional) as a "policy operator" (mapping between function spaces)

• $\mathbf{g}(k_i, \mathbf{\Gamma}) = \mathbf{G}(\mathbf{\Gamma})(k_i)$

Numerical Approximation: Parameterize the policy operator using the neural operator, an advanced neural network architecture from machine learning literature

• $\mathbf{G}_{\theta}(\mathbf{\Gamma})(k_i)$

- Implementation Algorithm: Design an optimization scheme to facilitate convergence (not covered in this talk)
 - $\theta^* = \arg \min |\mathbf{G}_{\theta}(\mathbf{\Gamma})(k_i) \mathbf{G}(\mathbf{\Gamma})(k_i)|$, where $\mathbf{\Gamma} \in \mathcal{T}, k_i \in [k_{\min}, k_{\max}]$

Introduction	
00000	

The Economic Model

Computational Strategy

Implementation 000 Results 00000 References

Preview

- Two current frameworks in the literature:
 - The Krusell-Smith Algorithm (KS): Computationally efficient but less generalizable (Krusell and Smith, 1998; Maliar, Maliar and Valli, 2010).
 - Deep Learning with Feed-Forward Neural Network (NN): Generally applicable but slower (Maliar, Maliar and Winant, 2021; Han, Yang et al., 2021)
- The operator framework addresses their issues through both operator formulation and operator parameterization
- Experiments on a Bewley-Huggett-Aiyagari model with aggregate uncertainty:
 - \blacktriangleright KS framework: Approximately 5 minutes, error (relative Euler residual) at the level of 0.1%
 - NN framework: Error remains high even after 30 minutes.
 - \blacktriangleright Operator framework: Approximately 10 minutes, error level between 0.1% and 1%

Computational Strategy

Implementation

Results 00000 References

Model Setup

- The first benchmark model in the computational suite project for the comparison of the properties of numerical algorithms (Den Haan, Judd and Juillard, 2011)
- Lowercase letters for individual variables, uppercase letters for aggregate variables, and bold letters for operations
- A continuum of infinitely lived and ex-ante identical agents. Agent *i* in period *t*:
 - Receives a fixed time endowment $\bar{\ell}$
 - Earns the after-tax wage $(1 \tau_t) \overline{\ell} W_t$ if employed $(\epsilon_t^i = 1)$
 - Earns the unemployment benefit μW_t if unemployed $(\epsilon_t^i = 0)$
 - W_t is the per unit of time wage rate, τ_t is the tax rate, and μ is a model parameter denoting the fraction of the wage for subsidy

Results

References

Model Setup (cont.)

- Market is incomplete: non-zero capital holding $k_t^i \ge 0$
- The net rate of return for capital: $R_t \delta$, where R_t is the market-determined interest rate and δ is the fixed depreciation rate
- Agents' maximization problem:

$$\mathbb{E}\sum_{t=0}^{\infty}\beta^t \frac{(c_t^i)^{1-\gamma} - 1}{1-\gamma}$$

subject to:

$$c_t^i + k_{t+1}^i = \underbrace{R_t k_t^i}_{\text{capital gain}} + \left[\underbrace{(1 - \tau_t) \,\bar{\ell} \epsilon_t^i}_{\text{labor income}} + \underbrace{\mu \left(1 - \epsilon_t^i\right)}_{\text{unemployment subsidy}}\right] W_t + (1 - \delta) k_t^i$$

Results

References

Model Setup (cont.)

- Firms: Use a Cobb-Douglas production function $Y_t = Z_t K_t^{\alpha} (\bar{\ell} L_t)^{1-\alpha}$
- K_t is the per capita capital, L_t is the employment rate, and $\alpha \in [0, 1]$ is the capital share. Z_t is a binary aggregate productivity shock: $Z_t \in \{Z_b, Z_g\}$
- Government: Maintains a balanced budget by redistributing all tax revenue
- The system of prices is determined by firms' first-order optimality and government's budget constraint:

$$R_t = \alpha Z_t \left(\frac{K_t}{\bar{\ell}L_t}\right)^{\alpha - 1}, \quad W_t = (1 - \alpha) Z_t \left(\frac{K_t}{\bar{\ell}L_t}\right)^{\alpha}, \quad \tau_t = \frac{\mu(1 - L_t)}{\bar{\ell}L_t} \quad (1)$$

▶ Agents' decision-making processes are influenced by the current levels of aggregate variables (K_t, L_t, Z_t) as well as their dynamics

The Economic Model

Computational Strategy

Implementation 000 Results

References

Model Setup (cont.)

