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How Inefficient is the 1/N Asset-Allocation Strategy?

Abstract

In this paper, we compare the out-of-sample performance of the rule allocating 1/N to each of
the N available assets to several static and dynamic models of optimal asset-allocation for ten
datasets. We devote particular attention to models the literature has proposed to account for
estimation and model error. We find that the 1/N asset-allocation rule typically has a higher out-
of-sample Sharpe ratio, a higher certainty-equivalent return, and a lower turnover than optimal
asset allocation policies. The intuition for the poor performance of the policies from the optimizing
models is that the gain from optimal diversification relative to näıve diversification under the 1/N
rule is typically smaller than the loss arising from having to use as inputs for the optimizing models
parameters that are estimated with error rather than known precisely. Simulations show that
the performance of optimal strategies relative to the 1/N rule improves with the length of the
estimation window, which reduces estimation error. For instance, for the case where wealth can
be allocated across four risky assets with an average cross-sectional annual idiosyncratic volatility
of 20%, it takes an estimation window of 50 years in order for the classical mean-variance policy
implemented using maximum-likelihood estimates of the moments to outperform 1/N . But if the
average idiosyncratic volatility drops to 10%, the length of the required estimation window increases
to 500 years; and, when the number of assets increases to 100 while average idiosyncratic volatility
is 20%, the length of the required estimation window is more than 1,000 years.

Keywords: Portfolio choice, asset allocation, investment management.
JEL Classification: G11.
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1 Introduction

In about the 4th century, Rabbi Issac bar Aha proposed the following rule for asset allocation:1

“One should always divide his wealth into three parts: a third in land, a third in merchandise,
and a third ready to hand.” After a brief lull in the literature on asset allocation, there have been
considerable advances in the last fifty years.2 Markowitz (1952) identified the optimal rule for
allocating wealth across risky assets in a static setting. Tobin (1958) showed how the optimal
portfolio would consist of only two funds if the investor could hold a riskfree asset in addition to
risky assets, while Sharpe (1964) and Lintner (1965) explained that in equilibrium the risky-asset
portfolio would be the market portfolio. Samuelson (1969) and Merton (1969) showed that these
portfolio rules would be optimal even in a multiperiod setting if the investment opportunity set is
constant. Merton (1971) determined the optimal portfolio policies when the investment opportunity
set is stochastic.

Implementing empirically the portfolio policies suggested by the theoretical models described
above requires one to first estimate the parameters of the model3 for a particular set of asset
returns and then solve for the optimal portfolio weights.4 Traditionally, this estimation has been
done using methods from classical statistics such as maximum likelihood, ordinary least squares, and
generalized methods of moments. But portfolios constructed using point estimates from classical
econometric methods have extreme weights that fluctuate substantially over time.5 One approach
adopted in the literature to deal with these problems has been to use Bayesian “shrinkage” estima-
tors that incorporate a prior.6 A second approach, proposed by Black and Litterman (1990, 1992),
combines two sets of priors—one based on an equilibrium asset pricing model and the other based
on the subjective views of the investor. A third approach imposes portfolio constraints prohibiting
shortsales (Frost and Savarino (1988) and Chopra (1993)), which Jagannathan and Ma (2003) show
can be interpreted as shrinking the extreme elements of the covariance matrix. Recently, Michaud
(1998) has advocated the use of resampling methods.7

Our objective in this paper is to evaluate how inefficient it is to use the näıve 1/N asset-
allocation rule, where 1/N is allocated to each of the N assets available for investment, rather than
static and dynamic models of optimal asset allocation. We consider two versions of the 1/N rule:
(i) the investor constantly rebalances the portfolio in order to maintain the 1/N allocation over

1Babylonian Talmud: Tractate Baba Mezi’a, folio 42a.
2For a detailed survey of this literature, see Campbell and Viceira (2002) and Brandt (2004).
3The parameters to be estimated in the case of static portfolio models are the expected returns vector and

the variance-covariance of returns matrix, while for models of dynamic portfolio choice one needs to estimate the
parameters for the processes driving the riskfree interest rate, expected returns on the risky assets, and the volatilities
and correlations of the risky asset returns.

4Recent work has focused on either deriving explicit analytic expressions for the optimal portfolio policies for
particular specifications of the stochastic investment environment opportunity set, as in Brennan and Xia (2000,
2002) Campbell and Viceira (1999, 2001), Campbell, Chan, and Viceira (2003), Campbell, Cocco, Gomes, and
Viceira (2001), Chacko and Viceira (2004), Kim and Omberg (1996), Liu (2001), Skiadas and Schroder (1999),
Wachter (2002), and Xia (2001) or using numerical methods to solve these models, as in Balduzzi and Lynch (1999),
Bansal, Dahlquist, and Harvey (2004), Brennan, Schwartz, and Lagnado (1997), Lynch (2001), and Lynch and
Balduzzi (2000).

5For a discussion of the problems entailed in implementing mean-variance optimal portfolios, see Hodges and
Brealey (1978), Michaud (1989), Best and Grauer (1991), and Litterman (2003).

6A detailed description of the Bayesian models is provided in Sections 2.2.3 and 2.2.4.
7Scherer (2002) describes the resampling approach in detail and discusses some of its limitations, while Harvey,

Liechty, Liechty, and Müller (2003) discuss other limitations and provide an estimate of the loss incurred by an
investor who chooses a portfolio based on this approach.



time; and, (ii) the investor allocates 1/N at the initial date and then holds this portfolio until the
terminal date (“buy-and-hold”).

There are several reasons for studying the 1/N asset-allocation rule. One, it is easy to imple-
ment because it does not require any estimation or optimization. Two, despite the sophisticated
theoretical models developed in the last fifty years and the advances in methods for estimating the
parameters for these models, investors continue to use such simple allocation rules for allocating
their wealth across assets. For instance, Benartzi and Thaler (2001) and Liang and Weisbenner
(2002) document that investors allocate their wealth across assets using the näıve 1/N -rule.8 There
is evidence also that investors often take the “path of least resistance” and exhibit inertia when
making investment and rebalancing decisions. For instance, in allocating their wealth in pension
schemes, employees often accept the default asset allocation decision made by employers (Madrian
and Shea (2000) and Choi, Laibson, Madrian, and Metrick (2001)), and in contrast to what opti-
mal asset-allocation models would suggest, many employees never rebalance these initial allocations
(Choi, Laibson, Madrian, and Metrick (2004)). Finally, MacKinlay and Pastor (2000) show that
when a risk factor is missing from an asset pricing model, the resulting mispricing affects the co-
variance matrix of residuals, and if one exploits this, then under the assumption that all assets
have the same expected return, one gets the 1/N rule.9

We compare the out-of-sample performance of the 1/N rule to that of strategies from about ten
models of static and dynamic asset allocation across ten datasets using three performance criteria.
These three criteria are: (i) the out-of-sample Sharpe ratio of each asset-allocation strategy; (ii) the
certainty equivalent (CEQ), which for the static models is obtained from the expected utility for a
mean-variance investor and for the dynamic models is obtained from the lifetime expected utility
of an investor with Epstein and Zin (1989) utility;10 and, (iii) the turnover (trading volume) for
each portfolio strategy.

