
Operator Learning in Macroeconomics

Yaolang Zhong∗

Abstract

This paper proposes a novel solution framework for the class of dynamic macroe-

conomic models with a continuum of heterogeneous agents and aggregate uncertainty.

In these models, an agent’s state variables include her individual state vector and

a distribution function representing all agents’ states, an infinite-dimensional object.

Unlike the prevalent benchmark method that approximates the distribution function

with a high-dimensional vector of simulated agents, this paper suggests the formula-

tion of the policy function as an operator that maps between function spaces. The

operator is parameterized by a cutting-edge neural network architecture known as the

neural operator. This proposed framework offers significant computational advantages

due to its three defining properties: discretization-invariance, permutation-invariance,

and aggregation-sharing. The effectiveness of this approach is demonstrated by solv-

ing the Bewley-Huggett-Aiyagari model with aggregate uncertainty, a benchmark in

computational economics literature. The proposed framework not only demonstrates

computational efficiency as it manages tens of thousands of agents during simulations

to precisely approximate the distribution function but also showcases its superior per-

formance, achieving solutions with less than a one percent relative error in a shorter

computational time compared to the benchmark method.

1 Introduction

Dynamic models that incorporate both heterogeneity and aggregate uncertainty have

become key areas of focus in macroeconomics. The reasons for their popularity include the

significant implications of heterogeneity for aggregate consumption, savings, and labor supply

∗Department of Economics, University of Warwick, Coventry CV4 7AL, UK. Email:

yaolang.zhong@warwick.ac.uk. Acknowledgments: I am grateful to my supervisors, Dr. Mingli Chen, Prof.

Herakles Polemarchakis, and Prof. Eric Renault, for their guidance. Special thanks to Prof. James Fenske

for his invaluable support during the job market application process. I am indebted to Dr. Xiangyu Feng,

Prof. Wiji Arulampalam, Dr. Claudia Rei, Dr. Ao Wang, Dr. Kenichi Nagasawa, Dr. Luis Candelaria,

Zoe Zhang, Jiaqi Li, Amedeo Andriollo, Johannes Böken and Gokul Gopalan Ramachandran for their

constructive feedback and comments.

1

yaolang.zhong@warwick.ac.uk
mailto:M.Chen.3@warwick.ac.uk
mailto:H.Polemarchakis@warwick.ac.uk
mailto:H.Polemarchakis@warwick.ac.uk
mailto:Eric.Renault@warwick.ac.uk

behaviors [Blundell, Pistaferri, and Preston, 2008, Krueger and Perri, 2006], and the pivotal

role of heterogeneity in the propagation of aggregate shocks, as illustrated by Kaplan, Moll,

and Violante [2018]. These models also provide more realistic representations of economies,

allowing for richer dynamics and more complex interactions [Cagetti and De Nardi, 2008].

Another important reason for the prevalence of these models is the development in the

computational literature of numerical methods. Models with heterogeneity and aggregate

uncertainty have been known to be difficult to solve. Yet, swift advancements in computa-

tional techniques have enabled economists to numerically solve these types of models. In

particular, there has been a burgeoning interest in the application of deep learning tech-

niques to address the computational challenges, as evidenced by Maliar, Maliar, and Winant

[2021], Maliar and Maliar [2022], Han and Yang [2021], Azinovic, Gaegauf, and Scheidegger

[2022]. These studies capitalize on the intrinsic properties of the feed-forward neural network

architecture to mitigate the curse of dimensionality and leverage simulation-based data gen-

eration algorithms, which have shown significant computational advantages over traditional

grid-based methods.

However, computational challenges remain. As we will see, the challenges stem from

two sources: the limitations of the feed-forward neural network architecture as the function

approximator, and the associated computational strategy not fully utilizing all the useful

information of the data structure stemming from the economic model. I regard this as the

domain knowledge of the economic problems, which is essential to facilitate optimization.

This paper addresses these challenges by resolving the two issues discussed. It specifi-

cally focuses on finding the global solution in discrete-time and continuum-agent settings. A

key feature of this type of model is that an agent’s state variables encompass her individual

state, represented as a vector, and a distribution function of all agents’ individual states, an

infinite-dimensional object. This paper introduces a novel solution framework by redefining

the agents’ policy function as an operator, a mapping from functions to functions. In this

reformulation, when processing state variables for the policy, it initially takes only the distri-

bution function as input and outputs a conditional policy function, which then requires only

the individual vector as input. This approach translates solving the agents’ policy function

into learning an operator. The paper employs a state-of-the-art technique from the machine

learning literature, known as the neural operator, for operator parameterization [Li et al.,

2020a, Kovachki et al., 2021]. The neural operator, a neural network architecture designed

for approximating mappings between function spaces, draws its approximation capabilities

from the Universal Approximation Theorem for Operators, a concept dating back to the

seminal work of Chen and Chen [1995].

To understand the benefits of reformulating the problem as an operator and using neural

operator parameterization, and to contextualize this paper’s contributions within the ex-

isting literature, it is essential to review current prevalent methods. Regarding the models

of interest, there are two primary solution frameworks. The first, the Krusell and Smith

2

framework [Krusell and Smith, 1998, Den Haan and Rendahl, 2010, Maliar and Maliar,

2014]—hereafter KS framework—characterizes the distribution by tracking a select number

of moments. While tractable and intuitive, the KS framework has faced criticism for relying

on additional assumptions about agents’ rationality and the arbitrary selection of moments.

The second framework, the Deep Learning approach using feed-forward neural networks

[Maliar, Maliar, and Winant, 2021, Han and Yang, 2021, Azinovic, Gaegauf, and Schei-

degger, 2022, Kahou, Fernández-Villaverde, Perla, and Sood, 2021]—hereafter NN frame-

work—models the distribution across a finite, potentially large, number of simulated agents.

It uses the feed-forward neural network to parameterize the policy function, with aggregate

motion characterized by the collective transitions of all simulated agents following a specific

policy. The NN framework addresses the KS framework’s limitations but introduces a new

set of computational challenges. It is these challenges that this paper’s proposed opera-

tor learning framework aims to address, with the NN framework serving as the benchmark

method for comparison throughout most of the paper.

To understand the limitations of the NN framework, it is important to first recognize

that the dimensionality of the state variables increases linearly with the number of simulated

agents. Each state variable corresponds to a node in the input layer of the neural network;

thus, when the number of simulated agents is sufficiently large, the input layer already

dominates, resulting in a neural network that expands linearly in size with the number

of agents. This presents researchers with a significant trade-off: simulating a sufficient

number of agents to accurately approximate the continuous distribution requires training

an extensively large neural network, which leads to considerable computational time and

memory demands.

Additionally, the feed-forward neural network parameterization may be problematic due

to its architecture’s dependence on a specific number of agents. Consequently, a new net-

work must be trained from scratch whenever an alternative number of simulated agents is

considered. This lack of flexibility, or non-generalizability, can cause issues in two scenarios:

first, when researchers wish to train the neural network with a smaller population, or equiva-

lently, a coarser discretization of the distribution, and then aim to test its performance with

a larger population, or a finer discretization; second, when the economic environment under

study is an overlapping-generation (OLG) model involving dynamics such as birth and death

probabilities, leading to a fluctuating number of agents.

