
OPEN SOURCE PROGRAMMER’S STRATEGIES TO COPE
WITH IDEOLOGICAL TENSIONS

Bertil Rolandssona, Magnus Bergquistb and Jan Ljungbergb, 1

a University of Borås
b University of Gothenburg

Abstract
In this paper we analyse how the increased use of open source software in companies affect
employed programmers’ work, which we theorize as part of a larger secularisation process. We
have studied both companies based on a more traditional proprietary model who are becoming
open source oriented, and SMEs built around open source business concepts. This change
results in a need for professional programmers to re-interpret open source within a new business
oriented context. We study what kind of strategies programmers develop to cope with these
contradictory systems and how it changes work roles and programmers’ approaches towards
open source community work.

Keywords: open source, programmers, strategies, secularisation

1. INTRODUCTION
Open Source software has within a few years changed large parts of the global software
industry by enabling radically new business models, organizational forms and commons
based platforms as a new foundation for value creation. From being almost entirely a
community issue, open source software has entered companies and public organizations
as an alternative or complement to proprietary software. This broader use of open
source software, methods and practices has resulted in that more programmers
employed by IT-companies, are confronted with open source in their work. Sometimes
this is a result of companies adopting an open development model, as a parallel to their
traditional proprietary model of production (Fitzgerald, 2006), and sometimes it is the
result of a more ad hoc practice of problem solving in various development projects.
Regardless of what strategy companies choose, programmers face a new situation where
they have to relate to the different norm systems interacting with each other: the more
ideological open source community norm system and the norm system of a more
traditional software development and business organisation model.

Most research about this development in software development has focused on firms
and their concern for how company and community interests can be combined
(Fitzgerald, 2006; Ven & Verelst, 2008; Dahlander & Magnusson, 2005). Few studies
have addressed what this development means for the individual programmer. Studies on
programmers have mainly focused on motivational issues and questions concerning
why programmers choose to engage in community-based open source software
development (Bates et. al 2002; Goosh et al., 2002; Hars & Ou, 2002; Hertel et al.,
2003). In this paper we bring the discussion further by elaborating on professional
employed programmers and their strategy for dealing with open source initiatives. We
have studied how employed programmers, who are confronted with open source in their
professional practice, cope with what will be referred to as secular tensions. This means

1 Corresponding author: Jan Ljungberg, Department of Applied Information
Technology, IT-university 412 96, University of Gothenburg, Sweden. Phone:
+46(0)31-7862746. Fax +46(0)31-772 4899. Email: jan.ljungberg@ituniv.se

that we analyse how basic assumptions, ideological values, forms of organization and
practices, associated with the open source movement, is challenged while professional
programmers try to re-interpret them within a new business oriented context.

Our main questions guiding us through this analysis are:

1. How do programmers that face various demands at work, originating from the
tensions between proprietary and open approaches, reinterpret the values that are
associated with the open-source movement?

2. What kind of strategies do they use to cope with the ideological tensions that
appear in their professional practice, when open source code becomes a
component in their software development?

2. FROM FREE SOFTWARE COMMUNITY TO OPEN SOURCE FIRM
From being a community issue, were hackers are producing code for other hackers,
open source software has entered companies and public organizations as an alternative
to proprietary software. The emergence of open source communities has created
important resources that companies can utilize, but rarely control. The development
from a free software and open source movement to a situation where communities co-
exist with firms that to different degrees engage in the communities provides a latent set
of tensions emanating from the different interests and value bases that could be found in
firms and communities. These tensions may be viewed as part of the employed open
source programmers’ everyday practices.

2.1 The Development of Free Software and Open Source
The roots of the free software and open source phenomenon go back to the hacker
culture of the early sixties (Levy, 1984), and the communities related to the Unix
operating system and the C programming language. Here programming skill, and the
sharing of solutions and code were highly valued. These core values were further
facilitated in the formation of the free software movement in the early eighties, with
initiatives like the GNU project (Stallman, 1984; 1985), the Free Software definition
(GNU Bulletin, 1986), and the Free Software Foundation. The GNU General Public
License (GPL) was constructed to ensure the recipients of computer programs the rights
of the free software definition, and that they are preserved even if the program is
modified (i.e. an inscription of the free software definition in copyright law). This could
encourage developers to contribute, since they may be confident that their work benefits
the whole world and remains free, rather than being exploited by software companies
that may not give anything back to the community.