In order to do a comprehensive study that analyzes the out-of sample performance of a wide
class of asset allocation strategies accounting for both changes in the opportunity set (dynamic
strategies) as well as model and estimation error (Bayesian and shrinkage methods), we consider
over ten asset-allocation models.11 The various models we consider are listed in Table 1. The
static models of optimal asset allocation that we study include the Markowitz (1952) mean-variance
optimal portfolio where the expected returns and variance-covariance matrix are estimated by their
sample counterparts, the minimum-variance portfolio, the Bayes-Stein shrinkage portfolio studied
by Jorion (1985, 1986), the “Data-and-Model” approach in Pástor (2000), Pástor and Stambaugh

8Huberman and Jiang (2004) find, based on a study of half a million participants in more than six hundred 401(k)
pension plans, that participants tend to invest in only a small number of funds of the total funds offered to them,
and that participants tend to allocate their contributions evenly across the funds that they use, with the tendency
weakening with the number of funds used.

9Another reason to consider the 1/N strategy is that in their study of an evolutionary market to examine which
rules dominate the market in the long run, that is, which rules are evolutionary stable, Evstigneev, Hens, and
Schenk-Hopp (2004) find that the 1/N strategy does quite well.

10The CEQ and the Sharpe ratio differ because the CEQ for the static models is a linear function of variance,
whereas the Sharpe ratio is a nonlinear function of standard deviation. For dynamic models, where agents maximize
the expected utility of lifetime consumption, the CEQ depends also on higher moments of the return distribution,
and so that is another reason for the two measures to differ.

11In earlier work, Bloomfield, Leftwich, and Long (1977) show that mean-variance optimal portfolios do not out-
perform an equally-weighted portfolio and Jorion (1991) finds that the equally-weighted and value-weighted indices
have an out-of-sample performance similar to that of the minimum-variance portfolio and to the tangency portfolio
obtained with shrinkage methods. More recently, Carlson, Chapman, Kaniel, and Yan (2004), using a general equi-
librium model with heterogeneous agents, analyze the role of predictability in asset returns and conclude that simple
unconditional consumption and portfolio rules outperform, in terms of utility cost, conditional optimal policies.
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(2000) and Wang (2004), the “Three-Fund” approach of Kan and Zhou (2005), and the short-
sale-constrained portfolios of Frost and Savarino (1988), Chopra (1993), and Jagannathan and Ma
(2003). The two models of dynamic asset allocation that we consider allow for stochastic interest
rates (Campbell and Viceira, 2001) and for time-varying expected returns on assets (Campbell and
Viceira, 1999; Campbell, Chan, and Viceira, 2003).12

The ten datasets for which we evaluate the performance of the different asset allocation models
are listed in Table 2. There are several reasons why we decided to consider more than a single
dataset. One, we did not want our results to be limited to a particular dataset; this was specially
important given the nature of our findings. Two, when comparing the performance of the 1/N
strategy to that of strategies from the various optimal asset allocation models developed in other
papers, we wished to use the same dataset as that used in the original paper proposing a particular
asset-allocation model. Finally, to understand better the results that we find based on the empirical
datasets we also perform our analysis on simulated data.

Our main finding is that the 1/N allocation rule (with or without rebalancing at each trading
date) is far from inefficient. In fact, the 1/N strategy performs quite well out-of-sample: it often
has a higher Sharpe ratio and lower turnover than the policies suggested by both the static and
the dynamic models of optimal asset allocation. The reason for this result is that the gain from
optimal diversification relative to näıve diversification under the 1/N rule is typically smaller than
the loss arising from using inputs for the optimizing models that have been estimated with error.
That is, the optimizing models do have a higher Sharpe ratio than the 1/N rule in-sample, but
out-of-sample the significant estimation error offsets the gains from using a model that delivers
optimal diversification as opposed to the näıve diversification offered by the 1/N rule. Dynamic
asset allocation strategies, which are optimal when the investment opportunity set is stochastic,
also do not out-perform the 1/N policy because of the difficulty in estimating precisely the processes
driving returns. Moreover, the 1/N strategy has several other attractive properties. For instance, it
is a balanced strategy that always has a positive amount invested in each asset. This is in contrast
(a) to unconstrained strategies that often entail very large short positions that may be difficult and
costly to implement, and (b) to constrained strategies, which typically entail a zero investment in
some of the assets.

Our simulations for the static models indicate that if one knew the true value of the moments,
then obviously the strategy with the highest out-of-sample Sharpe ratio would be the one sug-
gested by the mean-variance model. But if the moments have to be estimated, then the relative
performance of the 1/N and the optimal asset-allocation strategies depends on the length of the
estimation window. As expected, the longer the estimation window, the better the performance
of optimal asset-allocation strategies. Moreover, the estimation window length necessary for the
optimal strategies to outperform the 1/N strategy increases with: (a) a decrease in the idiosyn-
cratic volatility or (b) an increase in the number of assets. For instance, if wealth can be allocated
across four risky assets with an average cross sectional annual idiosyncratic volatility of 20%, we
need an estimation window of 50 years in order for the classical mean-variance policy implemented
using maximum-likelihood estimates of the moments to outperform 1/N . But with four assets and

12Several models of optimal dynamic asset allocation have been studied in the literature; a partial list is provided
in Footnote 4. In order to limit the length of this paper, we restrict attention to two models considered in the book by
Campbell and Viceira (2002). These two models allow for stochastic interest rates and time-varying expected returns.
The key reason for choosing these two models is that they cover the two important factors of the opportunity set
that could be stochastic—the interest rate and expected stock returns. The third factor that could be stochastic, the
volatility, has been found to have a much smaller impact on dynamic asset allocation (Chacko and Viceira, 2004).
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a lower idiosyncratic volatility of 10%, we need 500 years, and with an increase in assets to 100 and
with an average idiosyncratic volatility of 20%, we need more than 1000 years. Finally, we also find
that for longer estimation windows, because the estimation problem is less severe, the turnover of
the optimal strategies decreases and the imposition of constraints has a smaller effect in improving
performance.