The operator learning framework resolves this issue, as the neural operator architecture

it utilizes possesses the advantageous property of discretization invariance. This means the

size of the neural operator remains constant regardless of the number of simulated agents

representing the distribution function, a point that is elaborated upon in the introduction

of neural operators in Section 4. Specifically, Kovachki et al. [2021] proved that the neural

operator is the only known class of models for operator approximation that ensure both

discretization invariance and universal approximation. This eliminates the aforementioned

3

trade-off, allowing researchers to handle a large number of simulated agents without increas-

ing network size. Furthermore, the number of simulated agents can vary between training

and evaluation phases and during simulations, whether for reasons of computational effi-

ciency or due to the specifications of the model.

The second limitation of the NN framework is that it fails to exploit two critical prop-

erties of the data structure arising from the economic model: permutation-invariance1 and

aggregation-sharing. Permutation-invariance dictates that the policy function parameterized

by the feed-forward neural network should, in theory, produce the same output irrespective

of the ordering of agents in the input. However, without this property being explicitly in-

corporated into the data, considerable computational effort is expended to enable the neural

network to recognize this invariance. Aggregation-sharing means that all simulated agents

share a common distribution function and are interdependent, rendering it inefficient for the

neural network to process the identical aggregate component of the state variables for each

agent repeatedly. Both properties, when not properly integrated, lead to the computational

inefficiencies that plague the NN framework.

The proposed operator learning framework address this limitation immediately by the

way it formulates the problem. Like the NN framework, it manages a population of agents,

but instead of processing individual cross-sectional agents, it uses the constructed empirical

distribution function as the input for the operator, inherently encoding the permutation-

invariance property. Moreover, since the processing of agents’ states is decomposed into

two stages, the operator framework processes the distribution function just once during the

simulation of state transitions, rather than redundantly for each agent. Subsequently, only

the individual states of each agent are processed through the conditional policy function.

Given that the KS framework deals with the moments of distributions, it implicitly satis-

fies the discretization-invariance, permutation-invariance, and aggregation-sharing properties

discussed above. Table 1 presents a comparison of the three frameworks.

To validate the proposed framework, I implemented it to solve the Bewley-Huggett-

Aiyagari model incorporating aggregate uncertainty, as discussed by Den Haan, Judd, and

Juillard [2010]. This model is a standard benchmark within the computational suite project

and is commonly used to assess new methodologies in computational economics research.

A specialized optimization strategy was developed to enhance convergence. Specifically,

for the data-generating process, I employed a hybrid sampling approach: the grid method for

the low-dimensional individual state, and the stochastic simulation method for the infinite-

dimensional aggregate state, namely, the distribution function. The rationale is that estab-

lishing grid points in an infinite-dimensional space is unfeasible, and remains impractical

even in high-dimensional but finite cases. Therefore, I simulate the economic model by ap-

1Permutation-invariance was discussed and satisfied in some methods belonging to the NN framework,
see e.g., Han and Yang [2021], Kahou, Fernández-Villaverde, Perla, and Sood [2021].

4

Table 1: Comparison of Three Numerical Frameworks for
the Desirable Properties

Property
Framework

KS1 NN2 Operator3

Full Information of Distribution × ✓ ✓
Discretization-Invariance ✓ × ✓
Permutation-Invariance ✓ × ✓
Sharing-Aggregation ✓ × ✓
1 Krusell-Smith
2 Deep Learning with feed-forward neural network
3 Deep Learning with neural operator (This Paper)

proximating the solution within the ergodic set, as suggested by Judd, Maliar, and Maliar

[2011]. For the low-dimensional part, the grid point method yields higher accuracy than

stochastic simulation.

Considering that a portion of the data, the distribution function, is endogenously gener-

ated, the initialization of the neural operator is critical for convergence. In the initial stages,

when the policy is suboptimal, the corresponding ergodic set can differ substantially from the

convergent set, which in turn, supplies low-quality data detrimental to the optimization pro-

cess. To counteract this, I designed a specific initialization scheme: I first addressed a version

of the Bewley-Huggett-Aiyagari model without aggregate uncertainty. This simpler model,

characterized by static aggregation, can be solved swiftly. The resulting policy function

serves a dual purpose: it acts as an initial training step for the neural operator—reflecting

the concept of “transfer learning” in deep learning literature—and assists in simulating an

approximate ergodic set—akin to “off-policy learning” in reinforcement learning. The ini-

tialization of the neural operator is then performed through a supervised learning task, with

the output of the policy function from the simpler problem serving as the target.

Training was conducted on a 2018 MacBook Pro equipped with an Intel Core i5 pro-

cessor and 16 GB of 2133 MHz LPDDR3 Memory. The optimization was programmed in

Python, utilizing the PyTorch deep learning framework. Within a reasonable computational

timeframe, the neural operator approach successfully delivered a solution, achieving an error

measured by the Euler residuals within a fraction of one percentage point—an impressive

level of precision for approximating a high-dimensional policy function with kink points

[Maliar, Maliar, and Winant, 2021]. Notably, in my simulations, I managed 10,000 agents

while retaining a network size comparable to the NN framework that handles only 1,000

agents. In a direct comparison within the same setting of 1,000 agents, the operator learning

framework achieved convergence rapidly, whereas the NN framework continued to yield a

suboptimal policy.

Contributions to the Literature: As previously stated, this paper contributes to the com-

5

putational economics and macroeconomics literature by introducing a new machine learning-

powered solution framework for a prevalent class of models: the heterogeneous agent mod-

els with aggregate uncertainty. The principal computational challenge lies in learning the

agents’ policy function, which includes a distribution function as part of the input. The cur-

rent literature’s approaches typically reduce the infinite-dimensional distribution function to

a low-dimensional vector [Krusell and Smith, 1998, Den Haan and Rendahl, 2010, Maliar and

Maliar, 2014] or a high-dimensional one [Maliar, Maliar, and Winant, 2021, Han and Yang,

2021], thereby simplifying it to the case of a conventional policy function and parameterizing

it with a feed-forward neural network, which introduces computational inefficiencies. The

innovations of the proposed framework in this paper are threefold: first, a reformulation of

the policy function with a distribution function component into an operator; second, the

parameterization of this operator using the neural operator, an advanced neural network ar-

chitecture from the machine learning literature; and third, a specially designed optimization

strategy. Each of these aspects contributes to a significant gain in computational efficiency.

While this paper utilizes the neural operator, a tool developed within the machine learning

literature [Lu et al., 2019, Kovachki et al., 2021, Li et al., 2020a,c, 2021, Goswami et al., 2023],

it also contributes to the machine learning field by demonstrating its application within the

economics discipline, and more broadly, in the social sciences and strategic game settings.

Until now, computer scientists have primarily focused on applying neural operators to solve

partial differential equations (PDEs) that characterize physical or engineering systems. To

the best of my knowledge, this work represents the first application of neural operators in

discrete time economic models. Furthermore, its adoption is not a mere application to a

well-defined task; this paper contributes by formulating an economic problem with domain

knowledge, making it suitable for the application of neural operators.

Furthermore, this paper extends its contributions to an emergent body of literature that

examines the strategic interactions among artificial-intelligence agents governed by reinforce-

ment learning-based policies in an economic environment [Chen et al., 2021, Zheng et al.,

2020, 2021]. Despite the distinct nature of model-based learning in computational eco-

nomics and model-free learning in reinforcement learning, the framework proposed in this

paper exhibits commonalities with the literature on neural network-parameterized policies,

simulation-based data generation, and optimization techniques such as off-policy learning.

