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Abstract

This study delves into the numerical resolution of a critical economic model category,

Markov Equilibrium Games, employing a multi-agent deep reinforcement learning al-

gorithm for strategy optimization. Specifically, it focuses on a duopoly context, re-

sembling a Stackelberg game, where two firms engage in sequential decision-making

each period. Characterized as model-free learners, these firms initially lack economic

theoretical knowledge and develop optimal decision-making strategies solely through

mutual interactions in simulations. Their policy functions are defined using neural net-

works, and training is executed via the Multi-Agent Deep Deterministic Policy Gradient

(MA-DDPG) algorithm, a concept from deep reinforcement learning. The study aims

to investigate if, under these conditions, the economy can attain an equilibrium where

each firm’s behavior is optimal. This exploration is set in a linear-quadratic framework,

allowing for analytical derivation of the firms’ optimal policy functions. The exper-

imental findings indicate a nuanced outcome: the economy occasionally aligns with

the analytical equilibrium, but diverges at times. These outcomes provide valuable in-

sights for economists in refining model formulation and applying model-free numerical

solutions in economic analysis.

1 Introduction

The economic questions are about how agents reasonably allocate resources to maximize

their utilities. The economists build up various models within which they solve for analytical

answers to justify how agents should behave optimally. While the mathematical expressions

are elegant and straightforward, hence preferable, they are not always reachable, especially

when problems and the applied models became more and more complex. Economists have
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made sacrifices to keep the elegance, such as making assumptions that some functions take

particular forms to simplify the calculation, or focusing on scenarios around the steady states

so the system of equations can be linearized. But all those additional assumptions or ways

for solutions reduce the generality and feasibility of the models.

Another issue arises when problems with high dimensional variables are encountered.

Even though the economists seek numerical solutions, most of the existing methods have

the computational burdens increase exponentially to variable dimensions. The latter issue

seems to be more urgent to tackle in the past few years as we entered the so-called ’Big

Data Era’ where there is a massive amount of data in fields like macroeconomics, industrial

organization, finance, etc.

While there have been many works to help in the two mentioned problems in economics,

the curse of mathematical model and the curse of dimensionality, this paper aims to look for

help in another fast-developing field under computer science and statistics, the Reinforcement

Learning. Reinforcement learning approaches have been the core engines of many Artificial

Intelligent achievements in recent years, and well-known applications include Go, Poker, and

real-time strategic e-games.

Though unfamiliar to economists, the reinforcement learning approaches are not some-

thing completely new. In reinforcement learning problems, agents learn from the interac-

tion with the environment and optimize their behavior to maximize/minimize their overall

payoff/cost. In this sense, reinforcement learning shares the same original intuition with

economics from optimal control theory. The key difference is that, while in optimal control

and economics agents are assumed to have a perfect model characterizing the dynamics of

the environment, and can therefore write down and solve a system of equations for opti-

mal policies, in reinforcement learning such an assumption is dropped. The principal theme

of reinforcement learning is how the agents gradually optimize their policies through pure

trial-and-error (learning) or building up their subjective model (planning). The most typical

example is the Dynamic Programming approach, an essential tool in economics and opti-

mal control that solving the system from the Bellman equations but not commonly used in

reinforcement learning applications, as discussed in Section 2.

In general cases, the reinforcement learning approaches seeks for numerical solutions of

optimal policy, corresponding to the curse of mathematical model problem and it is discussed

in Section 2. In high-dimensional continuous space cases, it combines with the function ap-

proximation techniques from machine learning literature, and it is hence called deep learning,

to approximates the true solutions, corresponding to the curse of dimensionality problem.

This is discussed in Section 3.

Besides the potentials of solving the two mentioned problems, I also consider deep rein-

forcement learning promising in increasing the effectiveness for economists to pin down the

model settings when building their models. In particular, to describe and solve a real-world

problem, an economist would generally build a primary model, solve it manually to see
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whether the agents’ optimal behaviors in current settings help demonstrating the underlying

problems, and if not then keep modifying the building blocks of the models until the answer

is Yes. Implementing deep reinforcement learning approaches would ideally find agents’ op-

timal behaviors and thus the equilibrium of the model much faster than the manual work

of economists, especially when the model is complex. In this way the deep reinforcement

learning approaches can be the tools for economists in the iterations of model establishment.

