
MAKING AND SHARING KNOWLEDGE AT ELECTRONIC CROSSROADS: THE
EVOLUTIONARY ECOLOGY OF OPEN SOURCE

Giovan Francesco Lanzaraa

Michèle Mornerb

aDipartimento di Organizzazione e Sistema Politico,

University of Bologna, Italy
lanzara@spbo.unibo.it

bSchool of Business Administration,

Catholic University of Eichstätt-Ingolstadt, Germany
michele.morner@ku-eichstaett.de

Session J-3

Abstract

Based on the analysis of developer mailing lists of two large-scale open source
projects, we argue that, in open source development, processes of knowledge
making and sharing exploit the structuring properties of high density, massive
interaction for evolutionary purposes. The mailing lists reveal patterns of activity
and resource distribution that exhibit ecological features. A high number of
agents meet and exchange knowledge at ‘electronic crossroads’ within a complex
web of software artefacts and communication tools that play a critical role in
supporting such knowledge ecology. Electronic artefacts foster variety, mediate
human interaction, and replace formal organizational mechanisms. Our findings
show that the evolutionary features of knowledge making and sharing in virtual
environments challenge current ways of conceptualizing knowledge processes
within and across organizations

Keywords: knowledge making and sharing, ecology, evolution, interaction,
inscription, open-source software projects.

Making and sharing knowledge at electronic crossroads: the
evolutionary ecology of open source

Giovan Francesco Lanzara *

Michèle Morner **

* Dipartimento di Organizzazione e Sistema Politico
Università di Bologna, Italy

lanzara@spbo.unibo.it

** Wirtschaftswissenschaftliche Fakultaet Ingolstadt
Katholische Universitaet Eichstaett, Germany

michele.morner@ku-eichstaett.de

Abstract
Based on the analysis of developer mailing lists of two large-scale open source

projects, we argue that, in open source development, processes of knowledge making

and sharing exploit the structuring properties of high density, massive interaction for

evolutionary purposes. The mailing lists reveal patterns of activity and resource

distribution that exhibit ecological features. A high number of agents meet and

exchange knowledge at ‘electronic crossroads’ within a complex web of software

artefacts and communication tools that play a critical role in supporting such knowledge

ecology. Electronic artefacts foster variety, mediate human interaction, and replace

formal organizational mechanisms. Our findings show that the evolutionary features of

knowledge making and sharing in virtual environments challenge current ways of

conceptualizing knowledge processes within and across organizations

Keywords: knowledge making and sharing; ecology; evolution; interaction, inscription; open-source
software projects.

Suggested track: J (Knowledge and Information Technology)

1

1 Introduction

In open-source software projects as many as thousands of skilled programmers and

users collectively develop code online via the Internet in a decentralized, highly

interactive, apparently unmanaged process (Raymond, 2001; Lerner and Tirole, 2001;

Kogut and Metiu, 2001). In spite of their spatial dispersion, fluid participation and

loosely coupled organization open-source software projects are surprisingly effective in

tapping and coordinating the talents of many spatially dispersed contributors, delivering

competitive, high quality software (Raymond, 2001; von Hippel, 2001; Kogut and Metiu,

2001; Metiu and Kogut, 2001). Distributed knowledge resources of the most diverse

kinds are gathered from multiple sources, productively used to develop software, and

swiftly circulated across geographical and organizational boundaries to feed a large

variety of innovative products (Kogut and Metiu, 2001; von Krogh et al., 2003; von

Hippel, 2001).

As a model of knowledge making and sharing, open-source software development

elicits a number of questions that pose a theoretical challenge to current ways of

conceptualizing knowledge processes within and across organizations (Kogut and

Zander, 1992; Tsoukas, 1996; Eisenhardt and Santos, 2000; Patriotta, 2003):

 How can knowledge making and sharing take place in such an extremely

decentralized form of project organization without the usual governance structures

and without permanent membership in a classical sense, but nevertheless result in

the creation of a joint product?

 What are the basic mechanisms underlying coordination and the creation of

knowledge in open-source software projects, and where are they embedded?

 What is the role of artefacts in the process of knowledge making and sharing?

This paper is an attempt to give an answer to the above questions. Our research

approach moves away from current perspectives in a two-fold way. First, we regard

open-source software projects primarily as ’interactive systems’ rather than

organizations (Goffman, 1983; Luhmann, 1995), nevertheless displaying a number of

organizational characteristics (Morner, 2003). In open-source software projects,

processes of knowledge making and sharing exploit the structuring properties of high

density, large-scale interaction for evolutionary purposes. Knowledge is the emergent

outcome of multiple-agent interaction and is based on communication (Luhmann,

1995). Second, we argue that in order to grasp how knowledge-related processes

happen in open-source software projects we should look at the technology rather than

2

at the organization. Interactive systems are deeply intertwined with a web of electronic

artefacts and communication tools that support programming, development and

knowledge-based activities at large. Technology embodies many of the organizational

rules and means for governance in open-source software projects, hence becoming a

critical pathway to the understanding of collective task accomplishment, coordination

and knowledge making.

Our argument is based on an in-depth analysis of the development activity carried out

within two large-scale open-source software projects: the LINUX kernel and the

APACHE HTTP Server development projects. To explore knowledge dynamics we

analyse what open-source developers concretely do in their everyday mundane

practices: writing programs and having e-mail conversations about programming. We

focus on the aggregate outcome of individual behaviours and on the role artefacts play

in supporting knowledge making and sharing. Artefacts are seen not as static

‘repositories' of packaged knowledge but rather as dynamic vehicles of evolving

knowledge. Although in open-source software projects a multiplicity of artefacts exists,

here we only focus on a specific electronic artefact, the developer mailing lists of

LINUX and APACHE. Such lists reflect the ongoing development activity carried out by

programmers. We have analysed the structure and dynamics of discussion threads as

they are imprinted in the lists. The threads reflect both design knowledge about the

making of the software and knowledge about coordination and distributed organizing.

Our findings lead to a view of knowledge making and sharing practices as a complex

ecology of multiple heterogeneous elements and interactions, where the evolutionary

mechanisms of variation, selection, and stabilization keep the system in a dynamic

balance (Baum and Singh, 1994; Aldrich, 1999). Particularly, we stress the crucial role

of the mechanism for generating variety in knowledge systems. The paper is organized

as follows: in the next section we articulate our theoretical framework. In section 3 we

briefly describe our data sources and research method. Then the analysis of the

electronic mailing lists is developed in section 4, where the body of data is presented.

Next, based on our interpretation of the data, we reconstruct the dynamic pattern of

open-source software projects as it emerges from the findings and develop the idea of

knowledge making and sharing as an ecological process.

