
 

 
OLK5 - 1 -  OLK5 

Organizational Learning and Knowledge 
 

5th International Conference 
 

Friday, 30th May – Monday, 2nd June, 2003 

 
PERMEABLE BOUNDARIES IN ORGANIZATIONAL 

LEARNING: COMPUTATIONAL MODELING 
EXPLORATIONS. 

 
Theme: The Social Processes of OL and  KM 

 
Hazy, James K. 

 
The George Washington University 

 
Tivnan, Brian F. 

 
The George Washington University 

 
Schwandt, David R. 

 
The George Washington University 

 
 

Contact author: Hazy, James K 
The George Washington University 

Center for the study of learning 
20101 Academic Way, Suite 228 

Ashburn, Virginia 
USA 

22011-2604 
 

Telephone: 908-713-9820    
E-mail: Jim.hazy@att.net 

 



 
 

 
   OLK5 - 2 - OLK5 

Abstract  
 
In this paper we investigate the nature of the organizational boundary in the context of 
organizational learning. Using the Organizational Learning Systems Model (OLSM 
(Schwandt, 1997) and building upon computational organization theory (Carley & Prietula, 
1994b) we precisely define boundary permeability and decompose it into constituent parts: 
information gathering efficiency, search intensity and knowledge diffusion effectiveness.  
Hypotheses are developed and tested using data from 5,500 artificial organizations.  We find 
strong support for the usefulness of boundary permeability as a predictor of organizational 
learning and agent survival and suggest ways to operationalize this construct in future 
laboratory and field studies . 
  
 
The recent collapse of the internet bubble highlights the importance of remaining in tune with 
the environment during times of rapid change.  In the context of organizational learning 
research (Schwandt & Marquardt, 2000), we examine information flow through an 
organization’s boundary and its impact on the organization’s survivability.  As a mechanism 
for studying emergent structures in complex social systems, we computationally model a 
nonlinear application of structuration theory (Giddens, 1984) as a mechanism for 
organizational learning.   
 
Organizational learning literature highlights the importance of permeable boundaries in 
organizational learning (Argyris & Schon, 1978; Daft & Weick, 1984; Fiol & Lyles, 1985; 
Hedberg, 1981; Huber, 1991; Lundberg, 1989; Schwandt, 1997; Schwandt & Marquardt, 
2000).   In addition, organizational learning literature, offers a rich vein supporting 
organizational learning as a real, and measurable phenomenon at the collective level (Fiol & 
Lyles, 1985; Hedberg, 1981; Huber, 1991; Schwandt & Marquardt, 2000; Walsh, 1995).   
  
In this paper we use computational modeling to explore explicitly the impact of various levels 
of boundary permeability on organizational learning with the understanding that information 
and knowledge are distributed both inside and outside the collective (Tsoukas, 1996). 
 
We test this broad notion using agent-based modeling techniques to explore agent activities at 
the organization’s boundary and how these micro-effects are aggregated at the organizational 
level and enable the collective to sense the nature of its environment through its perceptual 
filter (Daft & Weick, 1984; Hedberg, 1981) as is described in organizational learning.  Our 
intent is to test the notion that “boundary permeability,” as a measure of the collective’s 
ability to sense its environment, that is,  gather information external to the organization and 
diffuse it internally, is a robust and cohesive construct at the organizational level.  We do this 
by defining boundary permeability in the context of an agent-based view of organizations 
(Carley & Prietula, 1994a), and by varying aspects of agent level interaction at the boundary.  
Through a series of virtual experiments, we measure boundary permeability and its impact on 
organizational learning variables and organizational outcomes.   We address the research 
question: What is the relationship, if any, between boundary permeability and computational 
organizations’ outcomes, and how does environmental turbulence affect this relationship?   
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Background in theory and prior results 
 
The  theoretical context of our organizational learning research is Schwandt’s Organizational 
Learning Systems Model (OLSM) (Schwandt & Marquardt, 2000).  The OLSM is viewed 
through the lens of computational organization theory (Carley & Prietula, 1994b).  Prior 
results marrying these two approaches have demonstrated the usefulness of this approach.  

The organizational learning systems model (OLSM) 
 
Consistent with the systems theory approach to organizational learning (Lundberg, 1989; 
March & Olsen, 1988/1975; Orton & Weick, 1990) Schwandt defines organizational learning 
as “a system of actions, actors, symbols and processes that enables an organization to 
transform information into valued knowledge which in turn increases its long-run adaptive 
capacity” (Schwandt, 1997: 8).  For this study we focus on the environmental interface and 
the dissemination/diffusion subsystems and their respective interchange media, new 
information and structuration.  
  
As is shown in Figure 1, the environmental interface subsystem acts as the information input 
mechanism for the organizational learning system (Schwandt, 1997: 9).  This subsystem 
focuses externally to relate the organizational learning system to its environment and to 
develop the means by which the organizational learning system pursues different learning 
goals and meets changing environmental conditions.  The environmental interface subsystem 
produces new information for use by other subsystems of the OLSM.   
 