There has been a growing literature in recent years applying deep reinforcement learning

in the fields of portfolio management, trading strategy and online pricing. While the existing

literature is under the single-agent learning framework, this paper is the first work to im-

plement multi-agent deep learning methods to traditional economic problems. Specifically,

we implement the MA-DDPG algorithm [Lowe et al., 2017] to solve for a classical duopoly

model in economics where a Markov Perfect Equilibrium exists. While the analytical solution

based on dynamic programming relies heavily on the assumption of the Linear-Quadratic

Regulator, the algorithm can be extended to any general function form in the model.

The rest of this paper is organized as follows. In Section 2 I go through the related

literature about the implementation of deep reinforcement learning approaches in finance and

economics. In Section 3 I introduce some backgrounds of reinforcement learning. In section

Section 4 I briefly go through some state-of-the-art deep learning approaches, including the

MA-DDPG algorithm implemented in this paper. In section Section 5 I discuss about my

experiment on a duopoly model. In section Section 6 I discuss about some future extensions

of my work. Section Section 7 is the conclusion.

2 Literature Review

There have been a few attempts to implement the state-of-art deep reinforcement learning

algorithms, which would be introduced in Section 4, in financial investment and portfolio

management. For instance, Xiong et al. [2018] used the vanilla DDPG to optimize stock

trading strategy in a Dow Jones training environment. Li et al. [2019a] proposed a Adaptive-

DDPG algorithm incorporating optimistic or pessimistic deep reinforcement learning that is

reflected in the influence of prediction errors. See also Azhikodan et al. [2019] and Jiang and

Liang [2017].

An interesting finding is that the more advanced learning approaches do not necessarily

perform better in the investment environment(Li et al. [2019b], Liang et al. [2018]). One

reason should be that the dynamic environment in the financial market is too non-stationary

and complicated such that the current single-agent deep learning approaches are not enough

to capture the insights no matter how they are theoretically more advanced in detailed

implementation. This actually calls for multi-agent deep learning framework implemented

in this paper in future work.

3



Some recent works augmenting the deep learning algorithm with theoretical models may

provide some inspiration. For example, Yu et al. [2019] trained a trading agent using a novel

learning architecture consisting of an infused prediction module, a generative adversarial

data augmentation module, and a behavior cloning module. Other applications of deep

reinforcement learning closed to economic questions include bidding(Zhao et al. [2018]) and

pricing Liu et al. [2019].

3 Background

In this Section I briefly introduce some backgrounds of reinforcement learning approaches

to researchers who are not familiar to this topic. I would start from Dynamic Program-

ming, which is classified as the model-based, bootstrapping and expected updating rein-

forcement learning approach. I then introduce Monte-Carlo, the conversely model-less, no-

bootstrapping and sample updating approach, and Temporal Difference, the key novelty

in reinforcement learning approach that combines virtues from Dynamic Programming and

Monte-Carlo. In next Section I would introduce the state-of-art approaches implementing in

continuous or high dimensional cases, which can be considered as the generalized Temporal

Difference algorithm with function approximation techniques.

3.1 Markov Decision Processes

Reinforcement learning solves the problems of Markov Decision Processes(MDPs), which

operates in the manner that in each period the agent observes state st ∈ S and takes an

action at ∈ A based on a policy π ∈ S → A, then the environment produces a reward rt+1

and state transition st+1 as feedback.

Figure 1: The agent–environment interaction in a Markov decision process

What matters to the agent is the overall return Gt, which is defined as the discounted
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sum of rewards. We can then define the value function for state s given a policy π as:

vπ(s)
.
= Eπ[Gt|St = s] = Eπ[

∞∑
k=0

γkRt+k+1|St = s] (1)

With the value function, an optimal policy π∗ with corresponding value function v∗(s)

such that v∗(s) ≥ vπ(s) for all s ∈ S and π ̸= π∗ is pursued. However, the true value function

(1) is generally unknown. Most reinforcement learning algorithms are about how to estimate

the value function to obtain an optimal policy. Note that for notation, V (·) refers to the

estimate and v(·) refers to the true value.

3.2 Revisit: Dynamic Programming

Let’s start with the technique to which economists are mostly familiar. Dynamic Pro-

gramming(DP) is used with the assumption of a perfect environment model so that given

a particular state and an action, the distribution of probable reward and the transition to

the next state is explicitly known. In this case, we can use the estimated values of successor

states as the backup of the current state. This ideal is illustrated in the backup diagram

below, where a white node denotes a state and a black node denotes an action. The value of

current state s is equal to the values of all possible next states weighted by the probabilities

of actions under a general policy π and the probabilities of transitions given a particular

action. If the policy is greedy, then the value of current state is equal to the maximum

values among actions.