The operator formulation and the adoption of the neural operator architecture within the

proposed framework offer promising avenues for the design of policy optimization algorithms

in this field. The operator formulation and the implementation of the neural operator archi-

tecture within the proposed framework provide insightful directions for the development of

policy optimization algorithms in this burgeoning field.

The remainder of the paper is structured as follows: Section 2 introduces the economic

environment targeted for solution with the proposed method; Section 3 contrasts my com-

putational strategy with the two principal frameworks in the literature; Section 4 delves

6

into the neural operator architecture and its mathematical properties; Section 5 covers the

implementation details; Section 6 details the results; and Section 7 provides the conclusion.

2 The Economic Environment

This section provides a brief overview of the economic environment from Den Haan,

Judd, and Juillard [2010], which I intend to address using my method. This model serves as

a benchmark, encompassing features such as a continuum of agents, aggregate uncertainty,

idiosyncratic shocks, and an incomplete market. This is the first model in the computational

suite project for the comparison of the properties of numerical algorithms. The structure

is closely aligned with that of Krusell and Smith [1998] except the introduction of income

taxation and unemployment benefit, only by which the agents’ budget constraint would be

occasionally binding.

From this point forward, I will use lowercase letters for individual variables, uppercase

letters for aggregate variables and bold uppercase letters for operations.

Agents’ Problem

There is a continuum of infinitely lived and ex-ante identical agents. Each period the

agents receive the time endowment l̄ and face a binary income shock ϵ: agents are employed

when ϵ = 1, and earn the after-tax wage (1 − τt)l̄Wt; agents are unemployed when ϵ = 0,

and earn the unemployment benefit µWt. Here Wt is the per unit of time wage rate, τt is

the tax rate, and µ is a model parameter denoting the fraction of wage.

Market is incomplete featured by the capital borrowing constraint kt ≥ 0; the net rate of

return for capital accumulation is Rt − δ, where Rt is market-determining interest rate and

δ is the fixed depreciation rate. The maximization problem of agent i is as follows:

E
∞∑
t=0

βt (ct)
1−γ − 1

1− γ

subject to

ct + kt+1 = Rtkt +
[
(1− τt) l̄ϵt + µ (1− ϵt)

]
Wt + (1− δ)kt

Here ct is the consumption level chosen by agent i and kt is the beginning-of-period

capital.

7

Firms and the Government

The good market is competitive and the production follows a Cobb-Douglas form:

Yt = ZtK
α
t

(
l̄Lt

)1−α

where K is the per capita capital, L is the employment rate, and α ∈ [0, 1] is the capital
sharing. Zt is a binary aggregate productivity shock: Zt ∈ {Zb, Zg}.

The government keep her budget balanced in each period by redistributing all taxation

from the employed to the unemployed.

The firms’ first-order optimality together with the government’s budget constraint deter-

mine the prices and tax rate

Rt = αZt

(
Kt

l̄Lt

)α−1

, Wt = (1− α)Zt

(
Kt

l̄Lt

)α

, τt =
µ(1− Lt)

l̄Lt

(1)

Shocks

The aggregate shock Zt follows a first-order Markov structure. The idiosyncratic shock ϵt
is correlated to the aggregate shock by following a first-order Markov structure conditional

on the transition of Zt, and confront to the law of the large number.

To be more concrete, the transition of (ϵt, Zt) is characterized by a 4×4 transition matrix

Π, whose element πϵϵ′ZZ′ denotes the probability to state (ϵ′, Z ′) if the current state is (ϵ, Z).

The calibration is such that the unemployment rate ut = 1−Lt is a function of the aggregate

shock: u(Zb) = ub > u(Zg) = ug.

The Recursive Equilibrium

To analyze the recursive equilibrium, agents’ state variables for decision-making are di-

vided into individual states (k, ϵ) and aggregate states (Z,Γ); the latter are used for com-

puting current prices and predicting future prices. In a rational expectations equilibrium,

Γ represents the joint distribution of agents over capital holdings k and employment status

ϵ. Since ϵ is binary, the joint distribution function Γ(k, ϵ) comprises two one-dimensional

continuous distribution functions on k: Γ(k, 0) and Γ(k, 1). For simplicity, I assume that

the agents observe only the marginal distribution of k. This assumption facilitates focusing

on the continuous distribution function of k without the need to additionally consider ϵ.

As discussed, the motion of Z is characterized by the exogenous matrix Π; the law of

motion of Γ is denoted by H : Γ′ = H(Γ, Z, Z ′). The agents’ problem can be therefore

express recursively as

8

V(k, ϵ;Z,Γ) = max
k′
{U(c) + βE[V(k′, ϵ′;Z,Γ′) | ϵ, Z]} (2)

subject to

c+ k′ = Rk + [(1− τ)l̄ϵ+ µ(1− ϵ)]W + (1− δ)k, (3)

ϵ′, Z ′ ∼ Π(ϵ, Z), (4)

Γ′ = H(Γ, Z, Z ′), (5)

k′ ≥ 0 (6)

For a particular value function V(k, ϵ, Z,Γ), the corresponding policy function is denoted

by k′ = g(k, ϵ, Z,Γ). The solutions to 2 subject to 3, 4, 5, 6 are denoted as V∗(·) and g∗(·).

A recursive competitive equilibrium is then defined by a law of motion H(·), a pair of

individual functions V∗(·) and g∗(·), and the prices system(R,W, τ) such that (i) V∗(·) and
g∗(·) solve the agents’ optimality problem, (ii) R,W and τ are competitive and (iii) H(·) is
generated by g∗(·).

The main computational challenge for this problem lies in the fact that the endogenous

state variable Γ is a function, thus constituting an infinite-dimensional object. Additionally,

the law of motion for the aggregates, H, is a nontrivial function, compounded by the fact

that the policy functions g are nonlinear and exhibit a kink due to the borrowing constraint.

3 Comparison of Computational Strategies

Below, I briefly discuss two primary frameworks from the literature that address these

challenges that mentioned in the introduction: the KS framework that characterizes the dis-

tribution using a select number of moments and tracks only the motion of these moments and

the NN framework that represents the distribution through a finite (and potentially large)

number of simulated agents, with aggregate motion being the cumulative transition of all

simulated agents adhering to a specific policy. Subsequently, I introduce my computational

strategy, the operator learning framework, proposed in this paper.

KS Framework

The KS framework proposes approximating Γ by a finite set of momentsm = (m1, . . . ,mI).

The aggregate motion is then approximated by the motions of these moments: Hm : m′ =

Hm(m, Z, Z ′). For instance, in Krusell and Smith [1998], I is chosen to be 1, so m = (K),

meaning that only the mean of capital is used to characterize the distribution. In the

9

economic model studied in this paper, denote the policy function implementing the KS

framework as gKS(k, ϵ, Z,K), which is the solution to the following:

V(k, ϵ;Z,K) = max
k′
{U(c) + βE [V(k′, ϵ′;Z ′, K ′) | ϵ, Z]} (7)

subject to

logK ′ = a0 + a1 logK, if Z = Zb,

logK ′ = b0 + b1 logK, if Z = Zg (8)

along with the budget constraint (3), the transitions of exogenous shocks (4), and the bor-

rowing constraint (6). The KS framework implements a nested fixed-point optimization

scheme that alternates between solving the agents’ problem given the belief about the law

of motion of moments and updating the belief given the agents’ policy.