The dissemination/diffusion subsystem moves, transfers, retrieves, and captures information 
and knowledge for the learning system. The actions of this subsystem are characterized by 
their ability to meet the integrating requirements of the other learning subsystems and include 
communication, networking, management, coordination, and the implementation roles 
supporting the norms associated with the movement of information and knowledge 
(Schwandt & Marquardt, 2000). The interchange medium, structuration (Giddens, 1984), is 
more than a structure of the social system; it is an integration of organizational structures, 
roles, norms, objects, and processes that provide this dynamic quality Giddens called 
structuration (Schwandt & Marquardt, 2000). 
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Figure 1 

The Organization Learning Systems Model 
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For this study, we model only the input or sensing subsystems described above.  In addition 
to these subsystems, the OLSM also includes the meaning and memory and the action and 
reflection subsystems that describe how action occurs in the system.  The meaning and 
memory subsystem takes its inputs form the other systems, that is, it takes in new information 
and structuration from the subsystems described above, as well as, goal-referenced 
knowledge which emanates from the action and reflection subsystem described below.  The 
meaning and memory subsystem processes these inputs and makes sense of them for the 
collective. As such, its interchange medium is sensemaking.   
 
The action and reflection subsystem takes its inputs from the other subsystems to enable 
collective action.  The results of action – processed as new information and structuration 
feedback though the sensing subsystems -- are compared to goals, reflected upon and output 
as goal-referenced knowledge.  Goal-referenced knowledge becomes an input to the other 
subsystems and thus impacts structuration and the new information imported into the 
collective from beyond the organizational boundary. 

The computational approach to organization theory 
 
The use of computer simulations to develop theoretical concepts and to generate research 
questions, proposals and hypotheses has been gaining momentum in recent years (Gilbert & 
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Troitzsch, 1999; Lomi & Larsen, 2001; Prietula, Carley, & Gasser, 1998).  In particular, the 
use of agent-based models has been shown to produce useful insights across multiple social 
science domains such as anthropology, economics and ecology (Kohler, 2000; Leydesdorff & 
van den Besselaar, 1994). “Research using these models emphasizes dynamics rather than 
equilibria, distributed processes rather than systems-level phenomena, and patterns of 
relationships among agents rather than relationships among variables” (Kohler, 2000:2).  In 
short, they can be used to identify emergent phenomena that could not otherwise be isolated 
for study. 
 
Many of these techniques seem to have promise as an important research technique in 
organizational science. Burton (2001) has described this promise in the context of three 
unique characteristics of simulation: the discipline surrounding the needed specification of 
the detailed interactions that are being modeled, the versatility of the medium with respect to 
the variety of research issues that can be addressed, and the relative efficiency of virtual 
experiments in a simulated organization versus real-world experiments.   March recently 
wrote, “it is easy to anticipate a bright future for simulation modeling in organization studies” 
(March, 2001: xvi).  He continued, “Simulation represents an approach that appears both to 
match the phenomenon of interest and to provide some analytical power” (March, 2001: 
xvii).  Simon (2001) saw the potential of computational modeling for organization level and 
population level analysis.  An example of this approach from the organizational learning 
literature is work by Carley and Svoboda (1996) in which organizational learning and 
adaptation was simulated computationally as an annealing process.   

Theoretical foundations in computational organization theory 
 
As a starting point, we accept the axiomatic framework of Carley and Prietula (1994a) where 
“organizations are viewed as collections of intelligent agents who are cognitively restricted, 
task oriented, and socially situated” (Carley & Prietula, 1994a: 56). Upon this axiomatic base 
and later additions (Carley & Gasser, 1999; Carley & Wallace, 1996), we adopt a precise 
description of an organization as a connected network linking persons, resources, tasks, and 
knowledge to each other (Carley & Krackhardt, 1999; Carley, Ren, & Krackhardt, 2000; 
Krackhardt & Carley, 1998).  
 
The above-described meta-matrix representation (Krackhardt & Carley, 1998) is static, 
however, and only describes connections in the network at a point in time.  We therefore 
adopt an intelligence mechanism that enables the agent to change the network connections 
(its social, task, resource, and knowledge situation) in its local environment (Hazy & Tivnan, 
2003). 
 
In this sense, an agent’s social situation has duality analogous to Giddens’ duality of structure 
in structuration theory (Giddens, 1976/1993). The agent’s position in the network constrains 
its ability to act, just as in structuration theory, social structure is said to “produce” behavior. 
On the other hand, action by an agent can make persistent changes to the network that impact 
the ability of the agent and possibly other agents to act in the future. In structuration theory, 
an individual’s actions are said to “reproduce” behavior by creating social structure that 
persists across time and space (Giddens, 1976/1993; Taylor & Van Every, 2000). In the same 
way, we define computational structuration as the effects of and changes to network 
connectedness of agents that persist through time and space. 
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As described by Hazy and Tivnan (2003) the intelligence mechanism is based on an agent’s 
boundedly rational “mental model” of its local environment (Simon, 1957/1997). In other 
words, an agent can make changes only in the context of the intersection of its perceived and 
real possibilities. Thus, an agent’s actions are “cognitively restricted” (Carley & Prietula, 
1994a). The relationship among an agent, its local network, and the way it can change its 
local network is a micro example of social structure in organizations. We believe that agent 
interactions of this type are the “social structure primitives” from which organizations 
emerge. These primitives involve, at once, both the agent and its position as embedded in a 
network, a true duality directly analogous to Giddens’ (1976) social structures. 

Prior results 
 
Prior studies have demonstrated the usefulness of the above theoretical framework (Hazy & 
Tivnan, 2003; Hazy, Tivnan, & Schwandt, 2002).   Agent based modeling consistent with this 
approach was used to study the implications of boundary spanning activity on organizational 
learning (Hazy et al., 2002) in a study involving over 11,000 artificial organizations.  Results 
indicated that the level of boundary spanning activity of agents has a non-linear relationship 
with collective outcomes such as production and number of surviving agents.  More boundary 
spanning at first increases outcomes and then has little incremental and perhaps a negative 
effect.  The specific characteristics of this relationship are dependent upon environmental 
turbulence, the initial positive effect of boundary spanning being more pronounced with 
greater turbulence.  These computational experiments also found that when an agent was able 
to change its local network by learning and performing new tasks, outcomes increased at all 
levels of boundary spanning.    
 