Figure 2: Backup diagram for vπ(Sutton and
Barto [2018])

Figure 3: Backup diagram for v∗(Sutton and
Barto [2018])

Policy Iteration v.s. Value Iteration

There are generally two basic alternatives to to solve a DP problem and find an opti-

mal policy. The first is policy iteration, whose intuition is straight-forward as that with a
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randomly given initial policy, we first iteratively do the policy evaluation

V(s)
.
=
∑

a(a|s)
∑

s′,r p(s
′,r|s,a)[r+V

(s′)](2)

to obtain the state value function under the policy, and then do the control process as being

one-step ahead greedy:

(s)
.
= argmax

a

∑
s′,r

p(s′, r|s, a)[r + V
(s′)](3)

The second is value iteration, which can be thought as combining policy evaluation and

improvement into one operation in each iteration:

Vk+1(s)
.
= max

a

∑
s′,r

p(s′, r|s, a)[r + Vk(s
′)] (4)

Generalized Policy Iteration

The generalized intuition behind policy iteration and value iteration is that there are two

interacting processes, competing and cooperating with each other, which is termed gener-

alized policy iteration. One is policy evaluation, which makes the value function consistent

with the current policy. The other is policy improvement, which makes the policy function

greedy to the current value function.

The idea is that no matter how these two forces proceed alternatively since the two goals

are not orthogonal, they are driving each other and moving together towards common goals

— being stable in the optimal case where the Bellman optimality equation hold.
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Q function

The DP approach has three properties, which then connects to three kinds of partition in

various approaches in Reinforcement Learning. The first is that DP requires a full model to

characterize the environment, so it is called a model-based method. The model-free method

then has entirely no assumption about what agents know about the environment. The

second is that in DP, we update the current state’s estimate by the estimates of state values

of other states, which is called bootstrapping. The third is that the update of the estimate

of the current state is given by all other potential next states’ estimates, weighted by the

probability of transition, so it is an expected update. In reality, this is not common, both

because we do not have the full transition channel among the states, and because even if

we have, it is generally computationally-expensive. On the contrary, most commonly used

methods belong to (at least partially) sample updates.

In Reinforcement Learning, most of the time people are more interested in the value-

action function, or Q function, Q(s, a) , which denote the value of choosing action a in

current state s and follow the policy thereafter. The idea is that, in other sample update

methods described below, it is not that easy to write down the formula of state value function

but the state-action value function.

Figure 4: Backup diagram for qπ(Sutton and
Barto [2018])

Figure 5: Backup diagram for q∗(Sutton and
Barto [2018])
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3.3 Monte-Carlo

The Monte-Carlo(MC) method,to the contrast, requires no complete knowledge of the

environment, but only experience. Technically, for policy evaluation, in each episode we

generate a sequence following policy π: S0, A0, R1, S1, A1...ST−1, AT−1, RT , ST , then for each

particular action-state pair (St, At), its sample return is

Gt=̇
∑∞

k=0 γ
kRt+k+1, then we update the Q function:

Q(St, At)← Q(St, At) + α(Gt −Q(St, At)) (5)

with some specified learning rate α. Then for the control problem we update the policy to

be greedy to the new Q function.

The MC method can be viewed as one that is in the opposed direction to DP. As we

said it requires only experience so it is a model-free method; the estimate of return consist

complete of real rewards without other estimates, so Monte-Carlo does not bootstrap; finally,

it learns from sample returns from episodes so it is a sample update. The diagram below

illustrates the differences. Since in each sample experience there is only one sequence of

state-action pair, so only the value of next state-action pair can be used as the target to

calculate the current pair.

Figure 6: backup diagram MC(Sutton and Barto [2018])

The key to any sample update method is to ensure state space exploration to guar-

antee the convergence of estimate towards true value asymptotically. It contradicts the

nature of policy improvement, in which case being greedy to the value function means prefer

some actions that look promising currently. This contradiction is known as the exploration-

exploitation trade-off, a persistent problem in reinforcement learning. There are multiple

ways to help release the problem, such as starting each episode with a random value-action

pair or learning a so-call ϵ-greedy policy, which means always take a random action with a

small probability ϵ. We skip the discussion here.