- Shocks: Z_t is first-order Markovian. eⁱ_t is first-order Markovian conditional on the transition of Z_t and conforms to the law of large numbers
- $(\epsilon_t^i, Z_t) \sim \Pi$: The element $\pi_{\epsilon \epsilon' Z Z'}$ denotes $\mathsf{P}[(\epsilon_t^i, Z_t) \to (\epsilon_{t+1}^i, Z_{t+1})]$
- To write down the recursive form:
 - \blacktriangleright Agents' individual state vector (k_t^i,ϵ_t^i)
 - Π is calibrated such that the employment rate L_t is a function of Z_t : $L_t \in \{L_b, L_g\}$. Agents do not need to know the distribution of ϵ_t^i for levels and motions of L_t
 - $K_t = \int k_t^i {f f}(k_t^i) {
 m d} k$, implying a requirement for the knowledge of ${f f}(k_t^i)$
 - The motion of K_t is more subtle: consider $k_{t+1}^i = \mathbf{g}(k_t^i, \epsilon_t^i)$. Then, $K_{t+1} = \int \mathbf{g}(k_t^i, \epsilon_t^i) \mathbf{f}(k_t^i, \epsilon_t^i) \mathbf{d}k \mathbf{d}\epsilon$

The Economic Model

Computational Strategy

Implementation 000 Results 00000 References

Incomplete Information Assumption

- A rational expectation equilibrium requires that agents observe $(k_t^i, \epsilon_t^i, Z_t, \mathbf{f}(k_t^i, \epsilon_t^i))$
- Incomplete information assumption for simplicity: agents observe only $\mathbf{f}(k_t^i)$, or equivalently, $\mathbf{f}(k_t^i, \epsilon_t^i) = \mathbf{f}(k_t^i)\mathbf{f}(\epsilon_t^i)$:
 - To be consistent with the implementation of the KS framework (Maliar, Maliar and Valli, 2010), replacing $f(k_t^i, \epsilon_t^i)$ with K_t
 - ϵ_t^i is binary: $\mathbf{f}(k_t^i, \epsilon_t^i) = \begin{cases} \mathbf{f}(k_t^i, 0) & \text{if } \epsilon_t^i = 0 \\ \mathbf{f}(k_t^i, 1) & \text{if } \epsilon_t^i = 1 \end{cases}$, resulting in two continuous one-dimensional functions of k_t^i . This assumption assists the discussion to focus on $\mathbf{f}(k_t^i)$
 - Note that the proposed framework can effortlessly generalize to the case of continuous shocks where $\mathbf{f}(k_t^i, \epsilon_t^i)$ is then a continuous two-dimensional function

Results 00000 References

The Recursive Form

- \blacktriangleright Denote Γ as the representation of the distribution of agents over capital k
- \blacktriangleright Denote the law of motion of Γ by $\mathbf{H}: \Gamma' = \mathbf{H}(\Gamma, Z, Z')$
- The agents' problem can therefore be expressed recursively as

$$\mathbf{V}(k_i, \epsilon_i; Z, \mathbf{\Gamma}) = \max_{k'_i} \left\{ \mathbf{U}(c_i) + \beta \mathbb{E} \left[\mathbf{V}(k'_i, \epsilon'_i; Z', \mathbf{\Gamma}') \mid \epsilon_i, Z \right] \right\}$$
(2)

subject to

$$c_i + k'_i = Rk_i + \left[(1 - \tau)\bar{\ell}\epsilon_i + \mu(1 - \epsilon_i) \right] W + (1 - \delta)k_i,$$
(3)

$$\epsilon'_i, Z' \sim \mathbf{\Pi}(\epsilon_i, Z),$$
(4)

$$\Gamma' = \mathbf{H}(\Gamma, Z, Z'),\tag{5}$$

$$k_i' \ge 0 \tag{6}$$

• Denote the solution to (2) subject to (3), (4), (5), and (6) as $V^*(\cdot)$ and the corresponding policy function as $g^*(\cdot)$