In a second study, the effect of differential rewards to agents on organizational outcomes was 
studied in the context of agent learning and collective performance (Hazy, Tivnan, & 
Schwandt, Under review).  Results of this study showed that when rewards are distributed 
based upon contribution, either to actual production or to the diffusion of knowledge that 
informed production, outcomes improve.  Because collective outcomes improve, an 
individual agent’s survival potential improves if it participates in production or the diffusion 
of knowledge– essentially, an agent is rewarded for contributions of either exploitation or 
exploration (March, 1991).  When rewards are provided to the agents that provided relevant 
knowledge to other agents, more agents tend to survive.    
 
The purpose of the present study is to build upon these prior results to demonstrate in a 
computational model that small changes to quantity and quality of interactions at the level of 
agent interactions, can have measurable effects at the organization level, that is, in boundary 
permeability, and that these affects can be understood in the context of the environmental 
interface and dissemination/diffusion subsystems of the OLSM (Schwandt, 1997). 

Boundary Permeability  
 
To define Boundary Permeability in the context of the organizational learning systems model 
(Schwandt & Marquardt, 2000), we look at the collective’s need to perceive the environment 
(Hedberg, 1981), interpret the information and pass the benefit of this interpreted information 
deep into the collective to enhance future collective activities (Daft & Weick, 1984).   
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As a collective level construct, the organizational boundary represents the distinction between 
“outside” and “inside” and, by default, the organ through which agents inside the collective 
(participating in collective activities) sense their collective’s environment (that is, they import 
information from outside the boundary).  But at the same time, we must recognize that in 
reality it is boundary spanning agents that cross the boundary of the organization to search for 
and bring back new information.  Therefore, to be meaningful as an organization level 
construct, boundary permeability must capture more that simply the number of boundary 
crossings by agents.  It also has to take into account the efficiency with which new 
information is gathered outside the boundary and the effectiveness with which the new 
information is integrated or diffused inside the system’s boundary as knowledge relevant to 
collective activities and potential benefit.  

The system dynamics at the organization’s boundary 
 
As shown in Figure 2, the dynamics that define an organization’s boundary can be analyzed 
using system dynamics techniques (Sterman, 2000).   The number of surviving agents in a 
collective is the relevant stock in a self-reinforcing exploitation feedback loop.  Agents inside 
the organization interact with one another and in so doing diffuse the knowledge that enables 
greater rent to be extracted from the environment.  More rent implies more reward for 
individual agents.   Under an appropriate reward structure, it thus allows more agents to 
survive. 
 
The environment changes, however, and thus produces new information at some rate.  This 
new information must be imported for the agents within organization to remain current.  
Some agents are sent out across the boundary (where they can no longer produce output) to 
obtain new information.  Importantly, more new information also leads to greater knowledge 
diffusion and thus these choices also create a self-reinforcing feedback loop, the exploration 
loop. 
 
Two balancing loops regulate this activity.  Increased exploration dampens the exploitation 
loop and greater exploitation dampens the exploration loop.  This classic tension (March, 
1991) is embodied in the construct we are calling boundary permeability. 
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Figure 2 

Non-linear dynamics of boundary permeability and collective survival 
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Surviving agents as an outcome metric 
 
For the purposes of this analysis, we use number of surviving agents as the measure of 
organizational outcomes.  Because the level of agent interaction that creates product is 
random throughout, each agent, if it survives, would be expected to produce, on average, 
roughly the same amount of output.  Thus there is a positive relationship between individual 
production and organizational outcomes in the aggregate, and it follows that the number of 
surviving agents will positively predict output.    

Boundary Permeability defined 
 
To capture these relationships, we define boundary permeability as relevant interaction 
activity outside the organization, that is, actual exploration learning activity (information 
transfer events among agents outside) divided by interaction activity inside the organization 
that could diffuse knowledge, that is, the appetite for learning in support of exploitation (total 
agent interactions inside the organization).  When two agents interact, an information transfer 
event or a knowledge diffusion event may or may not occur.  An event is counted only when 
one agent gets new information from another agent.  If the agent already has access to the 
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other agent’s information, no information transfer event occurs.  If both agents gain new 
information or knowledge, two events are counted in a single interaction.   
 
An organization that has little appetite for learning is unlikely to benefit from new 
information.  At the same time, if the amount of new information that crosses the boundary is 
limited, the amount of knowledge diffusion events inside is limited, regardless of the 
organization’s appetite for new knowledge to diffuse.   Therefore, we define boundary 
permeability as the ratio of new information gained as compared to the organization’s 
appetite for knowledge.  More specifically, we define it as the number of actual learning 
events outside the organization as compared to the number of potential learning events inside.  
In equation form we say: 
 
Boundary           =    # of Information Transfer Events Outside 
Permeability                  # of Total Agent Interactions Inside  
 
In other words, we capture the number of information events that occur during search outside 
the organization and compare it to the interaction activity inside the organization, activity that 
could potentially support knowledge diffusion inside the organization.   As shown in Figure 
3, Boundary permeability is assumed to moderate the impact of environmental turbulence on 
rents and rewards collected by the system, and thus the number of surviving agents.   
 