To understand the intuition for our findings, observe that the vector of optimal weights under
the mean-variance model is given by the product of three terms: the risk tolerance of the investor,
the inverse of the variance-covariance matrix of returns, and the vector of expected excess returns
over the riskfree rate. To implement this portfolio, one needs to estimate both the variance-
covariance matrix and also the vector of expected returns. It is well known (see Merton (1980)
and the simulation results described above) that a very long time series of data is required in order
to estimate expected returns precisely. Similarly, the estimate of the variance-covariance matrix is
poorly behaved (see Green and Hollifield (1992) and Jagannathan and Ma (2003)). So, in computing
the mean-variance optimal portfolio weights using the sample moments, one ends up multiplying
the poorly estimated expected returns by the inverse of the sample covariance matrix, which also
contains estimation error. The resulting portfolio weights often consist of extreme positive and
negative positions that are far from optimal. Extensions of the mean-variance model are designed
to reduce the error in estimating expected returns and to improve the behavior of the variance-
covariance matrix (by shrinking the extreme observations). But, the effect of the estimation error is
so large that the level of shrinkage proposed by the various optimizing models is not sufficient. The
1/N rule performs well because by ignoring the data, it essentially shrinks all moments completely,
and this level of shrinkage turns out to be superior.13 A second reason why the 1/N rule performs
well in the datasets we consider is that we are using it to allocate wealth across portfolios of assets
rather than individual stocks, and these portfolios already contain a certain level of diversification.
Thus, the loss from näıve as opposed to optimal diversification is much smaller in the context of
asset allocation than it would be for allocating wealth across individual assets.

The rest of the paper is organized as follows. We describe the 1/N and optimal asset-allocation
strategies (both static and dynamic) in Section 2. Our methodology for comparing the performance
of different asset-allocation policies and the datasets for which this comparison is made are described
in Section 3. The results from the comparison of the performance of 1/N strategy to those from the
optimizing models are given in Section 4. Insights from the analysis of simulated data are reported
in Section 5. Robustness checks and details of other experiments that we carried out but do not
report in the paper are listed in Section 6. We conclude in Section 7. Detailed descriptions of the
optimal static and dynamic asset-allocation strategies we considered are contained in Appendix A
and B, respectively.

2 Description of asset-allocation models considered

In this section, we describe the three kinds of “models” that we consider: (i) 1/N asset-allocation
rule; (ii) static or myopic models for optimal asset allocation; and, (iii) dynamic models for optimal
asset allocation. These strategies are listed in Table 1, and readers familiar with the literature on
static and dynamic models of optimal asset allocation can skip Sections 2.2 and 2.3.

13Another reason why the 1/N strategy does well, at least for domestic data, is that it implicitly loads on small size
and momentum stocks, which have been shown by Brandt, Santa-Clara, and Valkanov (2005) to improve performance.
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2.1 The 1/N strategy for asset allocation

Suppose that there are N risky assets and one riskless asset. The näıve 1/N diversification rule
allocates 1/N to each of the N risky assets available for investment. This is the equally-weighted
portfolio, where the weight in each risky asset is set equal to wj = 1/N .14

We consider two versions of the 1/N asset-allocation strategy – with and without rebalancing.
In the case with rebalancing, at each trading date the asset allocation is revised so that after
rebalancing the weights are such that the amount invested in each of the assets is again 1/N . In
the case without rebalancing, the strategy is a “buy-and-hold” portfolio where the 1/N allocation
is made at the beginning of the investment horizon and this position is never rebalanced thereafter.

While these two trading strategies are quite simple, they are less näıve than they may appear.
First, they do embody some diversification because wealth is invested across all N assets. So, while
they may not be diversified optimally, they do enjoy the benefits of (suboptimal) diversification.
Second, the two strategies can be interpreted as ones where the investor actually has a view about
future returns. In the case without rebalancing, the portfolio over time assigns higher weight to
assets that have done well in the past; so, this can be interpreted as a “momentum” strategy. On
the other hand, the strategy with rebalancing requires a reallocation of wealth away from past
winners and toward past losers; hence, this can be interpreted as a “contrarian” strategy.

In addition to these two näıve strategies, we also consider the strategy of investing in the
value-weighted market portfolio, which we label as the “single-asset strategy.”

2.2 Optimal strategies for myopic asset allocation

In order to understand the relation between the various myopic (static) strategies discussed below,
we can think of the mean-variance portfolios obtained with sample moments as being at one extreme,
where estimation error is ignored all together. On the other extreme is the 1/N strategy, which
ignores the data all together and “shrinks” all expected returns, variances and covariances on
all risky assets to common values. The empirical Bayes-Stein strategy is in-between these two
extremes because it shrinks only the expected returns, as shown in equation (7) below. The
unconstrained minimum-variance strategy is one that shrinks completely the expected returns to
a common value while not adjusting at all the variance-covariance matrix. Imposing constraints
on shortselling is equivalent to shrinking partially the variance-covariance matrix, as shown by
Jagannathan and Ma (2003); thus, imposing shortselling constraints on the minimum-variance
portfolio is equivalent to shrinking the variance-covariance matrix while setting all the expected
returns equal to a common value. And, the Bayesian “Data-and-Model” approach of Pástor (2000)
shrinks both the expected returns and the variance-covariance matrix, as demonstrated in Wang
(2004), and shown in equations (A5) and (A6) in Appendix A. Finally, Kan and Zhou (2005)
propose a “three-fund” portfolio rule to deal with estimation error. Their rule belongs to the class
of shrinkage rules with a particular choice of shrinkage estimators for means and variances.

14One could choose to evaluate the performance of the portfolio of all assets, including the investment in the
riskfree asset, or one could evaluate the performance of the fund with only risky assets. We considered both cases
but report the results for only the fund with just risky assets. The main reason for doing so is that the performance
of the fund of just risky assets depends only on the asset-allocation decision, while the performance of the portfolio
with all assets depends also on market-timing ability. However, the qualitative results for the two cases are similar
and the results for the case with investment in all assets are discussed in Section 6.5.
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In what follows, we use Rt to denote the N vector of excess returns (over the risk free asset) on
the N risky assets at date t and 1N to denote a N vector of ones.

2.2.1 Sample-based mean-variance optimal portfolios

Mean-variance optimal portfolios are typically derived by assuming that investors have preferences
over only the mean and variance of the returns from a chosen portfolio. At each time t, the investor
chooses a portfolio wt to maximize the following

w>
t µt −

γ

2
w>
t Σtwt, (1)

where µt is the N vector of expected excess returns over the risk-free asset, Σt is the corresponding
N ×N variance-covariance matrix, and γ is the investor’s risk aversion.