Conceptually, the KS algorithm approximates a computationally intractable infinite-

dimensional problem by a computationally tractable low-dimensional problem. It is elegant,

intuitively understandable, and fast. However, it has two main limitations: Theoretically,

it implicitly imposes the bounded rationality assumption that agents observe only the set

of moments and perceive only the motion of those moments. Practically, the moment se-

lection is arbitrary; the sufficiency for the first I moments to characterize the distribution

is case-dependent, and if I is large enough, the dimensionality of the problem becomes too

high, making the grid-based projection method computationally inefficient. The discussion

is summarized in the Table 2 below.

Pros Cons

• Makes the problem tractable
• Intuitive
• Fast

• Assumes bounded rationality
• Arbitrary moment selection

Table 2: Summary of KS Framework

NN Framework

The NN framework, instead, incorporates the full information of the distribution into

the state variables using the individual states of all simulated agents. This transforms the

infinite-dimensional original problem into a possibly high but finite-dimensional problem,

where the dimensionality depends on the number of agents simulated. The aggregate law

of motion is then approximated by the transitions of simulated agents based on a policy

function. For the model in Section 2, denote the policy function implementing the NN

framework as gNN(k, ϵ, Z,K), which is the solution to the following recursive form of the

10

agents’ problem:

V(k, ϵ;Z, {k}Ni=1) = max
k′

{
U(c) + βE

[
V(k′, ϵ′;Z ′, {k′}Ni=1) | Z

]}
(9)

subject to

k′
i = g(ki, ϵi, Z, {k}Ni=1) for i = 1, . . . , N (10)

and the budget constraint (3), the transitions of exogenous shocks (4), and the borrowing

constraint (6).

Since the number of agents is assumed to be large enough to approximate the continuous

distribution function, to overcome the curse of dimensionality, the literature proposes using a

feed-forward neural network as the function approximator for gNN. The feed-forward neural

network has been shown to perform well in model reduction by condensing information and

extracting features from the input to the hidden layers; see Goodfellow et al. [2016] for a

review.

The NN framework addresses the issues in the KS framework, keeping the consequential

high-dimensional problem tractable by adopting deep learning techniques. However, there

are a few limitations that hinder computational efficiency. First, there is a trade-off in the

choice of N : an increase in N leads to a better approximation of the continuous distribution

function but also to a proportionally larger size of the network. More specifically, the size

of the input layer grows linearly with N . If N is sufficiently large and the size of the hidden

layers remains fixed, the network size grows roughly linearly with N . Figure 1 demonstrates

this.

Moreover, in simulations where all agents transition to the next states based on the policy

parameterized by the neural network (and in training, if all agents’ states are used as training

data), the computational cost is quadratic in N since there are more agents (rows) and a

higher-dimensional state (columns) for each agent. Figure 2 demonstrates this.

The scaling from the two aspects discussed above makes the computational costs heavily

dependent on N . The second limitation is that the NN framework solution is tied to a chosen

N ; the neural network architecture, especially the input layer dimension, is fixed once chosen.

This inflexibility can cause issues when, for example, a larger number of simulated agents

is required for evaluating the solution, or if the model setup includes overlapping-generation

features so the population size may vary over time.

Finally, the discussed NN framework does not consider two features of the data structure:

permutation-invariance and aggregation-sharing. Permutation-invariance means that the

policy function gNN should be invariant under permutations of the agents’ ordering. However,

the plug-in vector {k}Ni=1 does not encode this information, so it would take a significant

amount of computational time for the neural network to learn this pattern. Aggregation-

sharing means that all simulated agents share the same economic environment, and they

11

(a) 5 simulated agents

(b) 10 simulated agents

Figure 1: An illustration of the neural network size variation with the
number of simulated agents. The above figure shows a network with 5
simulated agents, while the figure below depicts a larger network with 10
simulated agents, demonstrating the increase in the size of the input layer
corresponding to the number of simulated agents, as discussed in the main
text.

12

(a) With 5 simulated agents.

(b) With 10 simulated agents.

Figure 2: Illustration of the quadratic computational cost in neural net-
work simulations. The subfigure above demonstrates the network with 5
simulated agents, and the subfigure below with 10 simulated agents, em-
phasizing the increased computational burden as the number of agents,
and thus the dimensionality, grows.

13

have a large portion of state variables the same as each other. However, the NN framework

implicitly considers each agent independent when processing her state vector. The discussion

is summarized in the Table 3 below.

Pros Cons

• Addresses the issues in the KS • Computational costs heavily de-
pend on N

• Solution is fixed to a given N
• Does not use data structure fea-
tures like permutation-invariance
and aggregation-sharing

Table 3: Summary of the NN Framework

This Paper: Operator Learning Framework

The two frameworks discussed so far share a common intuition: they approximate the

distribution function with a “distribution vector”. This can be achieved either parsimo-

niously in parametric form (KS) or in a non-parametric form with sufficient information

(NN), aiming to reduce the policy function back to a case where the arguments include only

a finite-dimensional vector.

This paper proposes an alternative view by reformulating the policy function into an

operator form:
g(k, ϵ, Z,Γ) := G(Γ)(k, ϵ, Z) (11)

Here, processing the state (k, ϵ, Z,Γ) into the policy function g is decomposed into two

steps: firstly, an operator G takes the function Γ as its sole input and outputs another

function G(Γ), which we call the “conditional policy function” henceforth; secondly, the

vectors (k, ϵ, Z) serve as inputs to the function G(Γ).

While the input and output functions of the operator G do not necessarily need to be

defined on the same domain, for simplicity, in the case studied, this alignment is effortlessly

achieved. Given that both ϵ and Z are binary, G(Γ)(k, ϵ, Z) can be interpreted as four

separate 1-dimensional continuous functions of k, each defined on the same domain as the

distribution function Γ(k).2

With this formulation, finding the solution for the policy function g translates to finding

the solution for the operator G that satisfies Equation (11) for all states (k, ϵ, Z,Γ).

The question then arises: what are the benefits of this operator formulation? First,

2In other cases, e.g., when both ϵ and Z are continuous, we can consider Γ(k) := Γ(k, ϵ, Z) as a 3-
dimensional continuous function, thereby defining Γ and G(Γ) on the same domain once again.

14

consider the parameterization of G: if G is parameterized by a feed-forward neural network

(or another functional form), there would be no distinction from the existing framework. To

explore an alternative parameterization, we note the role of the distribution function Γ in

agents’ decision-making: it integrates from the individual level to the aggregate level. Ideally,

the operator G should involve an integral operation to transform the input distribution

function into the output conditional policy function.

This paper adopts the advanced machine learning technique known as the neural op-

erator to parameterize G, a generalization of neural networks that maps between infinite-

dimensional function spaces. Intuitively, the neural operator is composed of linear integral

operators and nonlinear activation functions. It boasts a critical property—discretization-

invariance—meaning that the size of the neural operator remains constant regardless of

the discretization of the input and output functions. This property addresses the first two

disadvantages discussed in the NN framework context. Section 4 provides an introduction.

Furthermore, the operator formulation inherently includes the properties of permutation-

invariance and aggregation-sharing. To illustrate, let’s consider Γ explicitly as a cumulative

distribution function (CDF), with an empirical representation consisting of two vectors: the

input vector {k̄1, . . . , k̄J} in ascending order, where kj ∈ [kmin, kmax] for j = 1, . . . , J , and

the output vector
{

1
J
, . . . , J

J

}
. This vector is constructed from the cross-sectional simulated

agents {k1, . . . , kN} with J ≤ N . The transition from the non-ordered set of simulated agents

{k1, . . . , kN} to the ordered vector {k̄1, . . . , k̄J} implicitly utilizes permutation-invariance.