The boundary permeability ratio says something about the efficiency of agent search, its 
intensity and its effectiveness inside the organization.   Given the principle of requisite 
variety (Morgan, 1997), it is not unreasonable to suspect that the appropriate level of 
boundary permeability, and therefore internal complexity, would depend upon the level of 
turbulence in the environment, greater turbulence implying greater boundary permeability.  
Also, results from Hazy, Tivnan and Schwandt (2002) imply turbulence increases the impact 
of boundary spanning to collective outcomes.   As the boundary permeability ratio increases 
significantly beyond one, that is, much more information is being gathered that the 
organization can consume, this positive relationship would be reduced.   As such, as shown in 
Figure 3, we tested the following hypotheses: 
 
Hypothesis 1A: High environmental turbulence implies that the Boundary Permeability will 
be positively related to the number of surviving agents so long as the boundary permeability 
ratio is not significantly greater than one.   
 
Hypothesis 1B: Low environmental turbulence implies the Boundary Permeability will be 
negatively related to the number of surviving agents.   
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Figure 3 

Boundary Permeability Moderates the Affect of Environmental Turbulence on 

Agent Survival Level in Collective Activities 

Number of 
Surviving 

Agents

Boundary
Permeability

H1A

H1B

Amount and 
Frequency of 

New Information

Number of 
Internal 

Interactions

Rents/ 
Rewards

Environmental 
Turbulence

 

When number of surviving agents is considered as a 3-dimensional surface on the dimensions 
of boundary permeability and turbulence, the conditions of these hypotheses imply the 
surface has varying peaks depending on the underlying dimension.  A schematic of the 
expected shape is summarized in Figure 4. 
 



 
 

 
   OLK5 - 11 - OLK5 

Figure 4 

Summary of Hypotheses 1A and 1B 
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To fully understand boundary permeability and the implications of efficiency of collection 
outside the boundary, the intensity of search across the boundary and the effectiveness of 
diffusion inside, we need to unpack the boundary permeability construct and understand the 
variables that comprise it and how they interact. 

 

Information Gathering Efficiency defined 
 
To understand how a collective senses its environment in the course of organizational 
learning, it is useful to unpack boundary permeability.  To do this, we decompose it 
according the OLSM subsystems (Schwandt & Marquardt, 2000).  In the context of the 
environmental interface subsystem, we define information gathering efficiency outside the 
organization as the number of information transfer events that occur divided by the number of 
agents exiting the organizations (Hazy et al., 2002).  In other words, efficiency measures the 
amount of information gathered per boundary spanning agent that leaves the collective to 
engage in search. In equation form: 
 
Information Gathering       =    # of Information Transfer Events Outside 
Efficiency                              # of Agent Exits from the Organization  
 
Because an information transfer event implies an agent has access to new or better 
information or knowledge, it is not unreasonable to assume a positive relationship between 
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Information Gathering Efficiency and organizational outcomes.  Therefore we tested the 
following: 
 
Hypothesis 2: Under all environmental turbulence conditions, Information Gathering 
Efficiency will positively predict the number of surviving agents.  

Search Intensity defined 
 
Next we measure the physical intensity, the cost to the collective, of agents crossing the 
boundary to the outside.  We define the intensity with which boundary spanners leave the 
collective to search for new information.   Since knowledge diffusion is an important aspect 
of learning, we realize that boundary spanners represent a cost to knowledge diffusion.  
Therefore, we measure intensity of boundary spanning in relation to the number of 
knowledge diffusion events that are occurring, that is, agent exits per knowledge diffusion 
event.  In other words, at what level does the collective choose to forgo potential collective 
benefit of the internal agents collective activities by allocating certain agents to search 
(exploration) in contrast to continued knowledge diffusion (exploitation) (March, 1991). 
Therefore, we define intensity as the total number of agent exits across the boundary as 
compared to the total number of knowledge diffusion events.  In equation form we have: 
 
Search                 =             # of Agent Exits from the Organization  
Intensity                    # of Knowledge Diffusion Events  
 
The tension between participation in internal activities and performing search activities is an 
important notion in organization theory (Levinthal & March, 1981; March, 1991).  The 
notion of search intensity embodies this tension.  As such, it is reasonable to assume that 
there is no one optimal value for this variable.  Rather it is dependent upon the environmental 
challenges faced by the collective, that is, the relative importance of exploitation versus 
exploration (March, 1991).  The principle of requisite variety (Morgan, 1997) provides 
guidance here and led us to test the following: 
 
Hypothesis 3A: High environmental turbulence implies that the Search Intensity will be 
positively related to the number of surviving agents so long as the boundary permeability 
ratio is not significantly greater than one.   
 
Hypothesis 3B: Low environmental turbulence implies that the Search Intensity will be 
negatively related to the number of surviving agents.   
 

Knowledge Diffusion Effectiveness defined 
 
Finally, we look to the dissemination and diffusion subsystem to understand how information 
is diffused throughout the organization as knowledge useful for collective benefit (Schwandt 
& Marquardt, 2000).  As described earlier, this occurs through the process of structuration 
(Giddens, 1984; Schwandt & Marquardt, 2000) as operationalized in computational 
structuration (Hazy et al., Under review).  How effectively new information is diffused into 
the system as knowledge is an important aspect of structuration (Hazy et al., Under review).  
Because each agent interaction represents a potential opportunity for knowledge diffusion, we 



 
 

 
   OLK5 - 13 - OLK5 

represent effectiveness as actual diffusion events divided by opportunities for diffusion.  
Restated, Knowledge Diffusion Effectiveness measures the amount of knowledge actually 
exchanged per interaction opportunity.  Therefore, we define effectiveness as the ratio:  
 
Knowledge Diffusion         =           # of Knowledge Diffusion Events  
Effectiveness                                      # Total Agent Interactions Inside 
 
Because the diffusion of knowledge leads to higher reward, one would expect a positive 
relationship between the effectiveness of knowledge diffusion and organizational outcomes.  
Therefore we tested the following: 
 
Hypothesis 4: Under all environmental turbulence conditions, Knowledge Diffusion 
Effectiveness will positively predict the number of surviving agents.  