The moments µt and Σt are estimated through the following sample analogues, where M is
used to denote the length of the sample:

µ̂t =
1
M

t∑
s=t−M+1

Rs, and (2)

Σ̂t =
1

M −N − 2

t∑
s=t−M+1

(Rs − µ̂t)(Rs − µ̂t)>. (3)

The choice of the estimator Σ̂t is motivated by the fact that Σ̂−1
t is an unbiased estimator of Σ−1

t .

The optimal mean-variance (MV) portfolio chosen at each time t is given by:

ŵMV
t =

1
γ

Σ̂−1
t µ̂t. (4)

In the presence of a constraint on short selling, the investor solves the same problem as in (1), but
with the addition of a constraint that prohibits short sales and/or borrowing.

In the rest of the paper, we refer to the sample-based mean-variance strategy as the “mean-
variance” strategy.

2.2.2 Minimum-variance portfolios

Even though the minimum-variance portfolio is not an optimal asset-allocation strategy (except in
the limit where the expected returns on all risky assets are assumed to be equal), we consider this
strategy because of the attention it has received in Chan, Karceski, and Lakonishok (1999) and
Jagannathan and Ma (2003).

The weights allocated to the risky assets at any time t in the minimum-variance portfolio are
obtained by minimizing the variance of the portfolio:

w>
t Σtwt, (5)

subject to w>
t 1N = 1, and implementing the solution to the above minimization problem in the

data leads to a portfolio given by:

ŵMIN
t =

1
1>N Σ̂−1

t 1N
× Σ̂−1

t 1N . (6)
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In the presence of short-sale constraints, one minimizes the expression in (5) while imposing a
short-sale constraint. Jagannathan and Ma (2003) show that constraining short sales is equivalent
to “shrinking” the extreme values in the variance-covariance matrix. They also find that with
a constraint on short-sales, “the sample covariance matrix performs as well as covariance matrix
estimates based on factor models, shrinkage estimators and daily data” (p. 1651). Because of this
finding, we do not include in our comparison the analysis of the performance of other models, such
as Best and Grauer (1992), Ledoit (1996), Chan, Karceski, and Lakonishok (1999), and Ledoit
and Wolf (2003), that have been developed to deal explicitly with the problems in estimating the
covariance matrix in the context of portfolio optimization.15

2.2.3 Bayes-Stein portfolios

In the literature, the Bayesian approach to estimation error has been implemented in different
ways. Barry (1974), and Bawa, Brown, and Klein (1979), use either a non-informative diffuse
prior or a predictive distribution obtained by integrating over the unknown parameter. In a second
implementation, Jobson and Korkie (1980), Jorion (1985, 1986), Frost and Savarino (1986), and
Dumas and Jacquillat (1990), use empirical Bayes estimators, which shrink estimated returns closer
to a common value and move the portfolio weights closer to the global minimum-variance portfolio.
In a third implementation, Pástor (2000), and Pástor and Stambaugh (2000) use the equilibrium
implications of an asset pricing model to establish a prior; thus, in the case where one uses the
CAPM to establish the prior, the resulting weights move closer to those for a value-weighted
portfolio.16 We do not report the performance of the Bayes-diffuse-prior portfolio because it is
virtually indistinguishable from the mean-variance case.17 We discuss below the empirical Bayes-
Stein approach for dealing with estimation error, and in Section 2.2.4, the approach where the data
is supplemented with a belief that returns are generated by a particular asset-pricing model.

The Bayes-Stein (BS) portfolio is obtained by solving the problem in (1), but where instead of
the sample estimates for µ and Σ in (2) and (3), the investor uses shrinkage estimators, defined as
a convex combination of the sample mean µ̂ and a common (global) mean µ.18

In our implementation of shrinkage estimation, we rely on the Bayesian interpretation of the
shrinkage estimator (hence the name “Bayes-Stein” portfolios) and take the grand mean µ to be
the mean of the minimum-variance portfolio, µMIN. More specifically, following Jorion (1986), we
use the following shrinkage estimator for the expected return and covariance matrix

µ̂BS
t = (1− φ̂) µ̂t + φ̂ µ̂MIN

t , (7)

Σ̂BS
t = Σ̂t

(
1 +

1

M + λ̂

)
+

λ̂

M(M + 1 + λ̂)

1N1>N
1>N Σ̂−1

t 1N
, (8)

15See Sections III.B and III.C of Jagannathan and Ma (2003) for an extensive discussion of the performance of
other models of estimating the sample covariance matrix.

16The models discussed above use Bayesian estimation methods in the context of static asset allocation. Bayesian
methods have also been used in the context of dynamic asset allocation, where the investment opportunity set is
stochastic; see, for instance, Avramov (2004), Barberis (2000), Johannes, Polson, and Stroud (2002), and Kandel and
Stambaugh (1996).

17The reason for this is that for the case of the Bayesian diffuse-prior portfolio, parameter uncertainty is incorporated
by inflating the variance-covariance matrix by the factor 1+ 1

M
(see Bawa, Brown, and Klein (1979)), while still using

the historical mean as a predictor of expected returns. For large enough M , 120 in our case, this correction to the
variance-covariance matrix has only a negligible effect on performance of the mean-variance portfolio.

18The concept of shrinkage estimation was developed by James and Stein (1961).
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where Σ̂t is defined in (3), µ̂MIN
t is the average excess return on the sample global minimum-variance

portfolio, µ̂MIN
t = µ̂tΣ̂

−1
t 1N

1>N Σ̂−1
t 1N

, φ̂ = λ̂
M+λ̂

, and λ̂ = N+2
(µ̂−µMIN)>Σ̂−1(µ̂−µMIN)

.

Under the Bayes-Stein approach, the portfolio weights at each date t are given by

ŵBS
t =

1
γ

(
Σ̂BS
t

)−1
µ̂BS
t . (9)

In the presence of a constraint on short selling, the investor solves the same problem as in (1), where
the expected returns and variance-covariance matrix are given by the Bayes-Stein estimators, µ̂BS

t

and Σ̂BS
t , and with the additional constraint that prohibits short sales and/or borrowing.

2.2.4 Bayesian “Data-and-Model” portfolios

Under the “Data-and-Model” (DM) approach developed in Pástor (2000), and Pástor and Stam-
baugh (2000), estimation of the moments of asset returns is done using not just the data but
also using the belief that the asset returns are generated by a particular asset-pricing model. We
describe the main features of this approach in Appendix A.1.