The operator formulation’s two-step processing of state variables directly exhibits aggregation-

sharing: since only the distribution function is processed in the first step, which is shared

by all simulated agents, this processing is done only once for all agents, rather than being

redundantly repeated for each one. Figure 3 provides a clear illustration.

Figure 3: The processing flow of the neural operator, illustrating the trans-
formation from the distribution function to the conditional policy function.
This figure also demonstrates the permutation-invariance and aggregation-
sharing properties discussed in the main text.

To conclude this section, the proposed neural operator formulation addresses the issues

15

of the NN framework. The gains in computational efficiency resulting from this approach

are demonstrated in the experimental results presented in Section 6.

4 Neural Operator

This section introduces the neural operator, a concept recently proposed in the machine

learning literature [Li et al., 2020b,c,a]. The objective is to approximate a mapping between

function spaces. In this discussion, I use notions that match the studied economic model,

where functions have a 1-dimensional input k ∈ [kmin, kmax] and produce a 1-dimensional

vector output; for a comprehensive discussion, see Kovachki et al. [2021].

Consider a set of distribution functions T : {Γ ∈ T ,Γ : [kmin, kmax] → R}, a set of

conditional policy functions ḠΓ : {ḡΓ ∈ ḠΓ, ḡΓ : [kmin, kmax] → [kmin, kmax]}, and a mapping

G : T → ḠΓ such that ḡΓ(k) = G(Γ)(k). Our aim is to parameterize G with Gθ to satisfy:

Gθ(Γ)(k) ≈ G(Γ)(k), for Γ ∈ T and k ∈ [kmin, kmax], (12)

according to a particular measure.

A neural operator with L layers is a sequence of operations in function space, described

by:

ḡΓ(k) := Gθ(Γ)(k) = (Q ◦ σL ◦ ΦL ◦ . . . ◦ σ1 ◦ Φ1 ◦ P(Γ))(k). (13)

In layer ℓ, vℓ+1(k) = σℓ ◦ Φℓ(vℓ)(k). Here,

(Φℓvℓ)(k) =

∫
q∈Q

ϕℓ(k, q)vℓ(q) dq + (Wℓvℓ)(k), (14)

is an integral kernel operation plus a linear transformationWℓ. The function σℓ is an element-

wise nonlinear transformation, e.g., ReLU(x) = max(x, 0) and Sigmoid(x) = 1
1+exp(−x)

. The

mappings P : R→ Rv0 and Q : RvL → R are element-wise lifting and projection mappings,

respectively.

In practice, both the input function Γ(k) and the output function G(Γ)(k) are discretely

represented at sufficiently many but finite locations {k̄1, . . . , k̄J} ∈ [kmin, kmax], referred to

as ”sensors” in the machine learning literature. The theoretical foundation of the neural

operator’s approximation capabilities is underpinned by the universal approximation theorem

for operators, dating back to the seminal work by Chen and Chen [1995]. I adopt a version

of the theorem as presented by Lu, Jin, and Karniadakis [2019]:

Theorem 1 (Universal Approximation Theorem for Operators [Lu, Jin, and Karniadakis,

2019]). Let σ be a continuous non-polynomial activation function, and let X be a Banach

space. Let K1 ⊂ X and K2 ⊂ Rd be compact subsets of X and Rd, respectively. Suppose

16

V is a compact subset of C(K1), and G is a nonlinear continuous operator mapping V into

C(K2). Then for any ϵ > 0, there exist positive integers n, p,m, constants cpi , ξ
p
ij, θ

p
i , ζp ∈ R,

vectors wp ∈ Rd, and points xj ∈ K1 for i = 1, . . . , I, p = 1, . . . , P , j = 1, . . . , J , such that∣∣∣∣∣G(Γ)(y)−
P∑

p=1

(
I∑

i=1

cpiσ

(
J∑

j=1

ξpijΓ(kj) + θpi

))
σ(wp · y + ζp)

∣∣∣∣∣ < ϵ,

for all Γ ∈ V and y ∈ K2.

Here the integral operator ϕℓ(k, q) is what aimed to learn from data. Various methods

have been proposed in the literature to parameterize the integral operator ϕℓ(k, q) [Li et al.,

2020b,c]. In this paper, I adopt the Fourier Neural Operator (FNO) framework [Li et al.,

2020a], which parameterizes the kernel ϕℓ in the Fourier domain rather than the spatial

domain and uses the Fast Fourier Transform (FFT) to compute Equation 14. Specifically,

let ϕℓ(k, q) = ϕℓ(k−q), signifying a convolution, thereby enabling the use of the Convolution

Theorem:

Theorem 2 (Convolution Theorem). Let f and g be functions with Fourier transforms

F{f} and F{g}, respectively. The Fourier transform of the convolution f ∗ g is the point-

wise product of F{f} and F{g}. Mathematically, this relationship is expressed as:

F{f ∗ g}(k) = F{f}(k) · F{g}(k).

Denote F and F−1 as the Fourier transform and inverse Fourier transform, respectively.

Li et al. [2020a] suggest parameterizing F(ϕℓ) with a function Rℓ
θ in the Fourier domain,

parameterized by θ:∫
q∈Q

ϕℓ(k, q)vℓ(q) dq = F−1 (F(ϕℓ) · (F(vℓ))) (k) ≈ F−1
(
Rℓ

θ · (F(vℓ))
)
(k).

Figure 4 illustrates the architecture of the neural operator with each hidden layer represented

as a Fourier layer.

Since the kernel function ϕℓ is implicitly assumed to be periodic when it is transformed

into the Fourier domain, it admits a Fourier series expansion and the frequency modes κ are

discrete. In practice, the Fourier series is truncated at a maximal number of modes κmax for

a finite-dimensional parameterization. Therefore, Rℓ
θ is a (κmax×dvℓ×dvℓ+1

) complex-valued

tensor. For computational complexity, the bulk of the computational cost lies in computing

the Fourier transform F(vℓ) and its inverse. General Fourier transforms have a complexity of

O(J2); however, since the Fourier series is truncated, the complexity reduces to O(Jκmax).

The FFT has a complexity of O(J log J), but it requires a uniform discretization of the

function.

17

(a) The overall architecture of the Fourier Neural Operator.

(b) A detailed view of a single Fourier layer within the architecture.

Figure 4: Illustration of the Fourier Neural Operator (FNO) architecture.
Subfigure (a) shows the overall architecture, and Subfigure (b) provides a
detailed view of the components within a single Fourier layer.

18

5 Implementation Details

Before delving into the implementation details, let me to reiterate the economic problem

I intend to address, with a slight reformulation, as follows:

V(k, ϵ;Z,Γ) = max
c,k′
{U(c) + βE[V(k′, ϵ′;Z,Γ′) | ϵ, Z]}

subject to

m = M(k, ϵ, Z,Γ)

c = C(k, ϵ, Z,Γ)

k′ = m− c ≥ 0

ϵ′, Z ′ ∼ Π(ϵ, Z)

Γ′ = H(Γ, Z, Z ′)

and the solution is a policy function k′ = g(k, ϵ;Z,Γ) such that

g(k, ϵ;Z,Γ) = argmax
k′
{U(c) + βE[V(k′, ϵ′;Z,Γ′) | ϵ, Z]} (15)

The modification here is to represent the computation of the prices (R,W, τ) and, conse-

quently, the agents’ wealth m, as a function denoted by M. The agents’ policy is expressed

in terms of the consumption policy C. The capital in next period k′ is then determined as

the wealth minus consumption.