3

2 Building a theoretical framework: interaction, inscription, and
evolution

2.1 Open-source software projects as interactive systems
If for once we put aside an organization-theoretic bias, open-source software projects,

at their most basic level, can be usefully regarded as interactive systems (Goffman,

1983; Luhmann, 1995). According to Luhmann (1995: 412-416), interaction refers to

communication between those present, and interactive systems emerge when several

individuals engage in related communication and perceive the fact that they are

engaged in communication. When presence ends, the system ends. However, in open-

source software projects participants are not 'present' in a classical (physical) sense,

only virtually. They are present in the form of perceiving each other in an electronic

medium – the Internet. In principle, they have the possibility to follow each and every

communication because of its documentation in mailing lists, bulletin boards or

newsgroups web sites. In other words, they become 'co-present' when they connect

and 'talk' throughout the web from their workstations, otherwise they disappear.

Although not 'organized' in the classic sense, when they reach a critical mass

interactive systems may reveal interesting structuring properties. First, they show an

attentive core, which consists, for example, in a common subject or task that must be

attended to. The subject provides the agents with a focus of interest and the system

with a structure, as the boundaries of the subject regulate participants’ contributions

(Luhmann 1975: 24), and who does not attend to or participate in its development

cannot influence it. Participation and influence on the subject depend on the amount of

attention and time that the agent is able or willing to put on the subject. This functional

selectivity, integrating participants’ ability for attention and remembering, turns time to

structure, that is, the limited ability to participate essentially creates the structure of the

interactive system. Thus, some foci of attention emerge and disappear through time.

Clusters of activity coalesce and disband, and the agents’ convergence to a focus is

alternatively enacted and discontinued in the interaction space.

In open-source software projects common subjects or themes are quite typical of

communication and development processes. They attract and 'anchor' the attention

and skills of the programmers. Attention, being a scarce resource, is intrinsically

selective. Agents cannot pay attention to an unlimited number of themes

simultaneously, but must have priorities that produce sequences. As a consequence,

communication threads are generated. Threads act as focal points (Schelling, 1960).

They have ordering properties in the interaction space and may persist over time:

4

individuals that would otherwise interact randomly arrange and coordinate their

interactions around the focal point. Also, threads are characterized by a next-next-next

pattern: a message calls for the next around a specific programming task or discussion

theme and along an ongoing stream of activity and sense. The close sequencing of

communications generates a self-sustaining process fostering inter-temporal

connectivity. By directing or diverting attention participants create temporal sequences

of entries and exits around a specific thread. Threads may emerge unexpectedly and

suddenly disappear, but when they reach some stability and persistence over time they

play an important part in modularly structuring the project. As we shall see in section 4,

the thread pattern stimulates reciprocity and becomes the basis for coordination and

knowledge making in open-source software development.

Yet, open-source software projects also exhibit characteristics that are more typical of

formal organizations. First, together with fluid participation there is also stable

membership, usually limited to a core of professional developers who are in control of

critical functionalities or development areas of the project. Second, together with largely

unmanaged processes, there are governance mechanisms at work. If for some

respects open-source software projects have been regarded as chaotic systems

(Kuwabara, 2000), nevertheless most projects rely upon simple decision making rules,

both for programming and communication. Authority is allocated to make critical

decisions in restricted areas. In addition to that, there are rules governing transactions

both within a single project and between the project and its institutional environment.

Third, differently from pure interactive systems, open-source software projects are able

to build up memory: they keep track of their products and development processes

through online, quasi-automatic documentation. Such feature allows for inter-temporal

travelling throughout the process, thus helping project continuity, identity and sense

making (Weick, 1995). Through such processes of continuous tracking and re-tracking,

memory becomes a powerful mechanism for stabilizing and reproducing the activity

system. Fourth and last, similar to organizations open-source software projects are

equipped with representation mechanisms which allow them to directly communicate

with their environment (and be recognized by it), both for symbolic and commercial

purposes. If on the one hand these organizational features make open-source software

projects interesting hybrids, on the other hand they do not really have a dominant or

pervasive role in the control of distributed actvities, and taken alone would not be

strong enough to account for the impressive performance of large-scale projects both

as task-oriented production systems and as knowledge making and sharing

mechanisms. Most of the organizational gear is invisible in open-source software

5

projects, being draped in the technical gear. In open-source software projects

conspicuous components of ‘organization’ are embodied in software artefacts.

Therefore, if one wants to search for organization, s/he’d better look at the technology.

2.2 Artefacts as inscriptions of knowledge and agency
The 'organization' of open-source software projects is embedded in the technological

gear to such an extent, that it is impossible to account for basic knowledge making and

sharing processes without focusing on the technology. Using a literary analogy, a

number of authors see technology as an inscription of human agency and knowledge

(Akrich and Latour, 1992; Latour and Wolgar, 1979; Latour, 1992; Joerges and

Czarniawska, 1998; Patriotta and Lanzara, 2003). By inscription is meant the act (or

sequence of acts) by which humans cast relevant components of their agency and

knowledge into artefacts to which action programs and capabilities are delegated

(Latour, 1992). As a result of delegation, artefacts become holders and dynamic

vehicles of human agency, therefore replacing humans in doing things and performing

functions in complex networks of human and non-human agents (Akrich and Latour,

1992). Introducing the concept of inscription seems to be an appropriate step in a

context where the agents’ main work activity consists in writing lines of code that make

up software programs and in writing e-mail messages that are posted on the web. In

open-source software projects, different kinds of artefacts inscribe different kinds of

knowledge and agency. For example, technology is an inscription in two different ways:

as a dense web of multi-various software objects and as an electronic media for

programming and communication.

A first instance of inscription is represented by software artefacts. Interaction among

agents in open-source development projects occurs primarily in a network-mediated

computer environment populated with an array of electronic objects and tools that

Scacchi calls 'software informalisms' (Scacchi, 2001). These web-based artefacts

inscribe different kinds of knowledge and help create a large-scale environment for

programming and information sharing (Iannacci, 2002: 13). In many cases they fulfil

multiple functions, being at the same time the products of development work, the tools

of the trade by which development work is carried over, and even the media through

which interaction and communication among the agents can take place. In open-source

software projects knowledge work is extensively mediated by artefacts, which play a

crucial role in distributed knowing and organizing. In our research we have examined

the developer mailing lists as an electronic communication artefact inscribing software-

based protocols and procedures that allow specific interactions while inhibiting others,

6

make possible specific ways of developing software jointly, and enact specific modes of

knowledge making and sharing. Software artefacts and tools populating open-source

environments are loosely integrated or recombined within and across the ongoing

practices and processes. Rather than being a fully coherent set of tools, each having

its own specific functional destination, they resemble a loosely connected collection of

available objects that happen to be there in a permanent state of flux, being

continuously assembled and discarded.

A second mode of inscription lies in the information infrastructure. The peculiar features

of the open-source phenomenon would be difficult to grasp without paying attention to

the information technology infrastructure supporting human agency and interaction.