3.4 Temporal-Difference

Temporal-Difference(TD) learning is the most novel and central idea in reinforcement

learning, combining both the advantages of DP and MC. TD update estimates partly based

8



on other estimates so it bootstraps as DP. Bootstrapping generally induces fast learning

because the value function is updated during the experience, while in MC, the value function

is updated as long as a sample experience is finished so the sample return Gt is formed. also

it learn directly from experience so no knowledge is needed for learning as in MC. The most

widely used simple one-step TD method of Q function, known as Q-learning(Watkins and

Dayan [1992]), make the update

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)] (6)

Q-learning is an off-policy learning, which means the policy we are evaluating is not the

same as the policy used for exploration in sampling. In Q-learning, we evaluate a greedy

policy while using the other policy, such as a ϵ−greedy one for sampling. As we will see,

most of the state-of-art algorithms are based on Q-learning, with just additional work for

approximation in continuous spaces cases.

Figure 7: backup diagram Q-learning(Sutton and Barto [2018])

The figure below illustrates all discussed so far, expanding from DP to general reinforce-

ment learning methods. The most naive and straightforward way for reinforcement learning,

as in the lower right corner, is exhaustive search, which is surely time-consuming and mostly

infeasible. From left to right in the horizontal axis, the width of update increases from using

a single sample return as the target to using samples’ expectation as the target. From top to

bottom in the vertical axis, the depth of update increases from bootstrapping just one-step

ahead to infinite-step ahead, which means the target consists of only real returns without

any estimates, equivalently no bootstrapping.
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Figure 8: A slice through the space of reinforcement learning methods(Sutton and Barto
[2018])

4 Deep Reinforcement Learning

In this section, I continue discussing reinforcement learning approaches from the last part

by expanding to state-of-art deep reinforcement learning methods. These methods emerged

from the past five years and are the main reason why reinforcement learning prevails in

different fields.

4.1 Continuous State Space: Deep Q Network

Whenever there is a continuous or high dimensional state space, it is reasonable to ap-

proximate the value function in a parameterized functional form with weight vector θQ ∈ Rd.

The parameters then adjust to fit the true value. It is then connected to supervised learn-

ing in machine learning or regression in econometrics, with two questions as what are the

features characterizing the state and what is the target value to update the parameters.

While there are various function approximation methods answering the first question, I

introduce here the prevailing Artificial Neural Networks(ANNs). A network is a hierarchical

system composed of several layers, each of which are made of nodes where computation

happens, loosely patterned on a neuron in the human brain that fires when it encounters

sufficient stimuli. A node combines input from the data with a set of weights. The input-

weight products are summed and then passed through a node’s so-called activation function

to be non-linearized, as shown below.
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Figure 9: Diagram of a node

Training the hidden layers of an ANN is, therefore, a way to automatically create features

appropriate for a given problem so that hierarchical representations can be produced without

relying exclusively on hand-crafted features. The latter has been an enduring challenge for

artificial intelligence and explains why learning algorithms for ANNs with hidden layers have

received so much attention over the years.(Sutton and Barto [2018])

Figure 10: A generic feed-forward ANN with four input units, two output units, and two
hidden layers.

The justification of ANNs is that given enough layers of neurons which extracts infor-

mation from inputs by taking weighted sum and non-linear transformation, the ANNs can

approximate any function that satisfies some moderate properties, which is well-known as

Universal approximation theorem. A version of this with regard to the ReLU activation

function f(x) = max{x, 0} is given by (Lu et al. [2017]):

[Universal approximation theorem] (L1 distance, ReLU activation, arbitrary depth) For

any Lebesgue-integrable function f : Rn → R and any ϵ > 0 there exists a fully-connected

ReLU network A with width dm ≤ n+ 4, such that the function FA represented by this

network satisfies ∫
Rn |f(x)− FA(x)| dx < ϵ
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Then all the weights and bias in the network is the parameters to be optimized, for

which there is a general method called Stochastic gradient-descent(SGD) that adjusts the

parameters after each example by a small amount in the direction that would most reduce

the error on that example.

θQt+1
.
= θQt −

1

2
α∇[Ut − Q̂(St, At; θ

Q
t )]

2 (7)

where Ut denotes the unknown true value, to estimate which, as for the second question

mentioned above, it requires advanced technique generalize from methods briefly discussed

in Section 2. For example, the MC algorithm uses the episodic accumulated rewards Gt to

estimate the true value. Since the true value is the expected value, the Monte Carlo target

is, by definition, an unbiased one, so locally optimal solution is guaranteed.