Approximation

Suppose there is a set of J grid points k̄ = (k̄1, ..., k̄J) ∈ [0, kmax], which is called ”sensors”

in the literature. Also there is cumulative-distribution function (CDF) of k ∈ [0, kmax]

denoted as F̃. The construction of k̄ and F̃ are discussed soon. I use the upper bar symbol

to denote those variables that are fixed during the training and the upper tilde symbol for

those that are amendable. Γ can be represented as a 2× J vectors Γ̂ ≡ (k̄, F̃(k̄)).

Define an alternative policy function as the fraction of wealth to consume, and rewrite it

into an operator form:

ζ =
c

m
=

C(k, ϵ, Z, Γ̂)

M(k, ϵ, Z, Γ̂)
≡ g(k, ϵ, Z, Γ̂) = G(Γ̂)(k, ϵ, Z) (16)

19

so that k′ = (1 − ζ)m. I use the neural operator Gθ, which parameters denoted as θ to

approximate the operator G:

gθ(k, ϵ, Z, Γ̂) ≡ Gθ(Γ̂)(k, ϵ, Z) ≈ G(Γ̂)(k, ϵ, Z)

That is, the neural operator Gθ takes as input the 2× J vectors Γ̂ and output the 4× J

vectors

ζJ ≡


(ζ̂j, . . . , ζ̂J)ϵ=0,Z=Zb

(ζ̂j, . . . , ζ̂J)ϵ=1,Z=Zb

(ζ̂j, . . . , ζ̂J)ϵ=0,Z=Zg

(ζ̂j, . . . , ζ̂J)ϵ=1,Z=Zg


The Objective Function

Since the outputs of true G∗ are unobserved, the training of neural operator cannot be

formulated as a supervised learning task with a norm of the difference ||Gθ(Γ̂)(k, ϵ, Z) −
G∗(Γ̂)(k, ϵ, Z)||. To construct an objective function, recall that the unique solution that

solves the Bellman equation must satisfy the derived Euler equation in the absence of bor-

rowing constraint:
du

dc
(c) = βE[(1− δ +R′)

du

dc
(c′)] (17)

A standard approach in the literature is to define the relative Euler residual in, e.g., L2

norm. For a given state ω ≡ (k, ϵ, Z, Γ̂) and a neural operator derived policy ζ = gθ(ω),

define the unit-free Lagrange multiplier

h ≡ 1−
βE[(1− δ + r′ du

dc
(ζ ′m′))

du
dc
(ζm)

(18)

with m = M(ω),m′ = M(ω′), ζ ′ = gθ(ω
′) and R′ the function of ω′ according to 1. Then

agents’ optimality can be expressed in terms of the Kuhn-Tucker conditions:

h ≥ 0, k′ ≥ 0, hk′ = 0 (19)

To get rid of the inequalities in 19 and construct an differentiable objective function, I

rephrase the Kuhn-Tucker conditions in terms of the Fischer-Burmeister (FB) transformation

with equality,

ΨFB(a, b) = a+ b−
√
a2 + b2 = 0 (20)

20

with a = 1− ζ and b = h. In this case the objective function is

ξ(ω, θ) ≡ ||ΨFB(1− ζ, h)||2 (21)

Regarding the transition from ω to ω′: The expectation operator E is taken over all

possible (ϵ′, Z ′) according to the transition matrix Π. k′ = (1 − ζ)m. Γ′ ≡ (k̄, F̃′(k̄)) with

the F̃′ the updated empirical CDF while keeping the grids k̄ fixed.

In iteration ℓ, suppose there is a set of observations {ω : ω ∈ Ωℓ}, then the objective

function is

Ξℓ(θ) =
1

|Ωℓ|
∑
ω∈Ωℓ

ξ(ω, θ) (22)

and the parameters in the neural operator are updated used the gradient descent method:

θℓ+1 ← θℓ − λℓ∇θΞ(θ
ℓ) (23)

What remains is the construction of k̄, F̃ and Ωℓ.

Data Generating Process

Denote {T : Γ ∈ T } the set of all possible Γ. A natural candidate for Ωl is the set

Ω ≡ [0, kmax] × {0, 1} × {Zb, Zg} × T . However, while grids can be taken on [0, kmax] ×
{0, 1} × {Zb, Zg}, it is not possible on the T . Therefore I adopt stochastic simulation and

concentrate only on those Γ in the ergodic set Γ̂g̃ [Judd et al., 2011] , given a policy g̃.

To be concrete, a cross section of N agents is simulated. In each period, the agents

are characterized by the cross sectional capital k̃ = (k̃1, ..., k̃N) in ascending order, the

corresponding idiosyncratic risk ϵ̃ = (ϵ̃1, ..., ϵ̃N), the aggregate shock Z̃, and a shared policy

for transition g̃.

The empirical CDF F̃(k) is the interpolation of mapping k̃ to (1
N
, ..., N

N
):

F̃(k) =


0 if k < k̃1

i
N
+
(

k−k̃
k̃i+1−k̃

) (
i+1
N
− i

N

)
if k̃i ≤ k < k̃i+1, i = 1, 2, . . . , N − 1

1 if k ≥ k̃N

(24)

In each iteration ℓ, I run the stochastic simulation for T periods, discarding the beginning

Td periods for avoiding the impact of initial distribution, and select the time frame every tskip
periods to reduce the correlation between samples, so to obtain a set of B = (T − Td)/tskip

21

distributions {F̃b(k̄)}Bb=1.

Now turn to the discussion for the sampling of (k, ϵ, Z). In principle we can use the

simulated data (ki, ϵi, Z)N,B
i=1,b=1, which is in line with the pure stochastic simulation strategy

discussed in Maliar et al. [2021]. Instead, I adopt the grids method with the rationale that

the infinite-dimensional object Γ is already isolated using simulated simulation, with only

three-dimension remains and two of them are just binary. In the absence of the concerns

on the curse-of-dimensionality, the grids method gives higher accuracy comparing to the

stochastic simulation method[Judd et al., 2011].

For the discretization of k ∈ [0, kmax], since the policy function is highly non-linear around

the borrowing constraint due to the presence of a kink-point[Aiyagari, 1994], I choose J grid

points k̄ = (k̄1, ..., k̄J), following the polynomial rule[Maliar and Maliar, 2014]:

kj = (
j

J
)dkmax for j = 1, ..., J (25)

which enable more grids at the low capital levels and help in accurate approximation.

Note that the choice of grids are the same for both discretization of the agents’ individual

state and censoring of the distribution function. The rationals are two-folds: for implemen-

tation, the output function of the operator Gθ are implicitly censoring on the same grids k̄ as

the input function, so no extra effort is needed to query for new points; from the perspective

of the economic theory, the fraction of hand-to-mouth agents is significant in aggregation

due to their non-linear behaviors, therefore it is reasonable to have more censoring grids in

the lower capital level when approximating the distribution function.