Open-source software projects live in an electronic media that confers specific

properties to interactive systems and to the ongoing development practices. First, as

the literature on computer-mediated communication has pointed out (Eveland and

Bikson, 1988; Kling and Scacchi, 1982; Kollock, 1999), the media allows for

asynchronous communication, agents’ ubiquity, extended network-based transactions.

These features are constitutive of the social practice (and the social order) of open-

source. The interactive systems of open-source software projects are largely inscribed

in (and supported by) the Internet, the basic information infrastructure. The Internet

enhances social connectivity and facilitates its conversion to task-oriented collective

action in a cost-effective way, allowing fast communication feedback and dramatically

accelerating production and testing cycles. By the same token the Internet allows for

easy storage and fast travelling and transfer of all sorts of electronic artefacts. It is a

place where programmers and users can find all kinds of work tools and relevant

information. Agents are 'wired' to such information infrastructure and their programming

and communication practices are molded by it. Interaction, communication and agency

become Internet-based and Internet-specific, to the point of becoming unthinkable

independently of it. The Internet becomes a generalized medium for knowledge-related

work. To its communication protocols and procedures an enormous amount of

coordination is delegated, which otherwise would have to be provided by explicit

governance mechanisms. Consequently, due to the Internet, creation and distribution

of knowledge need very little mediation by market or corporate forms of governance,

but directly exploit the connectivity properties of the society. In open-source software

environments no knowledge making and sharing would be possible without such

electronic gear and no theory of knowledge making could ever be developed without

incorporating the Internet as a constitutive base of it, as a 'Gestell' (Ciborra and

Hanseth, 1999).

7

2.3 Evolutionary mechanisms: variation, selection, stabilization

Large open-source software projects, when they reach a critical mass, are less the

product of deliberate management and planning and more the evolutionary outcome of

a complex interplay of different processes and activities. Open-source software

projects become powerful instances of how variation can be effectively combined with

selection and stabilization for knowledge making purposes. Variation is the engine of

the process of software development and innovation, keeping the process open to

novelties and opportunities (Neff and Stark, 2002). It mainly comes through human

agency and is at the core of basic learning processes in organizations and social

systems (March, 1991; Aldrich, 1999). Variation enables software products and

development processes to learn from the environment. It is an unbalancing mechanism

that tends to push the system off its path. Knowledge creation would hardly be possible

without variations. For example, in a knowledge-intensive process such as software

development better or high quality software is software that has successfully encoded

multiple sources of variation. Indeed, in open-source software projects the pressure of

variation is so high that a legitimate question can be raised: How can the system

handle so much variation? How can stability be granted to products and processes?

Selective and stabilizing mechanisms are needed to balance the production of variety.

Selection reduces variety by eliminating uninteresting or inconsequential variations and

focusing only on the ones that should be kept. Selection always works ex post, after

the effects of variation have been experienced and tested (Aldrich, 1999). While

selection makes variety manageable, at the same time it creates redundancy by

producing unexploited opportunities, arrangements and solutions. These are not

definitely discarded but set aside to be eventually re-entered into the development

process for further re-combinations and re-uses at later times. Selection splits what is

kept from what is left out. Its outcome depends upon value priorities and criteria of

relevance, and this is what makes it a knowledge making mechanism in a development

process where multiple moves and solutions are always available. A wide array of

selective mechanisms is at work in open-source software projects. They can be

explicit, such as authority-based decision rules and voting procedures, or else implicit,

such as limited attention resources and technology-embedded filtering devices.

Finally, stabilization allows for the retention, accumulation and reproduction of

successful experiences. In order to stabilize a selected outcome some repetition and

codification are needed (Barley and Tolbert, 1997). Stabilizing mechanisms are built

into the communication technology itself. They create memory, standards, rules,

8

behavioural patterns, structures and meanings. The emergence of stable system

components facilitates and speeds up system evolution (Simon, 1969).

3 Data sources and research methodology
Case selection. Our data come from two projects: the LINUX kernel project and the

APACHE HTTP server project. These projects were selected for two reasons: first, they

are in a mature and stable phase of development. Second, a huge number of

participants are involved in both projects, what makes issues of knowledge creation

and coordination more interesting than in smaller projects. Focusing on only two cases

has the advantage of increasing the depth of the analysis. As we can see from the

data, the amount of activity and participation at LINUX is comparatively higher than at

APACHE. However, in spite of the different goals, size and contents, the similarities in

the two projects are more conspicuous than the differences.

Data collection. In order to tap contextual project information and build an overall

picture of the development work we first analysed the projects' web pages. We

examined the projects’ history, structure, aims, core activities, version control tools, and

the legal framework in the form of license arrangements. As a second step, we

conducted twelve personal interviews in two rounds with four LINUX developers and

two APACHE developers, each lasting from one to two hours. In part, the interviews

helped us to check and eventually correct the picture that we were developing through

our navigations across the web. But our main sources of data gathering were the e-

mail conversations archived in the projects' mailing lists. The lists report the ongoing

conversations and transactions among developers working on the open-source code.

Although projects have also other mailing lists for bug reports, user support and

announcements of code changes, the general discussion of development topics (for

example technical details, errors, project design, emerging architecture, and

announcements) takes place at the developer lists.

Data analysis. The activities recorded in the mailing lists are tracked and analysed both

qualitatively and quantitatively. The units of the e-mail analysis are communication

sequences of the developers in the form of e-mail threads. We define a thread as a

sequence of e-mail messages around a common discussion theme with a distinct

heading, for example a question or the posting of a new patch. Each first mail of a

thread is expected to generate conversational activity that potentially extends into the

following days, weeks, sometimes even months. Agents produce the thread by asking

questions, giving answers or generating other communication activities via e-mail.

9

Using open coding (Strauss and Corbin, 1990), we developed a coding scheme for the

content of the first e-mail of a thread. This provided eleven different first mail message

types, including such items as reporting errors of the software ('bugs'), providing new

parts of the software ('patches'), asking questions concerning the use of the software,

and announcing new versions or new patches. We created a database of all threads

including names of the thread initiators, date and time for posting the different e-mails,

and content of the first mails at LINUX for the period November, 15th – November, 30th,

2002, and at APACHE for the period May 15th – May 30th. The chosen period for each

project roughly corresponds to the project’s yearly average activity (number of mails).

In selecting the periods we assumed that, as the mailing lists reflect mundane everyday

conversational and crafting activity of the programmers, what happens in a relatively

short time period in the project’s history can be taken as a plausible example of the

general pattern of behaviour and knowledge making. In other words, we assumed that

the pattern of ongoing interactions would tell us something about the dynamics of

knowledge making and sharing in the projects. In order to test this assumption we also

performed the data analysis for one single ‘ordinary’ day (November 30th for both

projects) and found a similar pattern. The complete database includes 4600 single e-

mail contacts in 1256 threads for LINUX initiated by 573 participants, in APACHE 594

e-mails in 143 threads initiated by 65 participants (see table 1).