Results 00000 References

Literature: The KS Framework

- We are interested in the recursive policy function: $k_i' = \mathbf{g}^*(k_i, \epsilon_i, Z, \mathbf{\Gamma})$
- (Krusell and Smith, 1998):

 $\mathbf{g}_{KS}(k_i, \epsilon_i, Z, \mathbf{m})$

where $\mathbf{m}=(m_1,m_2,\ldots,m_L)$ is a vector of moments

- In implementation:
 - Manage a cross-section of N simulated agents (k_1, k_2, \ldots, k_N)
 - $\mathbf{m} \equiv K = \frac{1}{N} \sum_{i=1}^{N} k_i$
- Pros: Tractable, intuitive, and fast
- Cons: Incomplete information of the distribution

Computational Strategy

Implementation

Results

References

Literature: The NN Framework

Deep Learning with feed-forward neural network (Maliar, Maliar and Winant, 2021):

 $\mathbf{g}_{NN}(k_i, \epsilon_i, Z, (k_1, k_2, ..., k_N))$

- Γ is represented by a "plug-in" vector $(k_1,k_2,...,k_N)$
- Feed-forward neural network to overcome the curse-of-dimensionality (Goodfellow et al., 2016)

Results 00000 References

This Paper: The Operator Framework

Reformulate the policy function as the policy operator:

 $\mathbf{g}(k_i, \epsilon_i, Z, \mathbf{\Gamma}) := \mathbf{G}(\mathbf{\Gamma})(k_i, \epsilon_i, Z) = \mathbf{G}(\mathbf{\Gamma})(k_i \mid \epsilon_i, Z)$ (7)

- Two-step decomposition of processing $(k_i, \epsilon_i, Z, \Gamma)$:
 - ${}^{\blacktriangleright}$ Input Γ to an operator G for a conditional policy function $G(\Gamma)$
 - Input (k_i, ϵ_i, Z) to $\mathbf{G}(\mathbf{\Gamma})$ for $k'_i = \mathbf{G}(\mathbf{\Gamma})(k_i \mid \epsilon_i, Z)$
- \blacktriangleright Represent Γ by the cumulative distribution function (CDF)
- \blacktriangleright Parameterize the operator ${\bf G}$ by the neural operator ${\bf G}_{\theta}$
- The superiority of this framework is driven by three properties:
 - Sharing-Aggregation, Permutation-Invariance, Discretization-Invariance

Results 00000 References

Sharing-Aggregation

- Consider $\mathbf{g}_{NN}(k_i, \epsilon_i, Z, (k_1, k_2, \dots, k_N))$
- In simulation, we process each agent's $(k_i, \epsilon_i, Z, (k_1, k_2, \ldots, k_N))$ to determine policy \mathbf{g}_{NN} for k'_i
- ${\scriptstyle \blacktriangleright}$ The computational cost is ${\cal O}(N^2)$
- However, this approach does not utilize the information that agents share the same aggregation

Figure 2: Illustration of the Computational Complexity

Results

References

Sharing-Aggregation (cont.)

- In the neural operator formulation $G(\Gamma)(k_i | \epsilon_i, Z)$, we only need to process the distribution function part once
- The computational cost is therefore $\mathcal{O}(N)$

Figure 3: Neural Operator Process Illustration

The Economic Model

Computational Strategy

Implementation

Results

References

Permutation-Invariance

- Consider $k'_i = \mathbf{g}_{NN}(k_i, \epsilon_i, Z, (k_1, k_2, \dots, k_N))$
- k'_i should be invariant to the ordering of (k_1, k_2, \ldots, k_N) . For example, $(k_1 = a, k_2 = b, \ldots, k_N)$ and $(k_1 = b, k_2 = a, \ldots, k_N)$ should yield the same k'_i for a fixed (k_i, ϵ_i, Z) .
- Simulated data and training time required to learn this pattern are extensive
- In the operator framework, (k_1, k_2, \ldots, k_N) is used to construct an empirical CDF $\hat{\Gamma}$ with sorted values, resulting in invariance to ordering

Results 00000 References

Discretization-Invariance

- Revisiting $\mathbf{g}_{NN}(k_i, \epsilon_i, Z, (k_1, k_2, \ldots, k_N))$.
- There's a trade-off: a larger N provides a better approximation of the continuous distribution Γ but increases the complexity of g_{NN}
- ${\sc \ }$ Additional issue: the approach may not be applicable to varying N

Results

References

Discretization-Invariance (cont.)