Some developers found the ideological nature of FSF too zealous, i.e. viewing free
software as an end in itself (Raymond, 1999). In order to avoid these connotations, the
term open source was coined, indicating that open source is viewed mainly as a means
to an end of producing software of high quality. The Open Source Initiative (OSI) was
founded to support the new focus on technology rather than ideology. This more
pragmatic nature of the movement, downplayed the most ideological parts of the value
system, but also contributed in the diffusion of free and open source software. The
movement grew substantially, and included both large traditional software companies
(e.g. IBM, HP, Sun) and small companies that were founded on an open source business
model (e.g. Red Hat, Mandrake). New more permissive licenses compared to GPL (e.g.

BSD - Berkley Software Distribution, Välimäki, 2005), were used to make it easier for
open source and proprietary software to coexist. This diffusion of open source to a
commercial context has been described as a transformation of open source software into
a more mainstream and viable form (Fitzgerald, 2006).

Despite the differences, the open source and free software communities share many of
the core values. They place a high value on freedom of speech, regarding programs as
communal resources, free information sharing as a right, an ideal and a practical
strategy (e.g. See Himanen, 2001; Szczepanska, Bergquist and Ljungberg, 2003). Other
values that are held high are helping others so they may solve new problems instead of
readdressing old ones; technical knowledge and skill, learning for its own sake
(Raymond, 2003; Stewart & Gosain, 2006); voluntary cooperation (Stallman, 1992) and
reputation. The status, fame and reputation that a contribution could give are understood
as one of the main motivational forces within the developer-communities (e.g. see
Raymond, 1997; Bergquist and Ljungberg, 2001; Bergquist, 2003; Zeitlyn, 2003).

2.2 The Relation between Open Source Communities and Firms
The rationale for open source firms and open source communities to engage in open
source software is different (Dahlander & Magnusson, 2005). Firms are utmost driven
by maximizing profits, while open source communities are driven by producing public
goods. The motivations for firms to engage in open source communities are mainly of
economic and technical nature, and do not correlate to the social motivations of
individual programmers (Bonaccorsi & Rossi, 2006). Utilizing open source means to
capture value created by others, while contributing back to the community is to take part
in the value creation and cultivation of the community. The communities thus could be
seen as resources possible to utilize by companies. This opens up for potential tensions
in the relation between companies and communities. Dahlander & Magnusson (2005)
describe three kinds of relationships between communities and companies: i) a parasitic
relation were the firm will not give back but try to avoid direct conflicts; ii) a symbiotic
relation were both firm and community will gain; and iii) a commensalistic relation in
using the resources while keeping the involvement in developing the resources to a
minimum without obviously braking the norms.

While a large portion of recent open source research has focused on how company and
community interest can be combined (Fitzgerald, 2006; Ven & Verelst, 2008;
Dahlander & Magnusson, 2005; O’Mahony, 2003), few studies have addressed what
this development means for the individual employed programmer. Most studies on
individual programmers have focused on motivational issues concerning why
programmers choose to voluntarily engage in community-based open source software
development (Bates et al., 2002; Goosh et al., 2002; Hars & Ou, 2002; Hertel et al,
2003). In this paper we focus on the professional programmers who deal with open
source in their daily work practice, trying to make up strategies to handle the ideological
tensions that may occur while working in between these different value systems.

3. SECULARIZATION AND TENSIONS – A THEORETICAL FRAMEWORK
We will analyse how ideological values and practices, associated with the open source
movement, is challenged while programmers try to re-interpret them within a new
business oriented context. More precise, professional open source programmers are
understood as gradually secularized. This means that we touch upon a classic theme that
usually refers to the shrinking impact of religion in modern society. Traditional values

and communities are then questioned due to a rationalization process, in which
individuals are organized and more aware of possible consequences of their actions by
the help of formal functions and routines. In accordance with Weber, we may describe it
as a process in which work continuously gets more marked by bureaucracies,
demanding that we engage less in faith and more in calculations of what type of
technology we need in order to achieve planned goals (Weber, 1978). Ideals of
instrumental expertise gains strength in connection to an increased emphasis on
economical achievements and our capability to trade products and services on markets.

Weber stress that such bureaucratic hierarchies and markets give rise to an emphasis on
impersonal relations, which, if they become a goal in themselves create indifference to
shared values and value-related goals (Tambiah, 1990:12). An increased emphasis on
formal hierarchies of work, knowledge and economy, may mean that we become
instrumental specialists without spirit and heart, indifferent to collective values (Weber,
1978). Now, we could claim that our knowledge and how we value it, under such
circumstance also will be constantly under scrutiny. We will keep on testing our
standpoints in a pragmatic way, which according to Habermas also means that we
instead of just devaluing our ideals will focus upon them. That is, we will face a process
in which we reinterpret our value-based perspectives, so they fit with a rational view on
life. Instead of a one-way process towards what could be described as a technocratic
perception of work, secularization then means that we experience tensions between
instrumental and value-based beliefs (Habermas, 2002:16).