Table 1. Basic data for LINUX and APACHE

 Number of

Threads
Number of
Mails

Number of
(initiative)
Participants

LINUX 1256 4600 573
APACHE 143 594 65

4 Threads of conversations: Sharing knowledge at electronic crossroads

In their daily practice developers entertain conversations, which are recorded in the

mailing lists. Outcomes and problems of the programming work are discussed and

refined in multiple ongoing streams of e-mail conversations1. Mailing lists are virtual

work environments where various kinds of transactions among multiple agents take

1 Conversations evoke an oral activity, but indeed these e-mail conversations, although they keep a

seemingly oral form, are written down and edited within an electronic medium: such feature makes them
a peculiar form of communication.

10

place (Lee and Cole, 2000). Developers and users use the mailing lists and other

software-based communication devices to exchange ideas and documents, discuss

problems, post new patches and solutions, make requests for help, launch

announcements about new software features and products, etc. As knowledge objects

mailing lists are manifold. First, they are virtual construction sites where individual

programmers, linking from their remote workstations, jointly conduct their development

and problem solving work (that is, they are places where people engage in the practice

of jointly designing the software)2. Second, they are meeting places where information

is found and exchanged, problems and solutions are discussed, and agreements are

made (that is, places where people talk about the work they do, inquiry into it, and

negotiate what to do next). Third, they are web logs where the history of open-source

software projects is recorded (that is, places where the development work and the

talking about it are documented).

Thus, an analysis of these artefacts is critical to understand the knowledge dynamics of

an open-source software project, because it reveals both the time structure of the

conversations that an undefined set of programmers entertain around specific coding

issues and the knowledge content of the conversations. At the same time the mailing

lists give us information about the structure of social interaction supported by the

communication technology. These artefacts are dynamic, ever changing repositories

and carriers of problem solving knowledge within and across projects and sub-projects.

Through them, knowledge is circulated all over the projects and the programming

environment. This is why we like to think of them as 'crossroads' where people meet,

exchange information, and attend to common tasks. Basically, in the threads we find

the footprints of the developers’ moves and their aggregate behaviour over time. In

discussing the data below we highlight the interplay between variation, selection, and

stabilization in the process of knowledge making and sharing.

In both projects, although in different degrees, we notice a high production of variety,

due to free accessibility, multiple agents, high number of started threads including a lot

of mails with new problems and solutions (see again table 1). Fundamentally, the

developer mailing lists are accessible to anybody who wants to register and post his

comments. Day after day, multiple agents exchange messages and generate activity

around multiple issues concerning the software. Whatever the message, it will be

2 The developer mailing lists do not tell anything explicit about the actual making of the software in which

programmers engage at their computer desk. This is largely inaccessible by an external observer,
although it is perhaps partly visible in the structure of the source code. Nevertheless the conversations
and communications refer continuously to the programmers’ practice.

11

posted on the list or board and circulated across the network. By entering the

conversations around specific issues users and developers generate a thread. Threads

are given life and structure by time, reciprocity, and attention. The number of threads

generated in the analyzed projects builds up the basis of variety. In the chosen period,

at APACHE 143 threads with altogether 594 e-mails were initiated by 65 participants.

At LINUX even more 'mass' is generated: 1256 threads including altogether 4600 mails

were initiated by 573 participants. At LINUX 78,5 threads on average are created per

day with a range of activity from 46 to 125, while in APACHE the average is 9,5 threads

per day with a range from 2 to 22 threads. Not all intervening agents have experience,

but the high variety guarantees the presence of a critical mass of experienced people.

Such variety constitutes a large, available reservoir of knowledge resources that can

feed the development process at any time.

Concerning the content of the communication, variation is produced by new solutions

on the one hand and new problems on the other hand. We coded the first e-mail of a

thread according to its content (see section 3 and figure 1). Problems are questions

and problems in using the software (Q), the identification of errors – called 'bugs' (B),

and general questions concerning further modules, versions, etc. (GQ). Solutions are

new patches that are provided for further development of the software (P), suggestions

for improvement of certain aspects (SI), and comments or answers to former threads

(C). The data show that most of the communication in the developer mailing lists

concerns new patches (P) that are provided for further development of the software

(39% for LINUX, 38% for APACHE) or questions about problems using and developing

the software (26% for LINUX, 27% for APACHE). It is interesting to notice that at both

projects more threads (53% at APACHE and 48% at LINUX) begin with solutions

offered to different problems (SI, C, P) than with new problems (Q, B, GQ) (at both

projects 35%).

12

Fig. 1. Content of first mails per thread for LINUX and APACHE

Variety entering the process is counteracted by effective selection mechanisms. A

large amount of information comes in, but only a little finds its way through the system

and gets processed. Selection produces a remarkably skewed pattern of activity.

Threads emerge selectively from generalized interaction, signalling some purposeful

activity. Most of them are intermittent, ephemeral, volatile objects. Just minimal

coalescent structures, fed by interaction (Weick 1993). In the following diagrams and

table we show the effects of selection on the distribution of threads with respect to

participation, activity and duration. The average figures show few participants per

thread, few mails per thread, and short lifetime of threads. Even if the overall

interaction is potentially all-to-all and every developer or user enjoys free access to all

information on the web, the actual participation is very selective. Very few threads have

more than a handful of participants. In APACHE we found that only 18% of the

analysed threads have more than three participants, at LINUX only 14% (see figure 2).

AB
AP
AV
AS
P
B

= Announcement of Bugs
= Announcement of New Patches
= Announcement of New Versions
= Announcement of Status
= Patch
= Identification of Bugs

Linux
Apache

39%

26%

8% 8%

1% 1% 1% 1% 0% 0% 0%

15%

38%

27%

6%
3%

1% 1%

12%

2%
1%

3%
4%

1%
0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

P Q B C QF AB SI GQ AV AP AS O

SI
Q
QF
GQ
C
O

= Suggestion for Improvement
= Question/Problem in Using the Software
= Question for Feedback
= General Question concerning further Versions, etc.
= Completion/Answer to a former Thread
= Others

13

Fig. 2. Participants per thread (in %) for LINUX and APACHE

The average number of participants per thread is very low (2,2 for LINUX and 2,6 for

APACHE). The average number of mails per thread is low, too (3,7 for LINUX and 4,2

for APACHE), with a minimum of one for both projects (messages without answers),

but with remarkably high maxima at LINUX (see table 2).

 Table 2. Averages for LINUX (Nov., 15th-30th, 2002) and APACHE (May, 15th-30th, 2002)

 Average number of
participants per
thread

Average number
of mails per
thread

Average number of
days per thread

LINUX 2,2 (max= 36; min=1) 3,7 (max= 95; min=1) 2,9 (max=135; min=1)
APACHE 2,6 (max=16; min=1) 4,2 (max=38; min=1) 1,4 (max=17; min=1)

At LINUX as many as 75% of the analysed threads have less than four mails per

thread and only 9% of threads have more than eight mails (see figure 3). In APACHE

the pattern is the same, although the figures are a bit different: 71% of the threads

have less than four e-mails per thread and only 12% reach more than 8 mails per

thread. If we track the number of mails per thread, we notice that, especially at LINUX,

a high percentage of first mails are left unanswered and do not have a follow up

(LINUX 47%; APACHE 33%). In these cases, the thread is made of one participant and

one mail, so basically there is no thread at all. Considering the content of the first mail,

at LINUX even 39% of direct questions are left unanswered (24% at APACHE). The

death rate of threads is impressive, but this does not necessarily mean a similar death

rate of agents. They can always return and initiate new threads that eventually will be

continued.