Under the Bayesian “Data-and-Model” approach, the resulting portfolio weights at each time t
are, given by

ŵDM
t =

1
γ

(
Σ̂DM
t

)−1
µ̂DM
t , (10)

where µ̂DM
t and Σ̂DM

t are estimators of the expected return and variance covariance matrix that
incorporate the belief of a Bayesian investor about the validity of a particular asset pricing model;
the expressions for these estimators are given in equations (A5) and (A6) of the appendix, and
in our empirical analysis, we consider the case where the investor believes in the model with a
subjective probability of 50%. The equations for the estimators, derived in Wang (2004), show
that the Bayesian “Data-and-Model” approach implies a linear shrinkage for expected returns and
a quadratic shrinkage for the variance-covariance matrix.

2.2.5 Optimal “Three-Fund” portfolios

To improve on the models that use Bayesian shrinkage estimators, Kan and Zhou (2005) propose
a “three-fund” portfolio rule, where the role of the third fund is to minimize “estimation risk.”
The intuition underlying their result is that, because estimation risk cannot be diversified away
by holding just a combination of the tangency portfolio and of the risk-free asset, an investor will
benefit from holding also some other risky-asset portfolio, that is, a third fund. Kan and Zhou
search for this optimal three-fund portfolio rule in the class of portfolios that can be expressed as
a combination of the sample tangency portfolio and the minimum-variance portfolio; that is,

ŵKZ
t =

1
γ

(c Σ̂−1
t µ̂t + d Σ̂−1

t 1N ), (11)

where c and d are chosen optimally to maximize the expected utility of a mean-variance investor.19

19The expression for the optimal portfolio weight, with the optimal expressions for c and d substituted in, is
reported in equation (A14) of Appendix A.2.
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2.3 Optimal strategies for dynamic asset allocation

In this section, we describe optimal dynamic asset allocation policies that allow for changes in the
investment opportunity set. In particular, we consider two cases: the first allows for time-variation
in the short-term real interest rate (keeping fixed the moments of the excess returns on the remaining
risky assets) and the second allows for time variation in the risk-premia demanded by risky assets.
We rely on the approach in Campbell and Viceira (1999, 2001, 2002) and Campbell, Chan, and
Viceira (2003) to estimate the parameters of the model and to obtain the optimal consumption
and portfolio policies. Below we summarize the structure of the optimal consumption and portfolio
rules for the two cases we consider, with the details of their derivation provided in Appendix B.

2.3.1 Stochastic interest rates

Campbell and Viceira (2001) study intertemporal asset allocation in the presence of stochastic real
interest rates. Their goal is to develop a theory of long-term portfolio choice when the investment
opportunity set is changing over time because of changes in only the short-term real interest rate; all
the moments of excess returns (over the short-rate) on all risky assets are assumed to be constant.20

In order to obtain bond returns that allow empirically reasonable predictions about an investor’s
holding of short-term bonds, long-term bonds and equities, Campbell and Viceira (2001) develop
a two-factor model of the term structure, where the two factors are (i) the expected log return on
the short-term indexed bond and (ii) the expected log rate of inflation. For this model, Campbell
and Viceira (2001) obtain the following linear specification of the portfolio policy

ŵCV
t =

1
γ
Σ̂−1
t â, (12)

where Σ̂t is the time t estimate of the variance-covariance matrix for excess returns over the
reference (short-term) asset and â is a vector containing the mean excess return over the reference
asset (myopic component) and conditional covariances with the consumption-wealth ratio (hedging
component). The optimal log-consumption-wealth ratio (ct − wt) is shown to be a linear function
of the expected log return xt on the one-period indexed bond,

ct − wt = b0 + b1xt, (13)

where the quantities b0 and b1 along with other details about the model are given in Appendix B.1.
In our implementation, we use equations (12) and (13) as the optimal portfolio and consumption
rules in the presence of stochastic interest rates.

2.3.2 Time-varying expected returns

Campbell, Chan, and Viceira (2003) study dynamic asset allocation with time-varying expected
returns. To model the predictability of asset returns, they use a vector autoregressive (VAR) system
of the form

zt+1 = Φ0 + Φ1zt + vt+1, (14)

where zt is a vector containing both the returns on the assets and the state variables chosen to
describe their dynamics, Φ0 and Φ1 are coefficients and vt+1 a vector of normal i.i.d. shocks.

20This assumption of constant risk premium implies that the expected returns on risky assets can change over time
but only in parallel with the riskless interest rate.
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Campbell, Chan, and Viceira (2003) then show that the optimal portfolio, ŵCCV
t , can be ex-

pressed as a linear function of the state variables zt

ŵCCV
t = Â0 + Â1 zt, (15)

where the definitions of Â0 and Â1, along with other details of the model, are given in Appendix B.2.
They also show that the optimal log consumption-wealth ratio (ct − wt) can be expressed as a
quadratic function of the state variables zt

ct − wt = b0 + B>
1 zt + z>t B2zt, (16)

where b0, B1 and B2 are defined in Appendix B.2. In our implementation, we use equations (15)
and (16) as the optimal portfolio and consumption rules when expected returns are time-varying.

3 Description of methodology, performance measures & datasets

This section is divided into three parts. In the first part, we explain our methodology for comparing
the performance of the 1/N asset-allocation rule to the performance of strategies from various
optimizing models. In the second part, we describe the various measures used to evaluate and
compare the performance of the different asset-allocation strategies. In the third part, we describe
the various datasets that we use to compare the performance of the 1/N and optimal asset-allocation
strategies. The results of this comparison are reported in Section 4, and the results based on
simulated data are given in Section 5.

3.1 Methodology: The steps in comparing portfolio performance

Below, we provide the details of each step in our comparison of the performance of the 1/N
asset-allocation rule to that of strategies from the various static and dynamic models of optimal
asset allocation. There were many choices one could have made in undertaking each step of this
comparison. We considered several alternatives for each step, but below we report the results
for only one set of choices. The main reason for this is that the qualitative results are not very
different for the different alternatives we considered. The results we report are the ones that are
typically least favorable for the 1/N strategy; for instance, we considered different lengths for the
estimation windows, but report the case only for the longest estimation window for which the effect
of estimation error is the smallest. The results for the others specifications we considered but
decided not to report are summarized in Section 6.

The analysis of each optimal strategy consists of the following six steps. One, we choose a
window over which to estimate the parameters. We denote the length of the estimation window
by M ≤ T , where T denotes the total number of observations. We choose an estimation window
of M = 120 data points; for monthly datasets, this corresponds to ten years, while for quarterly
data this corresponds to thirty years.21 Two, we estimate the parameter values over the estimation
window for the particular asset-allocation model being considered. Three, using these estimated
parameters to form forecasts of future moments of returns (expected returns, variances, etc.), we
solve the model for the optimal portfolio weights. Four, we measure the return from holding the

21To check the robustness of our results we also considered an estimation window of M = 60, which corresponds
to five years for monthly data and fifteen years for quarterly data. For the simulated data, we consider estimation
windows of 10, 100, 250, and 500 years.
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portfolio with these weights over the next period, that is, out-of-sample. For monthly data, the
out-of-sample holding period is one month, while for quarterly data it is one quarter.22 Five, we
repeat this “rolling-window” procedure for the next period, by including the data for the new date
and dropping the data for the earliest period. We continue doing this until the end of the dataset
is reached. Finally, for each portfolio strategy we compute the quantities we wish to report. As
explained in Footnote 14, we report these quantities for the fund with investment in just the risky
assets.