However, the guarantee is not obtained if one wants to take advantage of bootstrapping,

which generally induces significantly faster learning. To see this, note that the bootstrapping

target, for example, the prototypical TD(0) target as Ut
.
= Rt+1+γQ̂(St+1, At+1; θ

Q
t ), have its

value depends on the current weight vector θQt . When updating θQt based on the gradients,

the target is updated as well. This may result in instability or even divergence.

Another cause of instability when using ANNs or other non-linear approximator roots

from the nature of reinforcement learning comparing to machine learning. While in ma-

chine learning our observations are independently distributed, in reinforcement learning the

sequence of observations, as accumulated in episodic exploration, is correlated. In some

cases, the small updates to Q function may significantly change the policy and the data

distribution.

The prevailing Deep Q-Network method(Mnih et al. [2015]), besides its sophisticatedly

designed network architecture and tuned hyper-parameters, addresses these instabilities with

two key ideas. For the first cause, it builds a target network additionally to approximate

the target value, whose parameters are then updated periodically or softly with a small

learning rate towards the main Q-network. For the second cause, it separates the timing

of experiencing and learning from a particular transition, therefore switches from online

learning to offline learning, by using a biologically inspired mechanism termed experience

replay. Technically, an experienced transition is stored into the experience replay with some

capacity instead of being learned intermediately. When learning, a mini-batch of transitions

is randomly sampled from the experience replay. Hence the correlation among observations

is reduced.

4.2 Continuous Action Space: DDPG

While Deep Q-Network solves problems with high-dimensional observation spaces, it can

only handle discrete and low-dimensional action spaces. A natural idea to deal with the
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action spaces is to learn a parameterized policy as well. Consider the case of deterministic

policy, as in most of the cases of economics, so the policy is a function µ : S → A pa-

rameterized by vector θµ. The method to do so is called policy-gradient, or deterministic

policy-gradient(DPG) when dealing with deterministic policy, which updates the parameters

to maximize some performance measure J(θµ), so their updates approximate gradient ascent

in J :

θµt+1 = θθt + α∇̂J(θµt ) (8)

where ∆̂J(θµt ) is a stochastic estimate.

Methods that learn approximations to both policy and value functions are called actor-

critic methods, in which ‘actor’ refers to the learned policy, and ‘critic’ refers to the learned

value function. This DPG algorithm(Silver et al. [2014]) then use the critic approximated

by θQ as the performance and applies the chain rule to update the actor:

∇θµJ ≈ E[∇θµQ(s, a|θQ)|s=st,a=µ(s|θµ)]

= E[∇aQ(s, a|θQ)|s=st,a=µ(st)∇θµµ(s|θµ)|s=st ]
(9)

The Deep Deterministic Policy-Gradient(DDPG) method (Lillicrap et al. [2015])

modifies the DPG algorithm stated above with neural network function approximator in-

spired by Deep Q-Network. As in DQN, a replay buffer is used to store and sample tran-

sitions (s, a, r, s′). As long as the replay buffer was full, the oldest samples were discarded.

At each time step, both the actor and critic are updated by sampling a minibatch uniformly

from the buffer. Also, now copies of both the actor and critic are needed as the target

networks to obtain µ′(s|θµ′
) and Q′(s, a|θQ′

) respectively.

Additionally, to encourage exploration, an exploration policy µ̃ is constructed by adding

noise from some process N to the actor policy:

µ̃(st) = µ(st|θµt ) +N (10)

4.3 Multi-Agent Learning: MA-DDPG

While most of the achievements of reinforcement learning have been in single-agent do-

mains, there are emerging interests in applications involving multiple-agents interactions,

cooperative or competitive. A naive method is to apply traditional approaches, such as the

DQN and DDPG stated above, into the multi-agents framework, by simply regards other

agents as parts of the environment being interacted with. The issue is that as each agent’s

policy evolves as the training process, the environment becomes non-stationary from the

perspective of any single agent. Because of this, the straight-forward use of the replay buffer

for training is misleading.