APACHE LINUX

1
55%

2
20%

3
11%

4
6%

5
3%

6
1%

7
1%

>7
3%

1
34%

2
35%

3
13%

4
5%

5
4%

6
3%

7
1%

>7
5%

14

Fig. 3. Number of mails per thread for LINUX and APACHE

The average lifetime of a thread is generally very short: 2,9 days in LINUX, 1,4 days in

APACHE, with a minimum of one day for both projects and maxima of 17 for APACHE

and over one hundred for LINUX (see table 2 again). Most of e-mail conversations

never really come to form a stable and lasting thread. In LINUX only 30% and in

APACHE 19% of threads reach an age of more than one day (see figure 4). Taken

individually threads tend to be short-lived, ephemeral structures, but as a whole they

make persistent bundles or streams of varying thickness or thinness.

Fig. 4. Days per thread (in %) for LINUX and APACHE

1
47%

2
19%

3
9%

4
6%

5
4%

6
2%

7
2%

8
2% >8

9%

1
47%

2
19%

3
9%

4
6%

5
4%

6
2%

7
2%

8
2% >8

9%

APACHE LINUX

1
33%

2
23%

3
15%

4
6%

5
5%

6
4%

7
1%

8
1%

>8
12%

APACHE LINUX

1
70%

2
11%

3
5%

4
4%

5
3%

>5
7%

1
81%

2
12%

3
3%

4
0%

5
2%

>5
2%

15

Selection means as well dissipation. As the data show, there is a great amount of

dissipation in the activity system. Basically, a lot of development effort is 'eaten up'

throughout the process. It becomes trash. The reasons for this can be many: limited

attention resources, perceived irrelevance, implicit filters inscribed in the technology.

Dissipation in open-source software projects is not necessarily a source of inefficiency,

because it produces redundancy that can be usefully exploited in the overall system

dynamics: a distributed reserve of low cost knowledge and attention resources is

available to feed project development needs at any time. Specific patches capture the

attention of a few and discussion starts. Activity clusters around a few issues or themes

at a time, on which attention is selectively focused, generating clustering of agents.

Someone is always ready to pick up the job. Of course, there is a real possibility that

an important signal, warning, question, or original solution is neglected, or that people

pursue tracks that lead nowhere, but the high mass of participants providing

simultaneous scrutiny minimizes the chance, overall. In this connection, it is interesting

to highlight the different figures for variation and selection in LINUX and APACHE. The

very same mechanisms are at work in both project, but in APACHE there seems to be

slightly less dissipation than in LINUX. On average in APACHE more participants

discuss with more intensity in shorter periods of time. This leads us to think that in

APACHE connectivity is tighter and communication is more stable in time, or even that

the process is more efficient. This is due perhaps to the different nature of the task, or

to smaller number of participants, or to higher professionalism of the core developers.

Conversely, the higher participation and dissipation rates in LINUX activity could well

not be an indicator of the instability and inefficiency of the project but of LINUX broader

popularity and easier accessibility.

Only in a limited number of cases the communication is stabilized and coalesces into

conspicuous and relatively persistent threads. Few selected threads live for long. When

that happens, they signal some more organized and purposeful work around a

persistent theme or modular component. The longest threads are 17 days at APACHE,

and 135 days at LINUX (see table 2 again). In the mailing lists we found mainly three

aspects stabilizing the communication: recurrent participation of same participants,

documentation and nested conversation. Usually, in longer threads the very same

agents participate recurrently. For example at LINUX the threads with five mails are

written by 3,4 participants on average. Threads with 19 mails are written by only eight

developers on average. At APACHE three agents participate on average to threads

with five mails. Also, the communication via mailing lists is stabilized by its quasi-

automatic documentation. Documents and edited conversations archived on the

16

websites provide stability and continuity to otherwise tenuous and volatile relationships.

The mails are archived and everybody can have access to them, eventually retrieve

them and refer to them at any point of the development process. Knowledge making

and sharing is definitely facilitated by the availability of ubiquitous documentary

artefacts that mediate people’s interactions and support their work. In other words,

stability and continuity are built into the technology and in the computer-based

communication and documentation protocols. One special way to use the intrinsic

documentary quality of edited communication via e-mails is to enact nested

conversations. Typically, parts of a previous message to which the following message

refers are inserted into the new one. Iannacci (2002) labels such interactions 'dialogic

negotiations' which imply a continuity and interdependence among messages as

indicated by the inclusion of previous messages or pieces of messages, thus creating

'metaphorical conversations'. In our view the nesting of conversations are a visible

instance of how potentially relevant bits of knowledge can circulate within and across

projects and be shared by a variety of agents to the purpose of making knowledge.

Finally, to complete our analysis of threads we need to say something about the

dynamic features of the process. Figure 5 illustrates the overall stream of threads at

APACHE in the two-week period studied. The threads are calculated day by day and

are symbolized by the arrows, whereas the small crosses signal single e-mail

messages with no follow up.

Fig. 5. Ongoing emergence and disappearance of threads for APACHE (May, 15th-30th, 2002)

The figure shows the ongoing emergence and disappearance of threads over time. As

we have already said, threads are ephemeral entities. Most of them live the life of a

15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30.
Date

x

x
x
x
x
x
x
x

x
x
x x

x

x
x
x
x
x

x
x
x
x

x
x
x

x
x

x

x

x

x

x
x
x
x

x
x
x x

x
x
x
x

x
x

x
x
x

31.15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30.
Date

x

x
x
x
x
x
x
x

x
x
x x

x

x
x
x
x
x

x
x
x
x

x
x
x

x
x

x

x

x

x

x
x
x
x

x
x
x x

x
x
x
x

x
x

x
x
x

31.

17

mayfly. Robust and durable threads emerge very rarely but the flow of communication

is never completely discontinued. The single threads go off and on, but the overall

fabric never collapses. At any point in time in the development of the project there is

always a bundle of active threads that signal and carry on activity at varying degrees of

intensity. Agents can go off the stream, but can always re-enter later on. Thus the inter-

temporal continuity and stability of the project are assured by a flow of communication

along a main stream of sense- and knowledge-making.