In this paper, similar tensions are in focus within the context of open source.
Secularization is understood as a tensed process in which programmers struggle with
open source norms, values and practices while trying to re-interpret them within a new
business oriented context. It is of course impossible to set a start date for when a "pure"
non-secularized state of open source can be found (or if it ever existed). Instead we will
describe this process as a gradual reformation and reinterpretation of basic values, forms
of organization and practices, associated with what is recognized as open source. We
ask ourselves: what type of strategies do programmers use while trying to cope with the
ideological tensions that appear in their professional practice, when open source code
becomes a component in their software development?

To answer this question we will look at how the programmers describe the internal
organization of software development; e.g. does their mode of work in any sense remind
us of the bureaucracy Weber sketched (Weber, 1978). Likewise, we will look at how
these programmers refer to external relations, e.g. concerning economical achievements
and how market relations are associated with their work as programmers. These are
aspects that to a certain extent remind us of concepts like hierarchies and markets,
frequently pointed out as ideal typical components in rationally calculated modern
organization of work (Ouchi, 1980; Tilly, 1999). In addition, the open source movement
is associated with communities resembling a third ideal-typical organizational
component described as an alternative to hierarchies and markets, namely networks
(Podolny & Page, 1998). Networks are said to consist of relations that are personal,
egalitarian and marked by informal power relations. Instead of formal bureaucrats,
network members are described as engaged in cultivating and controlling their
community activities together according to less formalized goals and values (cf. Tilly,
1999; Podolny & Page, 1998; Douglas & Wildavsky, 1983:138f). In our case, such a
cultivating strategy could cause ideological tensions between collective values of
openness and bureaucratic or market demands on instrumental proceedings of software
development. However, we may also find programmers utilizing open source code

without being directly involved with open source communities and the ideological
tensions that may appear.

4. METHOD
We have done qualitative interviews with 30 programmers working at two types of
companies: traditional large proprietary software firms that gradually have incorporated
open source software (twelve interviews) and so called pure-play firms that are formed
around an open source business model, typically small entrepreneurial service oriented
consultancy firms (eighteen interviews). Six of the interviews were made with female
programmers professionally engaged in open source software development (from both
kind of companies). When talking about ”programmer” we refer to a wide definition,
including designers, coders, system developers, software engineers, software architects
and to some extent project leaders.

Tams-analyzer was used to code the empirical data. Alternating between theory and
content generated detailed codes that visualised how the relations between programmers
and the open source movement were supposed to be understood (Ragin, 2000). Codes
that were both theoretically anchored in concepts like hierarchies, markets and
networks, and empirically grounded in our interviews, were in this way distinguished
and used in the analysis (e.g. content of work, pragmatism, openness) (Miles &
Huberman, 1994:271).

5. RESULTS
The coded data was developed into four distinct categories that will be presented in this
section. Our results indicate that the programmers face different demands on being
pragmatic, associated with different ways of reinterpreting their view upon open-source
software development. Sharing was important for all interviewed programmers. They
appreciated the possibility to download and study the source code, to report bugs and to
be active in forums. Still differences coincided with whether the tensions were
expressed by programmers from companies with a history in proprietary software that
gradually have moved to include some open source code, or whether they came from
SMEs that built their business models entirely on open source software. There were also
distinct differences between SMEs that only made use of open source code and those
that were in charge of or had a close collaboration with a community. Finally, we
traced two different strategies for reinterpreting open source ideology within this new
business context among the firms that had close collaboration with a community. In the
following sections we will more thoroughly describe the content of these strategies.

5.1 Values of Openness, Technological Quality and Juridical Constrains
Programmers working at companies that had had a traditional proprietary approach to
software development but gradually had included some open source software, described
openness and access to the source code as something desirable. They saw themselves as
researchers in a lab exploring new technological possibilities. In accordance with such
values, they appreciated technological expertise as well as the idea of sharing expertise
and code with each other. Against these pro-openness values stood a judicial procedure
based on the company’s need to protect intellectual property rights, which sometimes
was directly hindering openness. A tension identified related to openness and
contradictions between the inside of the company and the outside with references to the
open source community. An innovation that could lead to a business opportunity

resulted in a patent. When this was the case nothing could leak outside the organization.
A GPL license would jeopardize such business opportunities. Most of the interviewed
programmers were well aware of license problems with e.g. GPL and organisational
constrains at work for sharing code with communities. This problem was regulated by a
juridical document that had to be filled in by every programmer who was considering
using an open alternative in the system. The document was cleared by the patent
department, and if no risk was identified, the programmer could choose the open
alternative..