The Boundary Permeability Equation 
 
When these variables are combined, we see that Boundary Permeability is in fact comprised 
of these three variables and their interactions.   The non-linear dynamics at work among these 
variables that describe the organization’s boundary, as well as the hypotheses considered in 
this analysis, are shown in Figure 5.   Note that, within boundary the permeability construct, 
the sub-variables interact with non-linear dynamics.  The number of information transfer 
events influences the number of knowledge diffusion events if new information is carried 
back inside the system.  Likewise, search intensity influences the number of knowledge 
diffusion events since more agents are searching for an bringing back knowledge.  Although 
much of the richness of the non-linearity is lost, these complicating interactions can be 
eliminated for simplicity.  This is done by introducing the mathematical relationship among 
these variables -- the boundary permeability equation.  It is as follows:  
 
 Boundary     =    Information Gathering     X   Search      X     Knowledge Diffusion    
 Permeability     Efficiency                            Intensity     Effectiveness  
 
By eliminating interacting terms and looking only at the independent entities: information 
transfer events in the numerator and total internal interactions in the denominator, a 
simplified metric be used as a first approximation.  To really understand what is happening at 
the boundary, however, all of the terms of the boundary permeability equation must be 
understood.   
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Figure 5 

Conceptual Framework with Hypotheses (H#) Indicated 
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Research design and methods 
 
Answering the call for agent-based modeling in organizational science research (McKelvey 
1999b), we built an agent-based model to explicitly represent boundary spanning activities by 
agents. We then ran computational experiments to test the above hypotheses derived from 
organizational learning literature.    
 
To do this, we created an artificial organization that included: agents (or persons) that were 
members of an organization and some that were outsiders, a habitat defined as a spatial grid 
with resources scattered randomly across it, and a time-stepping process that allowed agents 
to move, interact and either prosper or die over a defined period of time (Epstein & Axtell, 
1996).  It is important to note that for the purposes of this research, the organizational 
boundary, considered to be both socially constructed (Lissack, 1999; Weick, 1995) and 
emergent and temporal (Richardson & Lissack, 2001) is represented as a static entity within a 
particular model run merely for the purposes of computational simplification.  By 
manipulating characteristics of this artificial organization and its inhabitants and then 
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watching it develop over time, we ran computational experiments that would have been 
difficult or impractical to duplicate in the real world. 

The Value Chain Model 
 
To make the artificial world organizationally realistic, we structured the task and resource 
environment around the value chain (Porter, 1980, 1985).  Resources were transformed at 
various stages of value creation by the action of agents with appropriate task assignment and 
knowledge.   Agents consumed energy with each step and energy was replenished for agents 
only when the collective goal was achieved.  Failure to continually achieve this collective 
goal led to the death of individual agents and eventually, to the end of the collective.   
 
The artificial organization was designed to simulate conditions that characterize collective 
action, that is, task interdependence, reward interdependence and collective potency (Lestor, 
Meglino, & Korsgaard, 2002; Shea & Guzzo, 1985).    As such, in the base case no agent 
could perform all of the tasks itself and all of the tasks had to be completed for any reward to 
be distributed.   Also, the fact that resources, tasks and relevant knowledge were available to 
agents simulated the collective attribute called potency, that is, collective ability, i.e., 
”potency” to execute successfully (Shea & Guzzo, 1985).   In addition, rewards were 
distributed  to  surviving agents at final production according to their contribution to 
production of output and the diffusion of knowledge that supported the production.  Because 
no one agent could produce the final good independently, collective action and collective 
success were both necessary for individual survival.   
 
As Figure 6 indicates, there were N independent tasks, each transforming one resource, Rj, in 
the value chain into the next resource, Rj+1.  When any agent that was connected to task Tj 
became connected to resource Rj by random movement, resource Rj was transformed into 
Rj+1.  Production efficiency depended on the currency of the agent’s task knowledge.   
The above “production process” continued until the completion of final task, TN wherein a 
final product, RF, was created, and a payoff function exercised.  This payoff function added 
energy to the appropriate agents and provided new raw resource, R1, to re-initiate the 
production process.  In this way, the collective could sustain itself and individual agents 
could survive by benefiting from collective success. 
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Figure 6 

The Value Chain Model (Porter, 1980;1985) 
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Representing an organization as a network 
 
To link the model to computational organizational theory, all activities within the model were 
decomposed into primitives such that at each time step the organization’s state could be 
represented as a network consistent with the meta-matrix representation of persons, tasks, 
resources and knowledge (Krackhardt & Carley, 1998; Carley & Ren, 2001) and an 
intelligence mechanism that enables agents to change the network locally (Hazy & Tivnan, 
2003).   
 