5 The emerging pattern: toward an ecology of knowledge

What pattern do the data point at? What do they tell us about knowledge processes in

open-source software projects? How can these findings enrich our view of organizing

and knowledge making? We have analysed mailing lists as critical artefacts that make

large components of the programmers’ design practice visible to observers within an

electronic media. In the mailing lists we can find, posted on a website, traces of the

distributed activities of a large number of geographically dispersed programmers

engaged in a common development task. Choosing to focus on the mailing lists as an

empirical object we wanted to track knowledge work related to the making of the

software at the aggregate level, as it is imprinted in the structure of the agents’

interactions.

5.1 Reconstructing the pattern: evolutionary features
At the aggregate level our data show a distinctive and consistent pattern of behaviour.

The specific features characterizing the development process lead us to think of

knowledge processes taking place in large-scale open-source software projects as

being evolutionary and ecological. Artefacts such as mailing lists play a prominent role

as dynamic vehicles of knowledge. In this section we draw a synthetic picture of the

overall phenomenon, as it emerges from the analysis performed in the previous

section.

First of all, a large-scale open-source software project, such as LINUX or APACHE,

relies upon an endogenous mechanism for generating variety. Such mechanism is

inscribed in the interactive system, supported by the technology, and institutionalized

by the copy-left arrangement that allows open access. The project feeds on a constant

source of variety produced by the participants’ e-mail messages, actions and entries

into the system. The agents bring in new problems, solutions, perspectives, and new

software objects, eventually hiding bugs. The enormous amount of incoming variations,

18

in the form of new threads and mails, compared to what actually gets processed

throughout the system, generates novelty and multiplicity, constituting the exploration

side of the development and knowledge making process (March 1991). Variation

explores multiple knowledge resources. Of course, not all agents have the same talent

and skill but, because of the high numbers, a critical mass of experienced people is

always available at any point in time.

The figures and tables show the pressure of variety, but they also show how variety is

harnessed by selective mechanisms that admit and process only a few variations out of

the many. The outcome of the process is a remarkably skewed distribution of threads,

participants, activities, and durations of threads. The distribution points to the classic

Zipf’s power/rank law that characterizes population ecologies (Zipf, 1949). Out of

multiple communications only a few have a follow up and coalesce in long lasting

threads signalling stable and cumulative activity. Most of the threads are soon

discontinued and potential resources are re-addressed to further threads or turned into

trash. At a first glance, this would signal inefficiency, sloppiness, and a high level of

dissipation. However, the economic argument doesn’t stand up to deeper scrutiny.

Dissipation means free resources that are unexploited now but can be re-entered and

re-used later in the process. The participants’ intentions and actions intersect with one

another and are deflected at the local level, generating disorder and unstructuredness

that call for increased attention and further action. Thus new forms and stable patterns

can be created out of a chanceous event. The project doesn’t have a clear and stable

direction, it just 'rolls on', branching in multiple directions at once.

Trash means redundancy. The high degree of parallelism in the process tends to

generate multiple solutions and patches that compete with one another: one is chosen;

the others are discarded or put aside. But they may run together for a long time before

being dropped. For each discussion thread or communication channel there are always

alternative 'surrogate' threads and channels that run in parallel. The constant flow of

incoming variations produces significant effects in the process: it re-introduces

characteristics that seemed useless or even harmful in the short term, but may be

helpful in the long term. The peculiar retrieval mechanism expands the time horizon of

the process: features that were dropped are not definitely discarded, but stay around

for a while, and may be eventually re-used even after a long time. This keeps the

system from converging too fast on possibly suboptimal configurations. Short-term

efficiency is perhaps lower, to the benefit of long-term efficiency. Slow convergence,

19

modularity and multiple checkpoints also prevent too many errors to be made and the

diffusion of errors throughout the software.

Besides novelty, further aspects of variation are recombination and bricolage. Most

software development work consists in re-use and re-working of available components

and modules that are variously re-assembled and re-combined (Ratto, 2003). The new

is mixed with the old. The licensing agreement allows programmers and users to

incorporate in their software products pieces and components of old products, thus

inseminating products with elements of other products (Demil and Lecocq, 2003). This

'insemination” mechanism needs to be accounted for together with recombination as a

way of creating and disseminating knowledge.

In spite of the potentially high connectivity, there is not such thing as all-to-all

communication in open-source software projects, as the popular saying goes.

Networking happens but is based on local interactions. Making an inquiry or posting a

patch on the mailing list is a one-to-all communication, but only a selected few, if any,

will pick up the message and respond accordingly. The data reveal that the overall

interactive system is made of a network of small interacting clusters of selected agents,

which coalesce, perform some task and dissemble in very short cycles. Even if in

principle anybody can hook to a thread, enter the conversation and join the activity

around a programming task, conversations take place among selected few. Individual

agents and thread initiators migrate from thread to thread and from cluster to cluster.

Clusters are ever shifting and reconfiguring, recombining tasks, activities as well as

participants. Threads are minimal structures, both social and inter-temporal. We found

a majority of short-term high intensity threads together with a few long-term low

intensity threads.

The system has a pulsating behaviour, with periods of low intensity activity, where

presumably basic routine work and communication take place, broken by sudden and

short bursts of intense activity that can last one or a few days, where common attention

focuses on some more engaging and urgent problem solving or design task (see again

Figure 5). As we have said above, threads signal activity evolving in rapid feedback

cycles of production – communication – testing – updating. The short messaging cycles

generate alertness and drive attention. The rhythm of announcements, questions,

patches, updates, bug notices in the mailing lists is so quick that participants are

always alert and attentive to what will come next. That gives a local focus to a bunch of

participants who are always on the move to do some monitoring, repairing, and

communicating. The local, temporary order provided by threads has a critical inter-

20

temporal dimension, too: the next-next-next sequences in the chaining of

communications are minimal inter-temporal structures connecting the present to the

past and the future. They facilitate the participants’ backward-forward travelling in time

through documentation and their retrospective and prospective sense-making (Weick

1995).

5.2 Ecologies of knowledge
Several striking features should be highlighted in the evolutionary process that we have

tried to reconstruct above. One is the amount of diversity that the system can handle

without explicit organizational mechanisms for control and governance. Open-source

projects are intricate webs connecting agents and communications, artefacts and tools,

resources, problems and solutions that co-exist and interact in the internet-based

programming environment. This apparently chaotic diversity becomes a powerful

resource for knowledge making and innovation (Brown and Duguid, 1991). A second

feature is the maintenance of a dynamic balance between the opposing requirements

of stability and variety, conservation and innovation. Variety facilitates flexibility, and is

counterbalanced by stabilizing mechanisms such as software modularity,

communication templates and documentation protocols embedded in the technology,

which enforce predictable behavioural moves. As a result the project is enough

'unstructured' and chaotic to avoid rigidity and non-adaptiveness, and at the same time

structured and 'orderly enough' to ensure stability and performance, so as to be called

a project at all. Large-scale projects such as LINUX and APACHE are evolutionary

processes, ever shifting and drifting, and are not literally 'managed', in the sense of

implementing a pre-defined plan. They can only be steered locally and reactively

(Iannacci, 2002). The direction and the balance do not come from ex ante or centrally

planned design, but rather emerge out of unplanned, decentralized interactions. Even

in the case of LINUX project, in spite of the apparently dominant role of its initiator and

its recent more hierarchical turn, maintainers can decide only about what the

distributed activities of the many bring to their computer desks. A third feature is that

the process oddly combines slow global convergence on the one hand and, on the

other hand, short and fast local activity cycles, as found in the mailing lists. How can

that be? A plausible answer is that the time pacing of development work is fast at the

local level but the overall effect, because the system explores and processes so many

variations and possibilities, is slow convergence at the global level. These features give

open-source software projects superior evolutionary advantage over traditional in-

house, corporate-based software production, and equip them with more effective

mechanisms for exploiting highly distributed knowledge resources.