The engineers’ main strategy to manage different tensions and demands was to
contribute to a cutting edge technological development. Access to open source software
and documentation made out an important resource in this development. By using open
source code they as programmers got access to an environment where different software
components were not just developed in a rather intensive pace, but also discussed and
tested by a huge amount of people. It can be claimed that they saw their work as
contributions to a wider technological development, which everyone would profit from
in the long run, but not primarily by sharing code. The programmers never contributed
to any community based software development. The reason put forward was that their
potential contributions were so special that they would be useless for other
programmers. By using open source code, they could as professional programmers
identify themselves with something good, but they were mainly interested in problem-
solving capabilities and to deliver high quality solutions.

Within this rather pragmatic approach to open source, we can sum up some of the
ideological tensions. Generally the respondents wanted to be god programmers and
supported an improved sharing of and access to the source code. But, such sharing of
source code had to be strategically constrained by the company, which sometimes made
the programmers complain about formal, slow and bureaucratic procedures of work.
Many of them also expected the patent department to be reluctant to their use of open
source code, due to fear of being sued for not following demands of licenses demanding
access to the source code. That is, even if the programmers appeared to be focused upon
solving problems in their work rather than dealing with the ideological problems of the
open source movement, they had to relate to juridical tensions between what could and
what could not become open source in the software development of their companies.

5.2 Recognising both Values of Openness and Customer Demands
Moving to SMEs that built their business models entirely on open source software a
wider variety of tensions was found, due to the fact that the companies can be
diversified based on their relationship to the open source movement and community
driven software development. A common approach among such SMEs was to be
relatively instrumental when it came to providing code to communities. They promoted
the use of open source and often wanted to associate themselves with the principles
behind the movement, but without necessarily being an active part in open source
communities. The companies used available open source projects as a raw material for
their offers to customers. The idea was to create services that include open source
systems and applications, or part of applications, where the company added value to the
project and built a business model around this.

Many of the programmers had a history as engaged open source contributors or
advanced users, and were in some cases still active. Working for an open source
oriented SME was a way to turn a previously private interest into a professional. These

programmers regularly expressed a direct relationship to the open source movement and
it’s ideology. In some cases, they had applied for their present job because they were
attracted by the company’s open source profile. Some of the programmers also
participated in open source communities on a private basis. For these programmers,
with an ideological background in the movement, a tension was created between a purist
approach - pro open source in its most non-compromising form - and the kind of
demands that were put on the company as an actor in a service and customer oriented
competitive branch.

Compared to the respondents who worked at companies with a history in proprietary
software that gradually had included open source software, these programmers were not
so focused upon internal conditions or technological problem solving in their work
groups. They rather tackled their ideological tensions by emphasising an identity that
related to customer needs. Their work was conditioned by their capacity to come up
with tailored software solutions and high quality support. For them the advantage with
open solutions was described as improved opportunities to work closer with customers.
It was seen as an affordable and efficient mode of producing high quality software
together with their clients. Instead of starting a new project by writing lengthy
specifications, open source made it easier to co-operate with the customer based on
prototypes and iterations.

In this way, ideological issues of sharing, free access to source code and quality issues
related to specific open source software development methods became intertwined with
a client and business oriented rationality. By being able to use freely available open
source code in a commercially driven customer oriented project, the developers would
not primarily share code, but improve their co-operation with the customer and thereby
focus directly on generating value from open source. In this context, absence of
proprietary claims was seen as a reason to why trust could much easier be established
between the company and the customers. As advocates of open source code they did not
have to defend the solutions as had it been an in-house developed product. Hence, it
provided them with opportunities for a more objective and critical role, and thereby
achieved both higher quality in their software solutions and an honest face towards the
customer. Furthermore, several respondents pointed to the fact that an open source
environment would secure that the application or system could live on no matter what
happened with the company.

Summing up, we can conclude that the programmers described an ideological position
based on having an honest and pragmatic relation both to the world of community based
open source and to the customer, and that this relation also appeared to be crucial for
how they made sense of their work with open source code in a commercially driven
company. In accordance, some of them claimed that one of the most important
advantages with open source programming was that they could avoid being a
salesperson and focus on advocating benefit and usefulness for the customer, which
they saw as compatible with the more ideologically driven open source development
where many of the interviewees had their background. Even if sharing was seen as
something positive, and licenses demanding free access (such as GPL) were preferred,
they declared that they also could choose proprietary alternatives if the customer opted
for it.

5.3 Coping with Market Solutions and Community Contributions
In our study, we also found programmers who worked at SMEs that managed or
actively took part in open source communities. These programmers considered
themselves as highly capable of influencing the open source software development they
engaged in. They saw it as a part of their job to contribute with solutions as well as to
follow open source licenses, norms and values. The respondents described themselves
as persons devoted to their work, with difficulties to separate their private interests from
their professional role. In some cases they also had founded and remained project
owners of the community on which they based their open source business.