Pre-Training

A poor initialization of the policy operator is detrimental to the training, since the

data (the distribution) is endogenously generated following the policy. To facilitate the

convergence, I pre-train the operator using the solution of the following problem,

V(k, ϵ) = max
c,k′
{U(c) + βE[V(k′, ϵ′) | ϵ]} (26)

subject to

m = M(k, ϵ)

c = C(k, ϵ)

k′ = m− c

ϵ′ ∼ Π(ϵ)

k′ ≥ 0

22

i.e. the version without aggregate shock. This model has a static aggregation, and hence

all the prices are fixed and agents’ state includes only the individual variables. Using policy

function iteration this problem can be solved in seconds.

Denote the solution policy function as gstatic, that is, the economy in static in aggregate

level. The pre-training is then simply a supervised learning task with the objective function

ξSL(ω, θ) = ||
gθ(ω)

gstatic(ω)
− 1||2 for ω ∼ gstatic (27)

Ξℓ
SL(θ) =

1

|Ωℓ|
∑
ω∈Ωℓ

ξSL(ω, θ) (28)

That is, the ergodic set is generated by gstatic.

The Algorithm 1 below is the pseudo-code that fully describes the neural operator training

algorithm. Note that the formal training process closely resembles the pre-training process,

with two exceptions: 1) the objective function for optimization, and 2) the policy followed

by the agents in the simulation.

6 Results

In this section, we present the training results. For benchmarking purposes, I set N =

1, 000, as this is the maximum number of simulated agents in the experiments conducted

by [Maliar, Maliar, and Winant, 2021] for the NN framework. To demonstrate that the

proposed method can efficiently manage such a number of agents without the need for

extremely high discretization, I set J = 100. Regarding the neural operator architecture,

the hyperparameters are chosen with n modes = 64, indicating the number of modes retained

in the Fourier layer for each dimension, and hidden channels = 16, which represents the

width of the Fourier neural operator. It is important to note that these parameters were not

extensively tuned; rather, they were selected to yield a comparable number of parameters

to those in the NN framework with a feed-forward neural network architecture—specifically

when managing 1,000 agents followed by a 64 × 64 hidden layer as per the experiments

of [Maliar, Maliar, and Winant, 2021]. For comparison, the neural operator has 72,052

parameters, while the latter case encompasses 68,481 parameters.

Benchmark Results

In Figure 5, the training losses are plotted against computational time. As observed from

the figure, the loss reduced to a level of 10−5 within approximately 5 minutes, aided by less

than 1 minute of pre-training. This reduction corresponds to a fractional Euler error of less

23

Algorithm 1 Neural Operator Training Algorithm

Step 0: Initialization:
1. Fourier neural operator Gθ

2. Solution gstatic of the static problem 26 such that ζstatic = gstatic(k, ϵ) and k′
static = ζstaticm

3. Set of N agents with: aggregate shock sequence (Z0, . . . , ZT−1), panel of idiosyncratic
shocks (ϵ10, ..., ϵ

N
0), ..., (ϵ

1
T−1, ..., ϵ

N
T−1), initial cross sectional capital holding (k̃1

0, . . . , k̃
N
0)

4. Set of J grids k̄ = (k̄1, ..., k̄J) as per the polynomial rule 25

Step 1: Pre-training:
for ℓ from 1 to Lpre do
1. Sampling the Distributions:
for t from 0 to T − 1 do
1-1. Construct F̃t using (k̃1

t , . . . , k̃
N
t) as per 24 and Γ̃t ≡ (k̄, F̃t(k̄))

1-2. Compute cross sectional wealth (m̃1
t , . . . , m̃

N
t) as per the model specification

m = M(k, ϵ, Z, Γ̂)
1-3. Agents transit from (k1

t , . . . , k
N
t) to (k1

t+1, . . . , k
N
t+1) using gstatic

end for
2. Data Processing:
2-1. Discard initial Td periods; select every tskip to obtain {Γ̃b, Zb}Bb=1

2-2. Set initial capitals for next iteration: (k̃1
0, . . . , k̃

N
0) = (k̃1

T , . . . , k̃
N
T)

3. Parameters Update:
3-1 Set Gθ to the train mode
for b from 1 to B do
3-2 construct the data set {ω : ω ∈ Ωℓ}, where Ωℓ = k̄× {0, 1} × {Zb} × {Γ̃b}
3-3.Update using objective functions 27 and 28

end for
end for

Step 2: Training:
for ℓ from 1 to Ltrain do
1. Sampling the Distributions:
Set Gθ to the evaluation mode
for t from 0 to T − 1 do
Same as in Step 1 but agents transit using gθℓ

end for
2. Data Processing:
Same as in Step 1
3. Parameters Update:
Set Gθ to the train mode
for b from 1 to B do
Same as in Step 1 but update using objective functions 21 and 22

end for
end for

24

than one percent, which is commendable, especially for high-dimensional policy functions

that exhibit a kink point, as highlighted by Maliar, Maliar, and Winant [2021].

Figure 5: Training Loss vs. Time (seconds) for benchmark cases. The
dotted line corresponds to the pre-training, and the solid line corresponds
to the formal training.

Figure 6 offers a direct comparison between the proposed neural operator framework and

the NN framework, with both frameworks undergoing 50 iterations for pre-training and 100

iterations for formal training. The neural operator framework reached a reasonable precision

in just over 6 minutes, including less than 1 minute of pre-training. Conversely, for the

NN framework, pre-training alone took approximately 6 minutes, and the subsequent formal

training phase took an additional 10 minutes, ultimately resulting in lower precision.

Given that the policy function incorporates a distribution function as one of its inputs,

providing a comprehensive view of the entire policy function is challenging. Instead, I have

selected a random period cross-section from the simulated data to depict the distribution

function Γ(k) and the conditional policy function g(k, ϵ, Z;Γ). On the left side of Figure

7, the empirical cumulative distribution function (CDF) is plotted over a pre-determined

interval for capital k ∈ [kmin, kmax]. The upper bound kmax is chosen to be sufficiently large,

ensuring agents rarely approach this threshold during simulations. On the right, we illustrate

four 1-dimensional functions of k associated with different combinations of individual and

aggregate shocks, ϵ and Z. Since these four lines are nearly identical when plotted over

the full interval [0, kmax], I have focused on a narrower range around the lower bounds.

This zoomed-in view clearly showcases the kink points of the operator framework solution

resulting from borrowing constraints when agents are unemployed, which is clear evidence

25

Figure 6: Comparison of Training Efficiency: Operator vs. NN. With an
equal number of iterations (50 for pre-training and 100 for formal training),
the neural operator framework achieves lower loss levels more quickly than
the NN framework.

of successful training.

For reference, I have also plotted an alternative policy function, g(k, ϵ, Z,K), derived

from the KS framework. Here, K is deduced from the empirical CDF shown on the left.

Both policy functions closely resemble each other, underscoring the success of our training

approach. It is worth noting that any discrepancies between the two do not necessarily

reflect a failure in approximating the true policy function, as the solution from Krusell and

Smith [1998] is itself an approximation.

To further illustrate that our policy function closely aligns with that of Krusell and Smith

[1998], and to showcase the consistency in the ergodic sets of the economies, Figure 8 presents

the simulated aggregate capital based on both policies. These simulations share the same

initial distribution and identical sequences for both aggregate and idiosyncratic shocks.

26

Figure 7: Comparison of the Operator and KS frameworks for an instance
of distribution with N = 1, 000. Left: Empirical CDF of capital Γ(k) from
simulation. Right: Conditional policy function g(k, ϵ, Z;Γ) for 4 cases of
ϵ and Z, with kink points indicative of borrowing constraints. The dotted
lines represent KS framework solutions for reference, demonstrating the
operator framework’s alignment with known benchmarks.