- In the operator framework, the operator G is parameterized by the neural operator G_θ, specifically, the Fourier neural operator as per (Li et al., 2020).
- The size of the neural operator G_θ is invariant, regardless of the discretization of input and output functions.
- G_θ essentially consists of a sequence of convolutions parameterized in the Fourier domain.

Figure 5: Fourier Neural Operator Architecture

Results 00000 References

Discretization-Invariance (cont.)

The discretization in the spatial domain does not impact the parameterization in the Fourier domain.

Figure 6: Illustration of the Fourier Neural Operator Layer

The Economic Model

Computational Strategy

Implementation

Results

References

Discretization-Invariance: an example

Figure 7: Handwriting Recognition as an Example

Results

References

The Neural Operator Framework: Summary

Table 1: Comparison of Three Numerical Frameworks for theDesirable Properties

Property		Framework		
Froperty	KS1	NN^2	Operator ³	
Full Information of Distribution	×	\checkmark	\checkmark	
Discretization-Invariance	\checkmark	×	\checkmark	
Permutation-Invariance	\checkmark	×	\checkmark	
Sharing-Aggregation	\checkmark	×	\checkmark	

¹ Krusell-Smith

² Deep Learning with feed-forward neural network

³ Deep Learning with neural operator (This Paper)

Computational Strategy

Implementation

Results 00000 References

Implementation: The Objective Function

The unique solution that solves the Bellman equation must satisfy the derived Euler equation in the absence of a borrowing constraint:

$$\frac{\mathrm{d}u}{\mathrm{d}c}(c) = \beta \mathbb{E}[(1 - \delta + R')\frac{\mathrm{d}u}{\mathrm{d}c}(c')] \tag{8}$$

For a given state (k, ϵ, Z, Γ) and a neural operator parameterized policy $k' = \mathbf{g}_{\theta}(k, \epsilon, Z, \Gamma)$, define the unit-free Lagrange multiplier:

$$h \equiv 1 - \frac{\beta \mathbb{E}[(1 - \delta + R')\frac{du}{dc}(\text{wealth}' - k'')]}{\frac{du}{dc}(\text{wealth} - k')}$$
where wealth = $\mathbf{M}(k, \epsilon, Z, \mathbf{\Gamma})$ is agents' total budget
$$(9)$$

ts

References

Implementation: The Objective Function (cont.)

▶ Agents' optimality can be expressed in terms of the Kuhn-Tucker conditions:

$$h \ge 0, \quad k' \ge 0, \quad hk' = 0 \tag{10}$$

Apply the Fischer-Burmeister (FB) transformation to make the Kuhn-Tucker conditions differentiable:

$$\Psi^{FB}(k',h) = k' + h - \sqrt{k'^2 + h^2} = 0$$
(11) with $a = k'$ and $b = h$.

 \blacktriangleright The objective function for a particular state $\omega = (k,\epsilon,Z,\Gamma)$ is:

$$\xi(\omega,\theta) \equiv \|\Psi^{FB}(k',h)\|^2 \tag{12}$$

References

Results

Implementation: The Objective Function (cont.)