21

Our reconstruction of the pattern of distribution of activities and resources through the

mailing lists leads to conceive open-source software projects as ecologies of

knowledge. Rather than in a population dynamics perspective (Hannan and Friedman

1989; Healy and Schussman 2003), we use the notion of ecology with reference to the

dynamic interaction of multiple heterogeneous elements and relationships, to their

competitive or cooperative co-existence, and to the delicate equilibrium that exists

between them. Following Bateson (1972), for us ‘ecology’ designates the mix and

variety of elements that characterize the activity systems and the practices of open-

source development as an evolving domain of practical knowledge and expertise. An

ecological perspective captures the set of opposed but complementary features

characterizing large-scale open-source software projects: variability versus

homogeneity, competition versus cooperation, equilibrium versus reproduction,

diversity versus standardization, recombination versus blueprint design. These

dichotomies belong to the dynamics of knowledge making processes in open-source

software projects and express the tension between innovation and conservation typical

of complex evolutionary systems (March, 1991; Baum and Singh, 1994; Aldrich, 1999).

Such ‘ecological’ character of open-source development gives a special quality to

knowledge creation and dissemination. Open-source development activities enact a

richly textured knowledge-intensive environment where multiple agents entertain loose

cognitive and practical transactions with an array of artefacts and tools.

In an ecological perspective, knowledge is created by leveraging the scattered and

occasional contributions of many small agents. Even if in the data we find that only

around 10% of the developers actually build code, while the remaining 90% do

apparently menial programming and reporting jobs at the project’s periphery,

nevertheless the work of the core developers (and the project itself) thrives on such a

large pool of distributed knowledge resources. In other words the critical knowledge-

making mechanism lies in the larger web of agents, interactions, artefacts and

resources. A large open-source software project, when it reaches a critical mass, works

itself as a giant decentralized mechanism for generating and distributing knowledge.

The idea of ecology applied to knowledge processes suggests that whatever we call

‘knowledge’ in open-source software projects is the evolving outcome of the processual

interplay of multiple contributions (Bateson, 1972; Sindig-Larsen,1987; Anderson and

Laird, 1988). Knowledge comes out of bricolage, in which a lot of creative

recombination and recycling of pre-existing materials takes place (Lanzara, 1999;

Ciborra, 2002). New knowledge hardly emerges in frozen environments but more easily

springs out of diversity and surprise, which can only occur in loosely integrated

22

systems where is room for controversies and multiple views. ‘Ecology’ also suggests

that knowledge is not a ‘thing’ that can be purposefully managed or manufactured, but

an evolving ‘complex’ that can only be fed and cultivated, kept in balance or locally

innovated (Bateson, 1972; Hanseth, 1996; Blackler, 1995; Engeström, 1987; Swan and

Scarbrough, 2001). No ‘knowledge system’ is up for grabs as a whole, but can only be

peripherally and locally updated. In the end, this seems to be the major lesson taught

by open-source software projects.

6. Concluding remarks
In this paper, using data from the developer mailing lists of two open-source software

projects, we have illustrated how in open-source software projects processes of

knowledge making and sharing are supported by dense social interaction and by the

peculiar organizing features inscribed in technological artefacts. Discussion threads

support the circulation of project-related knowledge by recording both the log of the

development process and the social history of the project. The mailing lists allow for

potentially unrestricted access to discussion and at the same time reveal the highly

selective structure of the communication of a high number of programmers discussing

a common development theme. Although in our study we have only examined a

specific type of artefact, in large open-source software projects there are many of them,

all playing with the delicate balance between variety and stability, innovation and

conservation of knowledge. The evolving knowledge contents of the discussion threads

teach us that knowledge in an open-source software environment is never a final,

bounded product, but always in the making: it may perhaps reach temporary stability,

but can always be subject to variation and recombination in the next round of

programming and conversations. Software-based artefacts such as the developer

mailing lists reflect and support such evolutionary process. Though transient and ever

evolving, artefacts are critical for knowledge making and sharing in open-source

software projects, as well as in other collective endeavours. Indeed, creation and

dissemination do not come in a staged sequence in open-source software projects;

instead they are simultaneous and closely interwoven, and they feed one another.

Finally, based on our study, we submit that open-source software projects are an

interesting field to study the place of artefacts in knowledge processes. A deeper

appreciation of the role of material and virtual artefacts in knowledge making and

sharing can help us to throw new light on the nature of knowledge itself in a variety of

fields.

23

References

Akrich, M. and B. Latour (1992), A Summary of a Convenient Vocabulary for the Semiotics of Human and
Nonhuman Assemblies, in: Bijker, W. and J. Law (eds., 1992), Shaping Technolgy, Building
Society: Studies in Sociotechnical Change, Cambridge, Mass: MIT Press, pp. 259-264

Aldrich, H. (1999), Organizations Evolving, Thousands Oaks, CA: Sage

Anderson, M. and Laird, C. (1988), Evolution and Development of Knowledge Environments, Paper
presented at the International Conference on Culture, Language and Artificial Intelligence,
Stockholm, May 31 – June 3, 1988

Barley, S.R. and P.S. Tolbert (1997), Institutionalization and structuration: Studying the links between
action and institution, in: Organization Studies 18 (1), pp. 93-117

Bateson, G. (1972), Steps to an Ecology of Mind, New York: Ballantine

Baum, J.A.C. and Singh, J.V. (eds.; 1994), The Evolutionary Dynamics of Organizations, New York:
Oxford University Press

Blackler, F. (1995), Knowledge, knowledge work and organizations: an overview and interpretation, in:
Organization Studies, 16, 6, pp. 1021-1046

Brown, J.S. and P. Duguid (1991), Organizational learning and communities of practice: Toward a unified
view of working, learning, and innovation, in: Organization Science, 2, pp. 40-57

Ciborra, C.U. (2002), The Labyrinths of Information: Challenging the Wisdom of Systems, Oxford
University Press, Oxford

Ciborra, C.U. and O. Hanseth (1998), From tool to Gestell, in: Information, Technology, and People, 11
(4), pp. 305-327

Demil and Lecocq (2003), Neither Market nor Hierarchy or Network: The Emerging Bazaar Governance,
http://opensource.mit.edu

Eisenhardt, K.M. and Santos, F.M. (2002), Knowledge-Based View: A New Theory of Strategy?, in:
Pettegrew, A., Thomas, H., and Whittington, R. (eds.), Handbook of Strategy and
Management, London: Sage, pp. 139-164

Engeström, Y. (1997), Learning by Expanding: An Activity Theoretical Approach to Developmental Work
Research, Helsinki: Orienta Konsultit

Eveland, J.D. and T.K. Bikson (1988), Work Group Structures and Computer Support: A Field Experiment,
in: ACM Transactions on Information Systems, Vol. 6, No. 4, October 1988, pp. 354-379

Goffman, E. (1983), The Interaction Order, in: American Sociological Review 48 (1983), pp. 1-17

Hannan, M. and Freeman (1989), Organizational Ecology, Cambridge: Harvard University Press.