In the section below, we describe each of the quantities that is reported and explain how this
quantity is computed.

3.2 Summary statistics reported for each asset-allocation strategy

In the context of the experiment we are considering, in-sample refers to the case where the statistics
are based on the entire time-series of excess returns; that is, the estimation window is equal to the
length of the data series: M = T . In contrast, the out-of-sample statistics refer to the case where
the window for estimating the parameters of the model and the resulting portfolio weights at each
date is limited to the last M = 120 < T data points, and the return on this portfolio depends on the
returns on each asset in the next period. The model parameters and weights are then re-estimated
using a rolling-window approach.

3.2.1 In-sample mean, variance, and Sharpe ratio of returns

Let k denote a particular asset-allocation model and wk denote the portfolio weights recommended
by such a model. In general, these weights will be a function of the moments of asset returns
estimated according to the methodology suggested by approach k (for instance, maximum-likelihood
for the classical mean-variance approach, and Bayesian estimation for the Bayes-Stein approach).
Let µ̂k and Σ̂k denote the estimate of such moments obtained by using the entire time series of
excess returns. Then, for a particular strategy k, the in-sample mean return of the portfolio is
µ̂k
>

ŵk, the in-sample variance of the portfolio is ŵk> Σ̂k ŵk, and the in-sample estimate of the
Sharpe ratio, ŜRIS, is

ŜR
k

IS =
µ̂k
>
ŵk√

ŵk> Σ̂k ŵk
. (17)

3.2.2 Out-of-sample mean, variance and Sharpe ratio of returns

To compute the out-of-sample returns on the portfolio, we follow the “rolling window” scheme
described above to estimate the moments for each individual asset at each date t, and determine
the vector of portfolio weights ŵk

t for the asset-allocation model k. Holding the portfolio ŵk
t for

one period gives the following out-of-sample excess return at time t + 1: R̂kt+1 = ŵk>
t Rt+1, where

Rt+1 denotes the returns in excess of the benchmark (risk-free) rate at time t+ 1. After collecting
the time series of T −M excess returns Rkt , the out-of-sample mean, variance, and Sharpe ratio of

22As one of the robustness checks, we considered also a holding period of one year; this does not have a qualitative
effect on the results.
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returns are,

µ̂k =
1

T −M

T−M∑
s=1

R̂ks , (18)

(σ̂k)2 =
1

T −M − 1

T−M∑
s=1

(R̂ks − µ̂k)2, (19)

ŜR
k

OS =
µ̂k
σ̂k
. (20)

In order to measure the statistical significance of the difference in the Sharpe ratio of a par-
ticular strategy from that of the two 1/N strategies (one with rebalancing and the other without
rebalancing) that serve as benchmarks, we also report the P-value for the Sharpe ratio of each
strategy relative to these two strategies. These P-values are computed using the same approach as
in Jobson and Korkie (1981), with the correction pointed out in Memmel (2003).23

3.2.3 Certainty Equivalent (CEQ) for static models

Each point of the time series of excess returns Rkt generated by implementing strategy k can also
be interpreted as an independent realization of a random variable. Following this logic, which is
typical of the literature on static models of optimal asset allocation, we can define the concept
of certainty equivalent return (CEQ) for a given strategy k. The CEQ is hence the return that
makes an investor indifferent between getting CEQ for sure or a gamble with random realization
X̃. Formally:

u(CEQ) = E[u(X̃)], (21)

where u(·) is the utility function. If the investor’s preferences can be summarized by the first two
moments of the distribution of x̃, then, the CEQ is typically defined as

CEQk
static = µ̂k − γ

2
(σ̂k)2, (22)

where µ̂k and (σ̂k)2 refer to the first two moments of the realized excess returns under strategy k
as given in equations (18) and (19), and γ is the risk aversion of the investor.24

Just as we did for the Sharpe ratios, in order to measure the statistical significance of the
difference in the CEQ of a particular strategy from that of the two 1/N strategies that serve
as benchmarks (with and without rebalancing), we also report the P-value for the CEQ of each
strategy relative to these two strategies. These P-values are computed by relying on the asymptotic
properties of functional forms of the estimators of means and variance.25

23Specifically, consider two portfolios i and n, with µ̂i, µ̂n, σ̂i, σ̂n, σ̂i,n being their respective estimated means,
variances and covariances over a sample of size T −M . We wish to test the hypothesis that the Sharpe ratios of
these two portfolios are identical, i.e., H0 : µ̂i

σ̂i
− µ̂n

σ̂n
= 0. The Jobson and Korkie test statistic is defined as follows,

ẑJK = σ̂nµ̂i−σ̂iµ̂n√
ϑ̂

, where ϑ̂ = 1
T−M (2σ̂2

i σ̂
2
n − 2σ̂iσ̂nσ̂i,n + 1

2
µ̂2
i σ̂

2
n + 1

2
µ̂2
nσ̂

2
i − µ̂iµ̂n

σ̂iσ̂n
σ̂2
i,n). The test statistic ẑJK is

asymptotically distributed as a standard normal.
24To be precise, the definition in equation (22) refers to the level of expected utility of a mean-variance investor,

and it can be shown that this is approximately the CEQ of an investor with quadratic utility. Notwithstanding this
caveat, and following common practice, we interpret it as the certainty equivalent for strategy k.