Contrary to other companies where open source was seen as an opportunity to tailor
software in accordance with customer demands outside the communities, these
programmers stressed the importance of looking primarily at the development going on
within their community and argued that the customers had to adapt their needs to the
community agenda. This, it was argued, was best for the customers in the long run since
it provided them with the best software quality.

Tensions reoccurred among programmers who worked at companies that were in charge
of or had close collaboration with an open source community. When it came to actual
contributions of code, programmers who collaborated closely with a community also
had two different and distinct ways of understanding tensions between interests of the
company and of the community, coinciding with how the company organized their
engagement in their respective communities. This difference can be illustrated by
referring to three different companies that had been formed around a community,
functioning as project owners, and to which they made considerable contributions.
These companies represent diametrical opposite positions versus open source.

The first example is a company that was formed around an open source initiative. Since
the product was targeting a small specialised and globally diverse customer segment,
open source became a business strategy to create a critical mass around the product,
which was free to download and use. However, if the users wanted to contribute or in
other ways affect the development of the product, they (preferably companies) paid a
membership fee in order to get the opportunity to contribute with code. Besides having
the possibility to affect the development of the product in favour of own interests, the
customer could establish a good reputation through the community as a leading
innovator. This community had attracted large multinational companies. The roles had
been diversified in both contributors and their customers. The company that owned the
project acted as a host and facilitated the different activities and interests from other
members. The customers were part of the community. The programmers who worked at
these companies had an ideological interest in open source, mainly concerning the
spreading of code, and saw no major problem in the arrangement. They saw themselves
as engaged in a community willing to share code, but also wanting to make money out
of their engagement. They were well aware of the importance of choosing the right
license so that viral effects of GPL was avoided, which implies that they tried to handle
certain tensions between company interests and an ideology of openness.

This should be compared with the explicit ideological tensions found among
respondents working in two other firms that were owners of communities organised
around personal networks consisting of programmers. For these programmers the
primary concern was to engage in a movement contributing to a wider change in
society. Developing code in a community was for them a matter of taking part in a
political project, in which it was important to show that they could both volunteer to

offer competence in the struggle for something good as well as profiting from doing
that. They wanted to demonstrate that it was possible to combine both ideological and
instrumental interests associated with taking part in a community based open source
development. However, this ambition generated a tension between business and
common good.

In general the tension between company and community interests became more
pronounced among programmers working in companies engaged in network-based
communities. In some cases, this tension also appeared to be associated with ideas that
potentially could be recognised as somewhat contradicting. For instance, there were
programmers who described both how they struggled to prove that investments of
money and time in community based open source development were paying off, as well
as how important it was for them to recognise the development going on in the
community before looking closer at specific customer demands. Contrary to the
programmers working at the firm engaged in a company based community that also
included some of the customers, they described the customer as an external actor who
had to be convinced about subordinating their interests in relation to the community
development agenda. One of the respondents described how he repeatedly had to inform
and establish agreements with customers to guarantee that their final work would
become contributions to the community.

6. DISCUSSION
As argued before we use the term secularisation to focus on the general process by
which open source code, development, values and norms are integrated into contexts
that previously have not been based on open code and the community spirit of openness
and collaboration that is recognised as characterising open source software
development. From the perspective of open source programmers, secularisation then
takes the form of different tensions between (more or less conscious) contradicting
systems of belief.

If we analyze how programmers coped with ideological tensions created while they
developed open source software within a business context, we can conclude that they
expressed different strategies depending on differences in internal organization and
external relations, as well as in what type of relationship with the open source
community they referred to. These strategies do not necessarily exclude each other;
firms may host a combination of them. However, they emanate from tensions created
either in companies with a history in proprietary software that gradually have included
open source code, or within SMEs that built its business models entirely on open source
software. We have also found differences between SMEs that made use of open source
code and those firms that had a close collaboration with a community. In addition, there
were differences among firms that had close collaboration with a community.

In the following sections we will more closely analyze the external and internal
organizational relations, and how these shape the use of community resources; i.e. open
source code. Based on this we elaborate on what kind of strategies developers create.
We will distinguish four different strategies (described in table 1).

External
relations

Tailors on the
market

Cultivating the
community market

Firm Internal
organization

Hierarchic utilizers

Cultivating the
community and
enlightening the
customer

Utilizing community
resources

Cultivating community
resources

Community

Table 1. Programmers' strategies in relation to organizational structure in firms versus
community.