To begin, each agent was randomly assigned to one and only one task, and each task to one 
and only one type of resource as input.  Effectively, there were N types of agents, one for 
each task type, Tj.  Likewise, each task, Tj, was attached to a resource, Rj, as an input and to 
Rj+1 as an output.  As is shown in Figure 6, the following actions occurred:  agent Ai moved 
to a space adjacent to resource Rj enabling agent Ai to perform task Tj thereby converting 
resource Rj to resource Rj+1. Thus, these actions represented a change to the network of 
connections among agents, tasks and resources by the action of an agent. 
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Figure 7 

A representation of change to the network of resources 
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The impact of knowledge transfer and diffusion 
 
For our study, we introduced into this artificial organization the concepts of information 
transfer knowledge and knowledge diffusion.   To produce an output from a resource input 
and thereby complete a task, an agent had to be connected to knowledge that was relevant for 
the agent-task pairing.  In addition, depending on the turbulence in the environment (in this 
case, defined as frequency of change in knowledge generation), the payout value of an 
agent’s knowledge decreased over time.   The consequence of knowledge value decrease was 
a decline in production efficiency.   Agents accumulated knowledge by interacting with other 
knowledge-bearing agents.  Knowledge was refreshed with new generations of knowledge by 
interaction with other member and outsider agents bearing information that was more current. 
Information was assumed to become knowledge once it was useful for the execution of tasks 
and the production of output, that is, once it was inside the organization and became 
embedded in the organizations network.   In these artificial organizations, new information 
that was potentially useful in creating new knowledge was always introduced outside the 
organization’s boundary.   
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With respect to agent learning capacity, any agent could carry (be linked to) and transfer any 
and all knowledge types, but each knowledge type was linked to one and only one task type.  
Therefore, initially, only one knowledge type was useful to a particular agent (i.e., the 
knowledge relevant to its task type).  As new knowledge about different tasks was acquired, 
those tasks were automatically assigned and could be executed, that is, the new knowledge 
became relevant to task execution and the agents were cross-trained.  Outsider agents acted as 
carriers of the latest knowledge and refreshed the knowledge of the member agents with 
whom they interacted.  Outsider agents performed no organizational tasks and consumed no 
organizational resources. 
 
To initialize the artificial organization, we defined agents that represented the organization’s 
members and randomly assigned each a task type (which determined which type of resource 
it consumed and the output it generated as well as the knowledge type needed).  We next 
defined the rules or methods that governed their interaction with other network elements.  
Certain agents were designated as boundary spanners.   Each member agent began with the 
necessary knowledge to perform its task, but that knowledge became less valuable over time.  
Outsider agents were also initialized and given all the knowledge needed by the member 
agents to perform their tasks.    
 
In this study, the organization and its agents exist and interact on a grid representing positions 
in an abstract space representing inclusion, i.e. being inside, and exclusion, i.e. being outside, 
of a collective.  Each agent represents a person who, when inside, executes assigned tasks and 
consumes resources to produce outputs.  The productivity of resource transformation is 
determined by the agent’s knowledge.  Knowledge is gathered by exchanges among agents as 
they interact. The utility of knowledge decays with time.  Knowledge is refreshed by 
importation of new information from beyond the organization’s boundary.  This occurs when 
agents who have been outside the boundary return with refreshed knowledge to exchange 
with other agents inside the boundary. 

 

Boundary defined for the study 
 
We define the inside, outside and boundary of an organization as follows: a position on the 
spatial grid is “outside” the collective when no tasks can be performed for the benefit of the 
collective at that location; a position is “inside” when tasks can be performed for the benefit 
of the collective at that location; and, the organization boundary consists of all “outside” 
positions that are adjacent to “inside” positions.   

Virtual experiments 
Because the variables that make up boundary permeability and are the subject of the 
hypotheses interact with one another, we chose to create many artificial organizations in 
which the initial conditions were controlled, certain parameters were varied in known ways 
and the organizations were allowed to develop stochastically over  many time steps.  In 
particular, for these virtual experiments, we varied only the turbulence in the environment 
and the number of boundary spanners in the organization.  All other aspects of the 
organization were identical as the models were initiated.  Of course, it is the nature of 
stochastic agent-based modeling that each run of the model, each artificial organization, is 
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unique and cannot be replicated.  The model thus shows sensitivity to initial conditions since, 
under very similar initial conditions, some organizations survived and prospered while others 
withered and died.  
   
In the end the data set described 5,500 artificial organizations that developed under varied 
environmental states and with varying levels of boundary permeability.  Likewise, when 
boundary permeability was decomposed into its constituent variables, information gathering 
efficiency, search intensity and knowledge diffusion effectiveness, varying combinations of 
constituent values characterized the data set.    

Description of analysis performed 
 
As is noted above, the boundary spanners were set and remained constant for a given run.  
Thus, although boundary permeability, because it is a function of several interacting 
variables, changes its value through time, the value was always constrained by the number of 
boundary spanners that initialized the system.  That is, although individual agents died during 
a model run and thus the proportion of boundary spanners varied over time, the organization 
did not proactively adapt to the environment by increasing or decreasing the number of 
boundary spanners in response to environmental conditions.  As such, the analysis performed 
conforms in one sense to that of population ecology (Hannan & Freeman, 1989).  We looked 
at the variables describing the 5,500 artificial organizations at the end of the model runs and 
looked for patterns that either supported or refuted the various hypotheses.  These results 
were plotted and statistical analysis performed. 

Results and analysis 
 
As a first step, 5,500 artificial organizations were created.  Each began with similar initial 
conditions except with respect to environmental turbulence and number of boundary 
spanning agents at initialization.  As such, a large sample of comparable artificial 
organizations, each having survived 3650 time steps (approximating ten years of 
organizational history), was available for analysis.   To test for hypothesized relationships, 
the number of surviving agents in each scenario was compared with the various boundary 
permeability variables that characterized the scenario.  