25If we define v to be the vector of moments v = (µi, µn, σi, σn), and v̂ its empirical counterpart obtained from a
sample of size T −M , and f(·) is the expression for the difference in the certainty equivalent of the two strategies i
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3.2.4 Certainty Equivalent (CEQ) for dynamic models

For dynamic models of asset allocation, we define the certainty equivalent as the level of initial
wealth that would generate the same utility level as that under the optimal consumption and
portfolio rules. Formally, if we assume an investor starts at t = 0 with one dollar of wealth and
follows the optimal consumption and investment strategy (Ckt ,w

k
t ), the dynamics of wealth under

this strategy are given by
W k
t+1 = (W k

t − Ckt )R
k
p , (24)

where Rkp is the gross return on the optimal portfolio under strategy k. Denoting by U(·) the
investor’s utility function and by Jk0 the indirect utility derived by using the consumption strategy
Ck, the certainty equivalent at time t = 0 for strategy k is given by,26

CEQk
dynamic = U−1(Jk0 ). (25)

When comparing dynamic models of asset allocation to static models (including 1/N), we need
to decide what consumption policy to use for the static models. To isolate the effect of portfolio
choice, we assume that the finite-horizon static models (1/N and also the strategies from the
optimizing models) have the same consumption-wealth ratio as that under the optimal dynamic
strategy. However, because the portfolio policies are different, the level of wealth at each date
will be different under the static and dynamic models (see equation (24)), leading to differences
in consumption, and therefore, differences in lifetime utility. In addition, note that the dynamic
portfolio policies we consider are optimal for infinite horizon but the experiment that we consider is
by its very nature for a finite horizon. We have implicitly assumed that the optimal infinite-horizon
dynamic policies provide a good approximation to the optimal finite-horizon dynamic policies.

3.2.5 Portfolio turnover

To get a sense of the trading volume, we also compute the portfolio turnover for each asset allocation
strategy. This measure is related to the level of transactions costs incurred in the implementation
of the portfolio strategy, but it is important to realize that in the presence of transactions costs
it would no longer be optimal to implement the same portfolio strategy as that from the model
without transactions costs. In order to define turnover, let ŵk

j,t denote the portfolio weight in asset
j chosen at time t under strategy k, ŵk

j,t+ the portfolio weight before rebalancing but at t+ 1, and
ŵk
j,t+1 the desired portfolio weight at time t + 1 (after rebalancing). Then, turnover is defined as

the sum of the absolute value of the rebalancing trades across the N available assets and over the

and n, f(v) = (µi − γ
2
σ2
i )− (µn − γ

2
σ2
n), then (from, for example, Greene (2002)) the asymptotic distribution of f(v)

is
√
T (f(v̂)− f(v)) → N

“
0, ∂f

∂v

>
Θ ∂f

∂v

”
, where

Θ =

0BB@
σ2
i σi,n 0 0

σin σ2
n 0 0

0 0 2σ4
i 2σ2

i,n

0 0 2σ2
i,n 2σ4

n

1CCA . (23)

26In all our applications we use the Epstein and Zin (1989) preferences described in equation (B1) of Appendix B
with elasticity of intertemporal substitution ψ = 1.
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T −M trading dates, normalized by the total number of trading dates, T −M :

Turnover =
1

T −M

T−M∑
t=1

N∑
j=1

(∣∣∣ŵk
j,t+1 − ŵk

j,t+

∣∣∣ ) . (26)

For example, in the case of the 1/N strategy, wk
j,t = wk

j,t+1 = 1/N but wk
j,t+ is different, because

of the change in asset prices between t and t+ 1, which causes a change in the relative weights in
the portfolio.27 The turnover quantity defined above can be interpreted as the average percentage
of wealth traded in each period.28

3.2.6 Min, max, average and standard deviation of portfolio weights

So far, all the measures we have considered are at the level of the overall portfolio. To get a sense
of the holding in each particular asset over time, we also provide some summary statistics for the
weight invested in each asset under the different portfolio strategies. These summary statistics are
the time-series minimum, maximum, average, and the standard deviation of the portfolio weight
allocated to each asset in the portfolio.

3.3 Details of the various datasets considered

We considered nine empirical datasets of returns. To understand how our results depend on the
properties of the data, we also considered a tenth dataset, where the data is generated via simula-
tions; results based on this simulated data are described in Section 5.

A list of the datasets considered is given in Table 2. Note that in addition to the returns on
the risky assets described in the datasets, each dataset also includes the rate of return on the
90-day T-bill, obtained from Kenneth French’s website, which is used as a benchmark asset (that
is, returns are expressed in excess of this short rate). Observe also that Datasets #8 and 9 are
quarterly, while the rest are all monthly. Details of each dataset and the motivation for considering
it are provided below.

3.3.1 Ten sector portfolios

This dataset consists of monthly excess returns on ten portfolios tracking the sectors composing
the S&P500 index.29 The data span from January, 1981 to December, 2002. The choice of this
dataset was motivated by the fact that if one wished to consider an allocation across just domestic
equities, then one logical class of assets to consider would be sector portfolios.

27Note that we denote the weights for the 1/N strategy using w rather than ŵ because for the 1/N strategy the
weights do not depend on estimated moments.

28Our measure of turnover is different from the one commonly used in the mutual fund industry because, instead
of considering the minimum between the amount sold or purchased, we consider the sum of the purchases and sales
in each period. If there are no inflows or outflows from the portfolio (that is, the portfolio is self-financing), then
the amount sold must be equal to the amount purchased; in this case, our measure of turnover would be exactly
double that of the industry definition. Because one is interested in the relative turnover across different strategies,
this difference in definition does not affect any inference about relative magnitudes.

29We are grateful to Roberto Wessels for creating this dataset and for making it available to us.
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3.3.2 Ten industry portfolios

In the second dataset we consider, the risky assets that the investor can hold are ten industry
portfolios in the US. The ten industries are: Consumer-Discretionary, Consumer-Staples, Manufac-
turing, Energy, High-Tech, Telecommunication, Wholesale and Retail, Health, Utilities, and Other.
The monthly returns range from July 1963 to November 2004 and were obtained from Kenneth
French’s website. The motivation for considering this dataset is similar to that for the dataset
considered above: if one wished to consider an allocation across domestic equities only, then one
way to classify assets would be by industry.

3.3.3 Nine international equity indexes

The next dataset we consider consists of nine international equity indexes whose returns are com-
puted from the month-end US-dollar value of the country equity index for the period January 1970
to July 2001. The equity indices are for Canada, France, Germany, Italy, Japan, Switzerland,
United Kingdom, United States and the World. Data are from MSCI (Morgan Stanley Capital
International).

There are two motivations for considering this data. One, it does not limit the investor to just
domestic assets. Two, this data is similar to that used in Jorion (1985, 1986), where the Bayes-Stein
shrinkage model is proposed.

3.3.4 US market, SMB and HML portfolios

We consider an updated version of the dataset used by Pástor (2000) in the paper describing
the Bayesian “Data-and-Model” approach to asset allocation. To implement this approach, it is
assumed that a factor model dominates the structure of asset returns. The factor is represented
by the excess return on the market, defined as the value-weighted return on all NYSE, AMEX and
NASDAQ stocks (from CRSP) minus the one-month Treasury bill rate. The other risky assets
considered are the Fama-French portfolios, HML and SMB. The former is a zero-cost portfolio
that is long in high book-to-market stocks and short in low book-to-market stocks. The latter is a
zero-cost portfolio that is long in small stocks and short in big stocks. The data consists of monthly
returns from July 1963 to November 2004. The data are taken from Kenneth French’s website.