Hanseth, O. (1996), Information Technology as Infrastructure, Ph.D. Dissertation, Department of
Informatics, Goteborg Universitet, Report 10, November 1996

Healy, K. and A. Schussman (2003), The Ecology of Open-Source Software Development, Working Paper,
Department of Sociology, University of Arizona, Social Sciences, 2003

Iannacci, F. (2002), The Social Epistemology of Open-Source Networks, Working Paper, Department of
Information Systems, London School of Economics and Political Science, 2002, pp.1-28

Joerges, B. and B. Czarniawska (1998), The Question of Technology, or How Organizations Inscribe the
World, in: Organization Studies, 1998, 19(3), pp. 363-385

24

Kling, R. and W. Scacchi (1982), The Web of Computing: Computer Technology as Social Organization,
in: Advances in Computers, 21, pp. 1-90

Kogut, B. and A. Metiu (2001), Open-source Software Development and Distributed Innovation, in: Oxford
Review of Economic Policy, 17 (2), pp. 248-264

Kollock, P. (1999), The Economies of Online Cooperation: Gifts and Public Goods in Cyberspace, in: M.
Smith and P. Kollock (eds., 1999), Communities in Cyberspace, London: Routledge

Kuwabara, K. (2000), Linux: A bazaar at the edge of chaos, in: First Monday, 5 (3), accessible at:
http://firstmonday.org/issues/issue5_3/kuwabara/

Lanzara, G.F. (1999), Between transient constructs and persistent structures: designing systems in action,
in: Journal of Strategic Information Systems 8 (1999), pp. 331-349

Latour, B. (1992), Technology is society made durable, in: Law, J. (ed., 1992), Sociology of monsters:
Essays on power, technology and domination, London: Routledge, pp. 103-131

Latour, B. and S. Wolgar (1979), Laboratory life: The construction of scientific facts, Princeton: Princeton
University Press

Lee, G.K. and R.E. Cole (2000), The Linux Kernel Development as a Model of Knowledge Creation,
Working Paper, Haas School of Business, University of California, Berkeley

Lerner, J. und Tirole, J. (2001), The Open-source Movement: Key Research Questions, European
Economic Review, Vol. 46 (2001), S. 819-826

Luhmann, N. (1975), Interaktion, Organisation, Gesellschaft, in: Luhmann, N. (ed., 1975), Soziologische
Aufklärung II, Opladen, S. 9-20

Luhmann, N. (1995): Social Systems, Stanford: Stanford University Press

March, J.G. (1991), Exploration and exploitation in organizational learning, in: Organization Science, 2, pp.
71-87

Metiu, A. and B. Kogut (2001), Distributed Knowledge and the Global Organization of Software
Development, Working Paper, accessible at: www.opensource.org

Morner, M. (2003), The Emergence of Open-Source Software Projects: How to Stabilize Self-Organizing
Processes in Emergent Systems, in: Hernes, T. und Bakken, T. (eds.; 2003), Autopoietic
Organization Theory: Drawing on Niklas Luhmann's Social System Perspective, Abstrakt
Forlag, Oslo

Neff, G. and D. Stark (2002), Permanently Beta: Responsive Organization in the Internet Era, forthcoming
in: P.E.N. Howard and S. Jones (eds., 2002), The Internet and American Life, Thousands
Oaks, CA: Sage, 2003

Orlikowski, W.J. (1992), The Duality of Technology: Rethinking the Concept of Technology in
Organizations, in: Organization Science, 3, 3, S. 398-427

Patriotta, G. (2003), Sensemaking on the shopfloor: Narratives of knowledge in organizations, in: Journal
of Management Studies, Vol. 40, No. 2, pp. 349-375

Patriotta, G. and G.F. Lanzara (2003), The Inscription of Agency into Institutions, Paper presented at
EGOS Workshop 'Institutional Change', EGOS Colloquium, Copenhagen, July 2003

Ratto M. (2003), Re-working by the Linus Kernel developers, http://opensource.mit.edu.

Raymond, E.S. (2001), The Cathedral and the Bazaar: Musings on Linux and Open-source from an
Accidental Revolutionary, Sebastapol, CA: O'Reilly and Associates

25

Scacchi, W. (2001), Understanding the Requirements for Developing Open-source Software Systems,
accepted for publication with revisions in: IEE Proceedings – Software, Paper No. 29840,
December 2001

Schelling, T.C. (1960), The Strategy of Conflict, Harvard University Press

Simon, H.A. (1969), The Sciences of the Artificial, Cambridge: MIT Press

Sindig-Larsen, H. (1987), Artificial Intelligence and the Ecology of Knowledge. Some Background Ideas for
the Programme Committee of the Conference 'Culture, Language and Artificial Intelligence',
Stockholm, 1988

Stallman, Richard (1998): The GNU-Project, accessible at http://www.gnu.org/gnu/the-gnu-project.html,
1998 (edited 27th November 2001)

Strauss, A. and J. Corbin (1990), Basics of qualitative research, Thousands Oaks, CA: Sage

Swan, J. and H. Scarbrough (2001), Knowledge Management: Concepts and Controversies, in: Journal of
Management Studies, Special Issue on Knowledge Management, 38, 7, pp. 913-921

Tsoukas, H. 81996) The firm as a distributed knowledge system: a constructionist approach. Strategic
Management Journal, 17: 11-25.

Von Hippel, E. (2001), Innovation by User Communities: Learning from Open-source Software, in: MIT
Sloan Management Review, Vol. 42 (2001), pp. 82-86

Von Krogh, G., S. Spaeth, and K.R. Lakhani (2003), Community, Joining, and Specialization in Open-
source Software Innovation: A Case Study, forthcoming in: Research Policy Special Issue
on Open-source Software Development (2003)

Weick, K. E. (1995), Sense-making in organizations, Thousands Oaks, CA: Sage

Zipf, G.K (1949), Human Behavior and the Principle of Least Effort, Reading, MA: Addison-Wesley Publ.
Co.