The impact of boundary permeability 
 
As is shown in Figure 8, when number of surviving agents (#Agents) was compared with 
boundary permeability (BP) in a high turbulence environment (high turbulence environments 
are cases where new information was introduced from zero to fifty time steps) we found that, 
as expected, for BP less than one, the #Agents was positively correlated (r = 0.73, r2 = 0.53) 
with BP, that is, as BP increased, so did #Agents.  As BP increased beyond one, however, 
this relationship turned negative (r = - 0.41, r2 = 0.16).  These results imply that the benefit of 
increasing BP seems to reach an upper limit.  These results, summarized in Table 1, strongly 
support Hypothesis 1A. 
 
When the number of surviving agents (#Agents) was compared with boundary permeability 
(BP) in a low turbulence or stable environment (low turbulence environments are cases where 
new information was introduced every 1050 to 1095 time steps) we found that, as expected, 
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for BP less than one, the #Agents was negatively correlated (r = - 0.74, r2 = 0.55) with BP, as 
BP increased, the #Agents decreased.  As BP increased beyond one, this relationship 
continued (r = - 0.76, r2 = 0.58).  For all values of BP, the negative relationship was strongly 
supported (r = - 0.87, r2 = 0.76).    These results, summarized in Table 1, strongly support 
Hypothesis 1B. 
 

Figure 8 

Number of surviving agents (# Agents) versus boundary permeability (BP) in 

high turbulence environments – Large points indicate positive gradient for low BP, and 

small points indicate negative gradient for high BP 
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In sum, as is shown in Figure 9, increasing BP (up to a point) has a positive effect in 
turbulent environments, but always has a negative effect in stable ones. 
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Figure 9 

Number of surviving agents (# Agents) versus boundary permeability (BP) for 

environments with high turbulence (top) and low turbulence (bottom) 
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When number of surviving agents (#Agents) was compared with information gathering 
efficiency (InfoTransfer) in a high turbulence we found only a weak correlation (r = 0.17, r2 = 
0.030) and in low turbulence we found a negative and stronger correlation (r = - 0.42, r2 = 
0.18).   
 
As is shown in Figure 10, values for InfoTransfer across the entire data set exist in a very 
tight range for each interval of environmental turbulence.  This represents a limitation in the 
model such that in the model, each agent interaction results in an information transfer event 
when new information is available.  The tight distribution of InfoTransfer thus represents a 
random distribution around the probability that an interaction will occur outside the 
organization’s boundary.  These results, summarized in Table 1, do not support Hypothesis 2. 
 

Figure 10 

Number of surviving agents (# Agents) versus information transfer efficiency (Info 

Transfer) for environments with high turbulence (top) and low turbulence (bottom) 
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The impact of Search intensity 
 
When number of surviving agents (#Agents) was compared with search intensity (SI) in a 
high turbulence environment, we found that, as expected, for BP less than one, the #Agents 
was positively correlated (r = 0.78, r2 = 0.61) with SI.  As BP increased beyond one, 
however, this relationship, like BP, turned negative (r = - 0.4541, r2 = 0.29) implying that the 
benefit of increasing SI seems to reach an upper limit.  It is worth noting that although 
directionally the same, these correlations are slightly higher than those relating #Agents with 
BP. These results, summarized in Table1, strongly support Hypothesis 3A. 
 
When number of surviving agents (#Agents) was compared with search intensity (SI) in a 
low turbulence or stable environment we found that, as expected, for BP less than one, the 
#Agents was negatively correlated (r = - 0.77, r2 = 0.60) with SI, as SI increased, the #Agents 
decreased.  As BP increased beyond one, this relationship continued (r = - 0.54, r2 = 0.30).  
For all values of BP, the negative relationship was strongly supported (r = - 0.78, r2 = 0.62).    
These results, summarized in Table 1, strongly support Hypothesis 3B. 

The impact of Knowledge diffusion Effectiveness 
 
When number of surviving agents (#Agents) was compared with knowledge diffusion 
effectiveness (KnowDiff) in a high turbulence environment we found only a weak correlation 
(r = 0.35, r2 = 0.12) overall.  However, when only scenarios with boundary permeability of 
less than one are considered, the correlation increased (r = 0.504, r2 = 0.254).   In low 
turbulence we found a negative and stronger correlation (r = - 0.62, r2 = 0.39). The scatter 
plots for these scenarios are shown in Figure 11.   These results, summarized in Table 1, 
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partially support Hypothesis 4, but only in high turbulence environments with and boundary 
permeability less than one. 
 

Figure 11 

Number of surviving agents (# Agents) versus knowledge diffusion effectiveness 

(KnowDiff) in environments of high turbulence (top) and low turbulence (bottom) 
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Table 1 

Statistical correlations for hypothesized relationships with # of surviving agents 

Relationship  
to #  Agents 

Turbulence Hypotheses r 
See Note 

r2 Comments 

Boundary 
Permeability (BP) 

High H1A 0.728 
-0.406 

0.531 
0.165 

BP < 1 
BP>=1 

Boundary 
Permeability (BP) 

Low H1B -0.744 
-0.762 

0.554 
0.580 

BP < 1 
BP>=1 

Information 
Efficiency 

High H2 0.277 
Not Sign. 

.0769 BP < 1 
BP>=1 

Information 
Efficiency 

Low H2 -0.346 
0.508 

-0.120 
0.258 

BP < 1 
BP>=1 

Search Intensity High H3A 0.780 
-0.537 

0.609 
0.289 

BP < 1 
BP>=1 

Search Intensity Low H3B -0.772 
-0.545 

0.596 
0.297 

BP < 1 
BP>=1 

Knowledge 
Effectiveness 

High H4 0.504 
-0.202 

0.254 
0.041 

BP <1 
BP>=1 

Knowledge 
Effectiveness 

Low H4 -0.731 
-0.394 

0.535 
0.155 

BP <1 
BP>=1 

Note: all values listed are significant at the  α = 0.05 level. 