In iteration ℓ, suppose there is a set of collected states {ω : ω ∈ Ω^ℓ}, then the objective function is:

$$\Xi^{\ell}(\theta) = \frac{1}{|\Omega^{\ell}|} \sum_{\omega \in \Omega^{\ell}} \xi(\omega, \theta)$$
(13)

▶ Parameters in the neural operator are updated using the gradient descent method:

$$\theta^{\ell+1} \leftarrow \theta^{\ell} - \lambda^{\ell} \nabla_{\theta} \Xi^{\ell}(\theta^{\ell}) \tag{14}$$

The Economic Model

Computational Strategy

Implementation 000 Results

References

Results

- Benchmark case of the neural operator
- In around 10 minutes, the optimization loss reaches a level of 10⁻⁴ to 10⁻⁵ (corresponding to 0.1% to 1% relative Euler error)

Figure 8: Training Losses vs. Time (seconds)

Results

References

Results: Operator vs. NN

The optimization in the NN framework remains at a high loss level at around 30 minutes

Figure 9: Comparison of the Operator Framework and the NN Framework

Results

References

Results: Operator vs. KS

- \blacktriangleright To visualize how the operator framework solution compares to that of KS
- \blacktriangleright Select a random period with the simulated distribution Γ as input
- Compare the conditional function $\mathbf{g}_{\theta}(k, \epsilon, Z | \mathbf{\Gamma})$ to the policy $g_{KS}(k, \epsilon, Z, K)$.
- \blacktriangleright The converged relative Euler loss of g_{KS} is around 0.1%

Figure 10: An Instance of Conditional Policy Function

Computational Strategy

Implementation

Results

References

Results: Operator vs. KS

- ▶ To visualize the similarity of the operator framework solution to that of KS
- \blacktriangleright Simulate the economy using both \mathbf{g}_{θ} and \mathbf{g}_{KS} with the same initialization

Figure 11: The Simulated Aggregate Capitals

The Economic Model

Computational Strategy

Implementation 000 Results 0000● References

Conclusion

- This paper presents a novel approach to solving heterogeneous agents models with aggregate shocks in a discrete time, infinite horizon, and continuum agent setting. The approach incorporates the cross-sectional distribution of all individual states as part of the agents' state variable and leverages neural operator learning
- Computational advancements are attributed to the sharing-aggregation and parameterization-invariance property of operator formulation, as well as the discretization-invariance property in the proposed parameterization
- An optimization scheme tailored for this problem is formulated to facilitate the convergence of training
- Experiments on a Bewley-Huggett-Aiyagari model with aggregate uncertainty demonstrate computational efficiency compared to contemporary frameworks

Blundell, Richard, Luigi Pistaferri, and Ian Preston, "Consumption inequality and partial insurance," *American Economic Review*, 2008, *98* (5), 1887–1921.

- Cagetti, Marco and Mariacristina De Nardi, "Wealth inequality: Data and models," *Macroeconomic dynamics*, 2008, *12* (S2), 285–313.
- **Goodfellow, Ian, Yoshua Bengio, and Aaron Courville**, *Deep learning*, MIT press, 2016.
- Haan, Wouter J Den, Kenneth L Judd, and Michel Juillard, "Computational suite of models with heterogeneous agents II: Multi-country real business cycle models," *Journal of Economic Dynamics and Control*, 2011, *35* (2), 175–177.
- Han, Jiequn, Yucheng Yang et al., "Deepham: A global solution method for heterogeneous agent models with aggregate shocks," *arXiv preprint arXiv:2112.14377*, 2021.
- Kaplan, Greg, Benjamin Moll, and Giovanni L Violante, "Monetary policy according to HANK," *American Economic Review*, 2018, *108* (3), 697–743.

Results

Krueger, Dirk and Fabrizio Perri, "Does income inequality lead to consumption inequality? Evidence and theory," *The Review of Economic Studies*, 2006, *73* (1), 163–193.

- Krusell, Per and Anthony A Smith Jr, "Income and wealth heterogeneity in the macroeconomy," *Journal of political Economy*, 1998, *106* (5), 867–896.
- Li, Zongyi, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar, "Fourier neural operator for parametric partial differential equations," *arXiv preprint arXiv:2010.08895*, 2020.
- Maliar, Lilia, Serguei Maliar, and Fernando Valli, "Solving the incomplete markets model with aggregate uncertainty using the Krusell–Smith algorithm," *Journal of Economic Dynamics and Control*, 2010, *34* (1), 42–49.
- _ , _ , and Pablo Winant, "Deep learning for solving dynamic economic models.," *Journal of Monetary Economics*, 2021, *122*, 76–101.