For example, in some time an agent experienced and recorded the transition s, a, r, s′ in
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the replay buffer. A few steps later it samples this transition from the buffer for learning,

but now the environment has been changed and the same state-action pair may lead to a

totally different reward and next state since other agents’ policies have been updated. In

summary, for agent i in a N-agent environment:

Pr(ri, s
′
i|si, ai;µ1, ..., µN) ̸= Pr(ri, s

′
i|si, ai;µ′

1, ..., µ
′
N) (11)

for any µi ̸= µ′
i

TheMulti-Agent Deep Deterministic Police Gradient(MA-DDPG) algorithm(Lowe

et al. [2017]) solves the issue by adopting the framework of centralized training with decen-

tralized execution. In particular, it allows agents to use extra information for policy training

so long as this information is not used at test time.

Formally speaking, consider a Markov game with N agents. There is a set of states

S, a set of actions A1, ...,AN and a set of observations O1, ...,ON for each agents. Each

agent i use a parameterized deterministic policy µθµi
: Oi → Ai with the private observation

oi : S → Oi as input and obtain a reward ri : S×A⟩ → R. The state transition is a function

T : S ×A1...×AN → S.

The MA-DDPG algorithm uses a centralized action-value function

Qµ
i (x, a1, ..., aN |θ

Q
1 , ..., θ

Q
N) as critic, which takes as input the actions of all agents a1, ..., aN

and some state information x. A simplest case would be that x = (o1, ..., oN). A replay

buffer D is used as in the cases of DQN and DDPG, but now it collects the experience of all

agent by storing the tuple x,x′, a1, ..., aN , r1, ..., rN for each transition. The actor is updated

with the gradient:

∇θµi
J(µi) = Ex,a∼D[∇θµi

µi(ai|oi)∆aiQ
µ
i (x, a1, ..., aN |θ

Q
1 , ..., θ

Q
N)|ai=µi(oi)] (12)

The critic is updated with the gradient:

∇L(θQi ) = ∇Ex,a,r,x′ [(Qµ
i (x, a1, ..., aN |θ

Q
1 , ..., θ

Q
N)− y)2] (13)

with the target as

y = ri + γQ′µ
i (x

′, a′1, ..., a
′
N |θ

′Q
1 , ..., θ′QN )|a′j=µ′

j(oj)
(14)

where µ′ = {µθ′1
, ..., µθ′N

} is the set of target policies.

Here, the centralized training is implemented with the implicit assumption that each

agent knows globally all that other agents know when training: their observations, actions,

rewards, and even the policies. This assumption is reasonable, so long as the agent has

only his local information when executing the action based on policy. Such an assumption

does not go beyond the rationality assumption in economics. The assumption of knowing

others’ policies can even be removed by letting each agent infer policies of others from their
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actionsLillicrap et al. [2015], but we remain in our experiment for simplicity.

The primary motivation behind MA-DDPG is that if an agent knows the actions taken

by all agents then the environment is stationary from its perspective even the policies are

changing:

Pr(ri, s
′
i|si, a1, ..., aN ;µ1, ..., µN) = Pr(ri, s

′
i|si, a1, ..., aN)

= Pr(ri, s
′
i|si, a1, ..., aN ;µ′

1, ..., µ
′
N)

(15)

for any µi ̸= µ′
i.

5 Experiment

In this section, I implement the MA-DDPG algorithm to solve a Markov Perfect Equi-

librium(MPE) game. The MPE is used to describe settings where multiple decision-makers

interact non-cooperatively over time. Particularly, in each time step, all agents have common

observations over the state and the transition of which is affected by all agents’ actions. Each

agent thus has to take into account others’ policies to maximize its payoff. The MPE de-

scribes a situation where no agent wishes to change its policy, taking as given others’ policies.

The MPE game has been studied widely in economics in past years. Well known examples

include topics in IO such as choice of price, output, location or capacity for firms(Ericson and

Pakes [1995]; Ryan [2012]; Doraszelski and Satterthwaite [2010]) and topics in environmental

economics like rate of extraction from a shared natural resource(Levhari and Mirman [1980];

Van Long [2011]).

In the following part, I first introduce the duopoly model aimed to solve, with a specified

Linear-Quadratic form assumption, so an analytical solution existsSargent and Stachurski

[2015]. Details of the analytical solution are in the Appendix. While the experiment tackles

a benchmark low-dimensional problem as an exercise, the intuition is not trivial, and the

MA-DDPG algorithm is superior mainly in two aspects of generalization:

• While the analytical solution relies heavies on the Linear-Quadratic form assumption,

the MA-DDPG algorithm can be implemented without such an assumption.