6.1 Hierarchic utilizers
The lower left quadrant in the table above mirrors the data from programmers who were
employed by companies that used to have a traditional and proprietary approach to
software development. They appeared to be skilled, had a developed interest in
technology, and believed that open source could improve technical quality. However,
the programmer freedom to make use of it was constrained by the company's internal
organization and juridical considerations crucial while defining the programmer's
technical needs (cf. Ouchi, 1980). As a consequence, they developed a strategy that
concerned on the one hand achieving the possibility to make autonomous design
choices based on technical preferences, and on the other hand coping with the internal
structure of the company and it’s juridical constraints. Their strategies concerned
opportunities to fulfil personal needs and goals in the process of innovating their own
work in relation to locally defined peers (at work), which also meant that they utilized
resources provided by the community, rather than cultivating open source communities.
Most of the programmers did recognise open source ideals as admirable, but even
without open source they would see themselves as problem solving experts contributing
to a common good technological development. Open source provided them with high
quality code, but they were not devoted to the idea of openness as such. Any
environment offering high quality code and similar technical benefits would support
their strategies.

The programmers made use of open source code because it suited their demands on
handling predefined problems and tasks, not because they wanted to change the world.
Neither did they consider customer demands or to contribute back to open source
communities. They were utilizers aware of their functions within a rather formalized
hierarchy (cf. Podolny & Page, 1998; Tilly, 1999). In addition, they knew that they only
shared code indirectly, by the help of a consultancy firm acting as a buffer towards
external demands on the source code, and that potential clashes between claims on open
access and their companies business model, involved formal procedures of the patent
department. The programmers referred to FOSS-documents used for deciding what
open source components could and could not be used. In this way, they distanced
themselves from ideological demands embodied in e.g. licenses. But, the formal and
hierarchically organised procedures also reminded them of ideological issues of
openness and free access to the source code (cf. Luanne, 2002).

6.2 Tailors on the market
The upper left quadrant contains strategies among programmers working in SMEs that
build their business models entirely on open source software. These programmers did
not refer to patent departments or FOSS-documents. A more extrovert approach could
be found, in which they were less occupied with problems distributed to them within a
formal and hierarchic organization. Reminding us of Raymond (1998), we might say
that they were parts of a bazaar. Instead of relying on in-house procedures for defining
tasks and controlling code, they engaged in constant negotiations with the customers
about the content and quality of the code, and had a pragmatic view upon choices of
licenses that were more or less exclusive to proprietary code. The business idea for the
company harmonized with the strategies of the programmer who had a clear customer
focus. In comparison with programmers who worked at companies dominated by
proprietary approaches, they were externally oriented consultants tailoring software and
business propositions close to the customer, on an informal and individual basis.

Several of them made ideological statements e.g. about freedom of information as a
common good (Castells, 1996). Nevertheless, for these firms open source was an
important strategic asset in order to compete on the market, and the programmers
seemed to have made this approach their own strategy. But, there was a tension between
open source ideals and commercial demands, which they handled by claiming that the
customer became less dependent on one supplier of software. They justified their use of
open source by referring to the importance of sharing and how they by the help of open
source could achieve trustworthy customer relations; i.e. they expressed a market
strategy (Podolny & Page, 1998), based on close relationships with customers. If we
consider the programmers’ relation to open source communities, their strategies also
remind us of the programmers employed by companies with a traditional proprietary
approach. They mainly viewed open source code as a resource to utilize; open source
was perceived as a high quality input helping them to solve problems defined by
customers, rather than as an environment to cultivate in its own right.

6.3 Cultivating the community market
Turning to the right column in the table we find two strategies articulated by the
programmers working for SMEs that actively took part in open source communities. In
both cases content and quality of the code is something that was negotiated and
guaranteed by the community developing software. Contrary to former cases where
programmers utilized and certified the quality of open source code within an internal
hierarchy, or as a strategic advantage to communicate to customers, these programmers
were actively cultivating open source arenas by sharing and contributing back to their
community (Raymond, 1999; Bergquist & Ljungberg 2001; Zeitlyn, 2003). However,
there were differences among these programmers as well. For instance, in the upper
right quadrant the programmers expressed strategies taming ideological tensions
between commercial and business interest, by building an exclusive community of
developers and customers who paid a fee enabling them to contribute to the software
development. The community in this case became a mean for marketing and attracting
customers to take part in the software development process. Even if the programmers
can be described as cultivators of an open source community, this strategy thereby
included market logic and a clear customer focus. In accordance, they preferred licenses
facilitating combinations of open source and proprietary code. Their strategy could be
described as a matter of cultivating an open consortium or a community market (Ouchi,
1980; Podolny & Page, 1998).