Discussion 
 
In this paper we investigated the permeable nature of the organizational boundary with 
respect to organizational learning.  Using the Organizational Learning Systems Model 
(OLSM) (Schwandt, 1997) and building upon computational organizational theory (Carley & 
Prietula, 1994b) we precisely defined boundary permeability with respect to the amount of 
new information obtained in the environment and the number of agent interactions inside the 
organization’s boundary.  We then decomposed boundary permeability into constituent parts: 
information gathering efficiency, search intensity and knowledge diffusion effectiveness.  
Hypotheses were developed and tested based upon 5,500 artificial organizations which 
randomly evolved under controlled conditions. 
 
Until now, nonlinear models of the collective have for the most part contributed only 
metaphorically to theory building (Eden & Ackermann, 1998). With this analysis we showed 
directly the dynamic nature of a collective’s activities in the context of agent level 
interaction, especially in relation to organizational learning and planning (Eden & 
Ackermann, 1998; Mintzberg, 1994; Schwandt, 1997; Schwandt & Gorman, 2002). 
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The implications of results to theory 
 
Our results showed that the number of agents surviving in an artificial organization is related 
to the characteristics of the organization’s boundary.  Further, we showed that the nature of 
this relationship depends upon the level of turbulence in the external environment.  As 
expected, in stable environments, although some permeability is necessary for survival, in 
general, increasing permeability is always bad for survival.  As turbulence increases however, 
increased permeability helps survival of agents, up to a point, after which survival potential 
declines.  In effect, increasing permeability beyond a critical point allows too many agents to 
“leak out” and escape productive activity while providing little incremental benefit from 
learning. 
 
When boundary permeability is decomposed into its constituent variables the picture is less 
clear. Indeed, our results for the metric search intensity -- which describes agent boundary 
crossing activity -- mirrors the boundary permeability results.  This is particularly interesting 
in that search intensity, defined as the ratio of agent exits to knowledge diffusion events 
inside the organization, does not share any arithmetic factors with boundary permeability.   
Setting aside agent boundary crossings, however, the implications of learning activity outside 
the boundary as well as inside the boundary are far less clear from this research.  The non-
linear dynamics at work within the system complicate the analysis and limit the applicability 
of traditionally linear statistical techniques.   Future research is needed to understand the 
nonlinear dynamic relationships among information gathering efficiency, search intensity and 
knowledge diffusion effectiveness and how they contribute to boundary permeability and 
thus to organizational learning.   

Limitations 
 
This analysis modeled an organization as a complex system of adaptive agents.  It did not 
model the organization as a complex adaptive system.  Agents learn and improve their ability 
to produce collective output.  Thus the system improves its ability to exploit its existing 
capabilities.  It does not, adapt, however, in the sense that the system cannot adjust its 
boundary permeability, or any other structural element for that matter, in response to the 
environment.  By measuring the number of surviving agents, we use agent survival as a 
fitness measure and selected organizational forms (in the context of boundary permeability) 
that were most fit under various environmental states.  In this sense we used a population 
ecology (Hannan & Freeman, 1989) epistemology to study the structure of organizational 
boundaries.  
   
Until the action subsystems of the OLSM, that is, the meaning and memory (sensemaking) 
and action/reflection (goal referenced knowledge) subsystems (Schwandt, 1997), are 
modeled, the organization only “senses” its environment.  Its agents learn from this 
information, but the organization as a complex system cannot change its structure to adapt to 
the environment.  If an organization’s boundary permeability is too great for the environment, 
the system simply perishes.  Thus,  “sensing in concert” is distinguished from “acting in 
concert.”  The latter begins with sensemaking (Weick, 1995) from the meaning and memory 
subsystem and ends with the action and reflection subsystem (Schwandt & Marquardt, 2000).   
Beyond the sensing studied here, for learning to occur, the collective must also act to change 
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its internal configuration, to adapt to what is sensed, an aspect of organizational learning not 
studied here as left to future research.   

Future directions 
 
The results described support the possibility that boundary permeability could be a useful 
construct for organizational learning research.  The complementary nature of boundary 
permeability (BP) and search intensity (SI) offer alternative ways researchers could 
operationalize these constructs in laboratory and field research.  Although the constituent 
components of BP described showed mixed results, the decomposition also did no harm as SI 
results mirrored and in fact slightly improved those of BP.   
 
In addition, the assumption that agent interaction leads to information and knowledge transfer 
in every case -- while helpful in simplifying the analysis -- may have contributed to the 
apparent redundancy in the boundary permeability and search intensity metrics.  Future 
research that makes information and knowledge exchange less efficient may highlight the 
importance of the information transfer efficiency and knowledge diffusion effectiveness 
metrics to organizational learning.   We believe further exploration of these factors is 
therefore warranted. 

Concluding remarks 
 
The artificial society created in this study constitutes a significant step towards our ultimate 
goal: the computational representation of organizations that is on the one hand, realistic, and 
on the other simplified and idealized so as to become tractable.   
 
An organizationally realistic computational model is one that the informed observer would 
intuitively feel “looks like” what is happening in organizations, but at the same time, is 
rigorous in its depiction of the constraints and limitations of real organizational life.  
  
In sum, we believe the framework developed here could be a first step toward a canonical, 
organizationally realistic modeling approach. 
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