Figure 8: Simulated Aggregate Capitals: Two agent populations with
identical initial capital holdings and shock sequences. Blue line: Sim-
ulation following policy from KS framework. Orange line: Simulation
following policy from operator learning framework.

27

Robustness Check

Here, I compare experiments on cases with different N and J to assess how the variances

contribute to the precision and computational time. Figure 9 indicates that, while keeping

the discretization of functions at J = 100, increasing the number of simulated agents from

N = 1, 000 to N = 10, 000 has an negligible effect on performance. More importantly, the

computational time increases only marginally: this significantly demonstrates the simulation

efficiency of the proposed framework, as it can handle an order of magnitude more agents

with minimal cost. On the other hand, maintaining the same number of simulated agents at

N = 1, 000 and increasing the level of discretization of functions from J = 100 to J = 1, 000

again shows a negligible effect on performance, which suggests that a discretization level of

J = 100 is adequate for function approximation. The computational time increases roughly

tenfold, displaying the linear scaling of cost with discretization level. Figure 10 presents

another instance of the input distribution function and output conditional policy function,

but for N = 10, 000; comparing the left-hand side with that in Figure 7 demonstrates

that increasing the number of simulated agents significantly impacts the construction of the

distribution function.

Figure 9: Training Loss vs. Time (seconds) for various N and J . The
graph illustrates that increasing N from 1,000 to 10,000, with J fixed at
100, results in negligible performance changes and a slight computational
time increase.

28

Figure 10: Operator vs. KS framework comparison for N = 10, 000.
The figure highlights that a larger N significantly refines the distribution
function.

7 Conclusion

This paper’s proposed solution framework marks a significant advancement in the field

of dynamic macroeconomic modeling, particularly for models encompassing a continuum of

heterogeneous agents and aggregate uncertainty. This framework, distinct from traditional

methods, innovatively applies the neural operator—a cutting-edge architecture in machine

learning—for the parameterization of the policy function. This method eschews the usual ap-

proximation of the distribution function with high-dimensional vectors of simulated agents,

opting instead for an operator that adeptly maps between function spaces. Key to its success

are its discretization-invariance, permutation-invariance, and aggregation-sharing properties.

When tested against the Bewley-Huggett-Aiyagari model, which incorporates aggregate un-

certainty and serves as a benchmark in computational economics, the framework not only

efficiently managed simulations with tens of thousands of agents to precisely approximate

the distribution function but also achieved solutions with less than one percent relative er-

ror. This was accomplished in a notably shorter computational time compared to traditional

methods, underscoring the framework’s potential to significantly enhance computational ef-

ficiency and accuracy in economic modeling.

29

References

S Rao Aiyagari. Uninsured idiosyncratic risk and aggregate saving. The Quarterly Journal

of Economics, 109(3):659–684, 1994.

Marlon Azinovic, Luca Gaegauf, and Simon Scheidegger. Deep equilibrium nets. Interna-

tional Economic Review, 63(4):1471–1525, 2022.

Richard Blundell, Luigi Pistaferri, and Ian Preston. Consumption inequality and partial

insurance. American Economic Review, 98(5):1887–1921, 2008.

Marco Cagetti and Mariacristina De Nardi. Wealth inequality: Data and models. Macroe-

conomic dynamics, 12(S2):285–313, 2008.

Mingli Chen, Andreas Joseph, Michael Kumhof, Xinlei Pan, Rui Shi, and Xuan Zhou. Deep

reinforcement learning in a monetary model. arXiv preprint arXiv:2104.09368, 2021.

Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural

networks with arbitrary activation functions and its application to dynamical systems.

IEEE transactions on neural networks, 6(4):911–917, 1995.

Wouter J Den Haan and Pontus Rendahl. Solving the incomplete markets model with

aggregate uncertainty using explicit aggregation. Journal of Economic Dynamics and

Control, 34(1):69–78, 2010.

Wouter J Den Haan, Kenneth L Judd, and Michel Juillard. Computational suite of models

with heterogeneous agents: Incomplete markets and aggregate uncertainty. Journal of

Economic Dynamics and Control, 34(1):1–3, 2010.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Somdatta Goswami, Aniruddha Bora, Yue Yu, and George Em Karniadakis. Physics-

informed deep neural operator networks. InMachine Learning in Modeling and Simulation:

Methods and Applications, pages 219–254. Springer, 2023.

Jiequn Han and Yucheng Yang. Deepham: A global solution method for heterogeneous agent

models with aggregate shocks. arXiv preprint arXiv:2112.14377, 2021.

Kenneth L Judd, Lilia Maliar, and Serguei Maliar. Numerically stable and accurate stochastic

simulation approaches for solving dynamic economic models. Quantitative Economics, 2

(2):173–210, 2011.

Mahdi Ebrahimi Kahou, Jesús Fernández-Villaverde, Jesse Perla, and Arnav Sood. Ex-

ploiting symmetry in high-dimensional dynamic programming. Technical report, National

Bureau of Economic Research, 2021.

30

Greg Kaplan, Benjamin Moll, and Giovanni L Violante. Monetary policy according to hank.

American Economic Review, 108(3):697–743, 2018.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya,

Andrew Stuart, and Anima Anandkumar. Neural operator: Learning maps between func-

tion spaces. arXiv preprint arXiv:2108.08481, 2021.

Dirk Krueger and Fabrizio Perri. Does income inequality lead to consumption inequality?

evidence and theory. The Review of Economic Studies, 73(1):163–193, 2006.

Per Krusell and Anthony A Smith, Jr. Income and wealth heterogeneity in the macroecon-

omy. Journal of political Economy, 106(5):867–896, 1998.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,

Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial

differential equations. arXiv preprint arXiv:2010.08895, 2020a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,

Andrew Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for

partial differential equations. arXiv preprint arXiv:2003.03485, 2020b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik

Bhattacharya, and Anima Anandkumar. Multipole graph neural operator for parametric

partial differential equations. Advances in Neural Information Processing Systems, 33:

6755–6766, 2020c.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kam-

yar Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learn-

ing partial differential equations. arXiv preprint arXiv:2111.03794, 2021.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators

for identifying differential equations based on the universal approximation theorem of

operators. arXiv preprint arXiv:1910.03193, 2019.

Lilia Maliar and Serguei Maliar. Numerical methods for large-scale dynamic economic mod-

els. In Handbook of computational economics, volume 3, pages 325–477. Elsevier, 2014.

Lilia Maliar and Serguei Maliar. Deep learning classification: Modeling discrete labor choice.

Journal of Economic Dynamics and Control, 135:104295, 2022.

Lilia Maliar, Serguei Maliar, and Pablo Winant. Deep learning for solving dynamic economic

models. Journal of Monetary Economics, 122:76–101, 2021.

Stephan Zheng, Alexander Trott, Sunil Srinivasa, Nikhil Naik, Melvin Gruesbeck, David C

Parkes, and Richard Socher. The ai economist: Improving equality and productivity with

ai-driven tax policies. arXiv preprint arXiv:2004.13332, 2020.

31

Stephan Zheng, Alexander Trott, Sunil Srinivasa, David C Parkes, and Richard Socher. The

ai economist: Optimal economic policy design via two-level deep reinforcement learning.

arXiv preprint arXiv:2108.02755, 2021.

32

	Introduction
	The Economic Environment
	Comparison of Computational Strategies
	Neural Operator
	Implementation Details
	Results
	Conclusion