6.4 Cultivating the community and enlightening the customer
Finally in the lower right quadrant we find programmers expressing a strategy based on
the expertise of the community. This strategy was generally founded on conventional
open source ideology and ideas of freedom of information (O'Mahony, 2003; Castells,
1996), and that this focus would guarantee a quality of code that everyone profited from
in the long run. In order to achieve something that is a common good, demands of
specific customers had to be secondary. In accordance, tensions between community
and business interests were handled by prioritising the community and it's capability to
develop high quality software that as many as possible would profit from in the long
term (including the firm). Within this strategy a hierarchy was created where the
community overarched the customer. Cultivating the community was the ultimate goal,
and business and customers were means to achieve this. Therefore, the quality of open
source software should first of all be guaranteed by the review process and the informal
hierarchy that existed within the open source community, and then be used to solve
customer problems. This was also a community strategy in which personal networks of
developers played a key role (Podolny & Page, 1998). However, the priority of the
community meant that the programmers had to persuade customers that they would
achieve more if they saw software development as a long-term project owned by them.
The programmers had to convince the customer to trust the expertise within their open
source community.

7. CONCLUSIONS
We have used the term secularisation to describe how open source values and norms are
questioned due to demands of an instrumental and business minded approach;
conventional open source ideology is assumed to have a shrinking impact (Fitzgerald,
2006). Following a Weberian logic, programmers will then engage less in ideological
concerns about what is good or bad software development, and more in calculations of
what type of technology they need in order to achieve preferably economical goals
(Weber, 1978). Ideals of instrumental expertise will gain strength in connection to an
increased emphasis on hierarchically organised capabilities, and on trading products and
services on the market (cf. Podolny & Page, 1998).

In accordance, we may conclude that our respondents referred to open source code as a
resource that could be utilized in an instrumental manner. We may then also confirm
previous research stressing that the development process is becoming less bazaar like as
strategic planning becomes paramount (Fitzgerald, 2006; Ven & Verelst 2008). Even if
the programmers working for SMEs producing tailor-made software could be part of a
bazaar, they also illustrated a secular approach supporting claims that focus in
companies starting to profit from community based software development easily change
from developing products together with open source communities to selling it to
customers (Dahlander & Magnusson, 2005). Thus, our findings support the
identification of secularisation in how open source software development is understood
and practiced by programmers in the studied companies.

However, this secularisation appears to be a tensed process. Individual programmers
still struggled with open source norms, values and practices, while trying to re-interpret
them within a new business oriented context. Many of the programmers were testing
ideological standpoints in a rather pragmatic way; instead of just devaluing their ideals
they focused upon open source ideology (cf. Habermas 2002:16). They also appreciated
the freedom to download and study the source code, to report bugs and to be active in
forums, asking and answering questions (Raymond, 1999; Bergquist and Ljungberg,

2001; Bergquist, 2003). Some of the programmers cultivated conventional open source
communities or what can be described as community markets. We may also point out
that to the programmers working for companies that had a proprietary approach to
software, open source ideology cannot be described as vanishing. In their case it was
something new, and even if they had a distant relationship to ideological standpoints on
contribution, freedom of information, common good etc., the administrative procedures
constraining their use of open source reminded them of open source norms and values.

Hence, instead of a one-way secularisation process towards a technocratic perception of
software development, the programmers dealt with tensions between instrumental and
value-based standpoints. It can also be stressed that by handling these tensions the
programmers developed new ways of organising work with software development. The
practices of software development, which were identified and termed "hierarchic
utilizers", "market tailors", "market cultivators" and "community cultivators", illustrate
innovative ways of coordinating work with open source code in a company context (cf.
Bonaccorsi & Rossi, 2006).

By saying that, we point out once again that much previous research has focused open
strategies on an organizational level in firms, and research about individuals has focused
motivation for contributing to communities. In this paper we show how the relationship
between individual and organizational arrangements affect how professional
programmers within a business context engage in developing open source, and how a
secular approach to open source can be understood as motivating and innovative for the
individual programmer.

REFERENCES
Bates, J., Di Bona C., Lakhani, K.and Wolf, B. (2002) The Boston Consulting Group
Hacker Survey.

Bergquist, M. (2003) ‘Open Source Software Development as Gift Culture: Work and
Identity Formation in an Internet Community’, in Garsten, C. & Wolff, H. (eds.), New
Technologies at Work. People, Screens and Social Virtuality. Oxford: Berg Publishers.

Bergquist, M. and Ljungberg, J. (2001) The power of gifts: organizing social
relationships in Open Source communities. Information Systems Journal, 11 (4), 305-
320 pp.

Bonaccorsi A. and Rossi C. (2006) “Comparing Motivations of Individual Programmers
and Firms to Take Part in the Open Source Movement: From Community to Business”,
Knowledge, Technology & Policy, Winter 2006, vol. 18 nr. 4, pp. 40-64.