• For other MPE games with a different number of heterogeneous agents and economic

settings, the MA-DDPG algorithm can be easily implemented with changes of just the

network architecture and hyper-parameters.

I then compare the performance of our numerical solution to the analytical solution and

show that the numerical solution has a satisfactory approximation.
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5.1 The Duopoly Model

Consider the case where two firms, 1 and 2, are the only producers of a particular goods.

The demand is governed by a linear inverse demand function:

p = a0 − a1(q1 + q2) (16)

with a0 > 0, a1 > 0

Both firms face the quadratic adjustment cost function with the same parameter γ > 0,

so if firm i’s current production is qi and it aims to produce q̂i in next period, its payoff is:

πi = pqi − γ(q̂i − qi)
2 (17)

The objective of the firm i is to maximize

∞∑
t=0

βtπit (18)

Firm i chooses a decision rule that sets next period quantity q̂i as a function fi of the

current state (qi, q−i). Given f−i, the Bellman equation of firm i is

vi(qi, q−i) = max
q̂i
{πi(qi, q−i, q̂i) + βvi(q̂i, f−i(q−i, qi))} (19)

It is not straightforward to solve the Bellman equation since it includes agent i’s expec-

tation on the other agent’s strategy.

5.2 Numerical Solution: MA-DDPG

Inspired by OpenAI Gym, an online platform for researchers to test the performance

of their new algorithms, in implementation I wrap the economic model into a packaging

environment characterized by a0, a1, γ, β and number of firms n, which in this experiment is

2. The OpenAI Gym consists of various games wrapped into APIs with actions as inputs

and new states and rewards as outputs.

The environment can be initialized with two randomly selected productions such that

the initial price would not be negative, or with two specified initial productions for testing.

In each step of a game, the MA-DDPG algorithm would solve for each agent its action

v1, v2 given the state (q1, q2). Then the environment outputs rewards (r1, r2) and new states

(q′1
.
= q1+v1, q

′
2
.
= q2+v2) as feedback. The game would stop and restart as long as the price

or any production is below zero. Below is the detailed algorithm for the MA-DDPG(Lowe

et al. [2017]) implementation.
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Algorithm 1 Multi-Agent Deep Deterministic Policy Gradient for N agents(Lowe et al.
[2017])

for episode = 1 to M do
Initialize a random process N for action exploration
Receive initial state x
for t = 1 to max-episode-length do
For each agent i, select action ai = µθi(oi)+Nt with respect to the current policy and
exploration
Execute actions a = (a1, . . . , aN) and observe reward r and new state x′

Store (x, a, r,x′) in replay buffer D
x← x′

for agent i = 1 to N do
Sample a random minibatch of S samples (xj, aj, rj,x

′
j) from D

Set yj = rji + γQµ′

i (x
′j, a′1, . . . , a

′
N)|a′k=µ′

k(o
j
k)

Update critic by minimizing the loss:

L(θi) = 1
S

∑
j

(
yj −Qµ

i (x
j, aj1, . . . , a

j
N)

)2
Update actor using the sampled policy gradient:
∇θiJ ≈ 1

S

∑
j∇θiµi(o

j
i )∇aiQ

µ
i (x

j, aj1, . . . , ai, . . . , a
j
N)|ai=µi(o

j
i )

end for
Update target network parameters for each agent i:
θ′i ← τθi + (1− τ)θ′i

end for
end for

Because in this game the MPE is not the case of achieving highest accumulated rewards

for each agent, but rather the monopoly solution, I do not use the rewards as indicator

of performance. For testing, I specify a case with initialized productions q1 = 1, q2 = 1

and compare how the price and sum of productions would evolve to the case of analytical

solution:

While the approximation is not that perfect, I think there are two reasons:

• The duopoly model is low-dimensional and in simple functional form, so the neural

network approximator is easily over-identified and thus unstable.

• I am using a vanilla algorithm. In practice, more sophisticated techniques are used

to increase and stabilize the performance, such as Batch Normalization, Penalty, and

methods for tuning the hyper-parameters.
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Figure 11: performance of MA-DDPG algorithm with 2 hidden layers of 4 neurons each for
both the actor and critic. The learning rate of both actor and critic is 1 × 10−5 and the
learning rate of target networks soft updating is 1× 10−2

.

6 Future Extensions

While this paper is the first work to implement a multi-agent deep learning algorithm to

solve traditional economics questions, there are several extensions that I think are worth for

explorations in future works.

• As I analyzed in section 5, more sophisticated pre-training or network architecture

designing techniques would surely increase and stabilize approximation performance.

There is abundant literature on deep learning that can be referred to.

• Implement the algorithm to economic models with higher dimensional variables or

higher complexity where analytical solutions are infeasible, in which case the advan-

tages of our new methods are better shown.

• Go deeper into the multi-agent learning algorithms to solve economic games in different

forms. For instance, games with sequential moves, or games with partially observed

state variables.

• Combine the learning algorithms with data-driven models to implement the algorithms

with agents training from real-world data. Learning from reality and solving real

problems is certainly the goal every economist is pursuing.
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7 Conclusion

This paper introduces a new approach from the fast-developing reinforcement learning

literature, the multi-agent deep deterministic policy gradient (MA-DDPG) algorithms from

Reinforcement Learning literature, to solve numerically one of the cornerstone problems

in economics, the Markov Equilibrium games. I first argue that traditional approaches

in solving economic problems suffer from the curse of the mathematical model and the

curse of dimensionality. Since the reinforcement learning problems share the same goal with

economic problems as maximizing agents’ overall payoffs or minimizing the overall costs, I

infer various approximation techniques in the former may help solve the latter’s mentioned

problems. Additionally, I consider our new approach a promising method to help increase

the effectiveness of economic model establishment.

I then briefly discuss the backgrounds, including Dynamic Programming, Monte-Carlo,

and Temporal Difference to the state-of-art deep reinforcement learning approaches, includ-

ing Deep Q-Network, DDPG, and MA-DDPG, step-by-step to reach the approach imple-

mented in this paper. My experiment shows that the MA-DDPG algorithm can approximate

the optimal performance in the testing case quite well, though not perfect. Then I go further

to discuss the reasons and look into the potential future extensions.
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Appendix

Analytical Computation: The LQ Framework

Here we briefly introduce how the analytical solution is conducted(Sargent and Stachurski

[2015]). Since the the motion of dynamics is in linear form and the payoff function of agents

are in quadratic form, it is the LQ regulator problem. Generally, in a Linear-Quadratic

dynamic game, the agent i takes {u−it} as given and minimizes

∞∑
t=0

βt
{
x′
tRixt + u′

itQiuit + u′
−itSiu−it + 2x′

tWiuit + 2u′
−itMiuit

}
(20)

while the state evolves according to

xt+1 = Axt +B1u1t +B2u2t (21)

Here xt is the state vector and ut is the control vector. In LQ framework the agent’s optimal

decision rule is linear to the state: uit = −Fitxt.

Taking u2t = −F2txt as given from the perspective of firm 1, its problem becomes mini-

mizing:
∞∑
t=0

βt {x′
tΠ1txt + u′

1tQ1u1t + 2u′
1tΓ1txt} (22)

s.t.

xt+1 = Λ1txt +B1u1t (23)

where

Λit := A−B−iF−it

Πit := Ri + F ′
−itSiF−it

Γit := W ′
i −M ′

iF−it

Decision rules that solve this problem are

F1t = (Q1 + βB′
1P1t+1B1)

−1(βB′
1P1t+1Λ1t + Γ1t) (24)

where P1t solves the matrix Riccati difference equation

P1t = Π1t − (βB′
1P1t+1Λ1t + Γ1t)

′(Q1 + βB′
1P1t+1B1)

−1

× (βB′
1P1t+1Λ1t + Γ1t) + βΛ′

1tP1t+1Λ1t

(25)

and the solution of firm 2 takes the symmetric form.
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In our duopoly model, the state and control variable are:

xt :=

 1

q1t
q2t

 and uit := qi,t+1 − qit, i = 1, 2

For the one-period payoff function, we have

x′
tRixt + u′

itQiuit

where Q1 = Q2 = γ,

R1 :=

 0 −a0
2

0

−a0
2

a1
a1
2

0 a1
2

0

 and R2 :=

 0 0 −a0
2

0 0 a1
2

−a0
2

a1
2

a1


The motion of the dynamics is xt is xt+1 = Axt +B1u1t +B2u2t where

A :=

1 0 0

0 1 0

0 0 1

 , B1 :=

01
0

 , B2 :=

00
1
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