Dahlander, L. & Magnusson, M.G. (2005), "Relationships between open source
software companies and communities: Observations from Nordic firms", Research
Policy, vol. 34 nr. 4, pp.481-493.

Douglas, M. & Wildavsky, A. (1983) Risk and Culture – An Essay on the Selection of
Technological and Environmental Dangers, Berkeley, CA: University of California
Press.

Fitzgerald, B. (2006), "The Transformation of open source software", MIS-Quarterly,
vol. 30 no. 3, pp. 587-598.

GNU's Bulletin, Volume 1 Number 1, page 8, February 1986. Available at
http://www.gnu.org/bulletins/bull1.txt.

Ghosh R., Glott R., Krieger B., Robles G. (2002) Survey of Developers. Free/Libre and
Open Source Software: Survey and Study. FLOSS. Final Report. Intemational Institute
of lnfonomics. Berlecom Research GmbH.

Habermas, J. (2002) Religion and Rationality - Essays on Reason, God and Modernity,
Cambridge, Oxford: Polity Press.

Hars A.. and Ou S. (2002) “Working for free? Motivations for participating in Open
Source projects”. Internatiotial Journal of Electroiiic Commerce vol. 6,pp. 25-39.

Hertel G.. Niedner S.. Herman S. (2003) “Motivation of software developers in Open
Source projects:an Internet based survey”. Research Policy, vol. 32nr.7.

Himanen, P. (2001) The Hacker Ethic and the Spirit of the Information Age. London:
Secker and Warburg.

Klein, H.K. & Myers M.D (1999) "A set of principles for conducting and evaluating
interpretive field studies in informations systems", MIS-Quarterly, vol. 23 no. 1, pp. 67-
94.

Levy, S. (1984) Hackers: heroes of the computer revolution. Harmondsworth,
Middlesex: Penguin Books.

Miles, M. B., & Huberman, M. A. (1994). Qualitative data analysis: An expanded
sourcebook (2nd ed.). Thousand Oaks: Sage.

O'Mahony S. (2003) “Guarding the commons: how community managed software
projects protect their work”. Research Policy, vol. 32nr.7, pp. 1179-1198.

Ouchi, W.G. (1980) "Markets, Bureaucracies, and Clans", Administrative Science
Quarterly, vol. 25, pp 129-141.

Podolny J.L & Page K.L. (1998), "Network forms of organization", Annual Review of
Sociology, vol. 24, pp. 57-76.

Ragin. C. C. (2000). Fuzzy-set social science. Chicago: University of Chicago Press.

Raymond, E.S. (1999) The Cathedral and the Bazaar: Musings on Linux and Open
Source by an Accidental Revolutionary. O’Reilly and Associates, Sebastopol, CA.

Raymond, E. S. (ed.). "The Jargon File," December 29, 2003. Available online at
http://www.catb.orgijargon/; version 4.4.7.

Stallman, R. (1985) “The GNU Manifesto”, Dr. Dobb's Journal of Software Tools. vol.
10 nr. 3.

Stallman, R. (1992) "Why Software Should Be Free,"' April 24,1992 Available online at
http://www.gnu.org/philosophy/shouldbefree.html.

Stewart,K. J. and Gosain, S. (2006) “The Impact of Ideology on Effectiveness in Open
Source Software Development Teams”, MIS Quarterly, vol. 30 no. 2, pp. 291-314.

Szczepanska, A.M., Bergquist, M. and Ljungberg ,J. (2005) ‘High Noon at OS Corral -
Duels and Shoot-Outs in Open Source Discourse’, in Feller, J., Fitzgerald, B., Hissam,S.
A. and Lakhani, K. R. (eds.), Perspectives on Free and Open Source Software,
Cambridge, Mass.: MIT Press.

Tambiah, S.J. (1990), Magic, Science, Religion, and the Scope of Rationality,
Cambridge: Cambridge University Press.

Tilly, C. (1999) Durable inequality, Los Angeles, London: University of California
Press.

Välimäki, M. (2005) The Rise of Open Source Licensing: A Challenge to the Use of
Intellectual Property in the Software Industry, Helsinki: Turre Publishing.

Weber, M. (1922/1978), Economy and Society. London: University of California Press.

Ven, K. & Verelst, J. (2008), "The impact of ideology on the organizational adoption of
open source software", Journal of Database Management, vol. 19 nr. 2, pp. 58-72.

Zeitlyn, D. (2003) “Gift economies in the development of open source software:
anthropological reflections”. Research Policy, vol. 32 nr. 7, pp. 1287-1291.