3.3.5 US Market, HML, SMB and Size- and Book-to-Market-sorted portfolio assum-
ing a single-factor model

The next dataset is the one used by Wang (2004) to study the Data-and-Model approach of Pástor
(2000) and Pástor and Stambaugh (2000). The data consist of returns on the twenty Fama and
French portfolios of firms sorted by size and book to market, in addition to the Fama-French
portfolios HML and SMB, and also the market portfolio for a total of 23 risky assets.30 Returns
are monthly and the data span from July 1926 to December 2002. In our first use of this data, we
assume that returns are generated by a single-factor model, and we assume the market to be this
factor; that is, we assume that the CAPM holds.

30As in Wang (2004), we exclude the five portfolio containing the largest firm since the market, SMB and HML
are almost a linear combination of the 25 Fama-French portfolios.
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3.3.6 US Market, HML, SMB, and Size- and Book-to-Market-sorted portfolio as-
suming a three-factor model

In this specification, we use the same data just described above, but instead of assuming a single-
factor return-generating model, we assume a three-factor model for the return-generating process.
The three factors are the market, HML and SMB portfolios (essentially, this is an APT setting).

The motivation for considering this dataset is the finding that the CAPM, which is based on the
market portfolio, is not a very good pricing model, and that HML and SMB are factor portfolios
that are useful for pricing assets. Thus, it is possible that when we use these additional factor
portfolios the Data-and-Model approach will perform better.

3.3.7 US Market, HML, SMB, MOM, and Size- and Book-to-Market-sorted portfolio

In this specification, we use data similar to that described above, but with the addition of a fourth
factor portfolio, where the fourth factor is a momentum (MOM) portfolio. We use the methodology
of Pástor (2000) to construct Bayesian portfolios, and here the market, HML, SMB, and MOM
portfolios serve as the four factor portfolios. There are a total of 497 monthly observations from
July 1963 to November 2004. The data are taken from Kenneth French’s website.

The motivation for considering this dataset, and in particular, the Data-and-Model strategy
based on a return-generating model where the MOM portfolio is one of the factors, is because
the empirical literature on asset returns finds some evidence of momentum (see, for instance,
Jegadeesh and Titman (1993)). Recall that the 1/N rule (without rebalancing) can be viewed
as a momentum portfolio. Hence, considering this dataset allows us to examine whether the 1/N
strategy outperforms the Data-and-Model strategy when the latter explicitly allows for a momentum
factor.

3.3.8 Market portfolio and 10-year nominal bond with stochastic interest rates

The motivation for considering this dataset is that it is the one that is used in Campbell and Viceira
(2001) to examine the performance of a dynamic model of asset allocation with stochastic interest
rates. The assets available for investment are the equity market portfolio, a three-month nominal
bond, and a 10-year nominal bond. The two-factor term structure model is estimated by applying
a Kalman filter to data on US nominal interest rates, equities, and inflation. In particular, we use
nominal zero-coupon yields at maturities three months, one year, three years, and ten years. For
equity, we use the value-weighted return, including dividends, on the NYSE, AMEX, and NASDAQ
markets. For inflation, we use a consumer price index. The data is quarterly from January 1954 to
September 1996.

3.3.9 Market portfolio and 5-year bond with time-varying expected returns

The motivation for considering this dataset is that it is the one used in Campbell and Viceira
(1999) and Campbell, Chan, and Viceira (2003) to study a dynamic model for asset allocation with
predictability in stock returns. The data consists of returns on three assets, two of which are risky
and one is riskless. The riskless rate is represented by the real Treasury bill rate, constructed as
the difference between the yield on a 90-day T-bill and log inflation. The two risky assets are,
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respectively, the value-weighted excess return (including dividends) on the market, which includes
all stocks on NYSE, NASDAQ and AMEX, and the excess return on the 5-year bond. The data
are quarterly and span from September 1952 to September 1999. This data is obtained from
Campbell, Chan, and Viceira (2003) and further details about the data construction are available
in their paper.

4 Insights from the nine empirical datasets considered

In this section, we compare the performance of the 1/N , myopic, and dynamic asset-allocation
strategies that are explained in Section 2, using the methodology described in Sections 3.1 and
3.2, for the nine datasets that are described in Section 3.3. Results based on simulated data are
described in Section 5.

For each dataset, the results are reported in a separate table. Only the myopic (that is, static)
asset-allocation strategies are considered in Tables 3–8, while both static and dynamic strategies
are considered in Tables 9 and 10. The format of each table is similar. Column 1 of each table
lists the particular statistic that is being reported for each strategy. The rest of the columns
report the performance for the various asset-allocation strategies being considered; in order to
highlight the statistics for the 1/N strategy with rebalancing (in Column 4), these are italicized.
The statistics for each strategy are reported in three panels: Panel A gives statistics about the in-
sample performance; Panel B gives statistics about the out-of-sample performance; and, Panel C,
gives statistics about the out-of-sample portfolio weights for each risky asset.

Observe that the difference between the in-sample Sharpe ratio of the mean-variance strategy
and the 1/N strategy gives us a measure of the loss from näıve rather than optimal diversification.
This also gives us a measure of how inefficient the 1/N portfolio is relative to the mean-variance
optimal portfolio, which is on the efficiency frontier. Similarly, the difference between the in-sample
and out-of-sample Sharpe ratio for the mean-variance strategy gives us a measure of the effect of
estimation error.

Before discussing the results for each particular dataset, we present an overall summary of the
findings from the nine empirical datasets we examine.

4.1 Overall summary of findings across all datasets

We find that in-sample of all the static models it is the classical mean-variance strategy that has the
highest Sharpe ratio, as one would expect by construction. But, out-of-sample, the Sharpe ratio is
typically lowest for the classical mean-variance strategy because this strategy makes no adjustment
at all for estimation risk. The strategies that typically do well in terms of the out-of-sample Sharpe
ratio and CEQ are the 1/N policies. Of the strategies from the optimizing models, there is no
single strategy that always dominates the others: sometimes, it is the Bayes-Stein-constrained
strategy that has the highest Sharpe ratio, sometimes it is the minimum-variance strategy without
constraints, and sometimes it is the minimum-variance-constrained strategy. Comparing the 1/N
policy (with or without rebalancing) to the minimum-variance-constrained strategy, which is the
focus of a recent paper by Jagannathan and Ma (2003), we find that the Sharpe ratio of the
minimum-variance-constrained strategy is significantly superior to that of the 1/N strategy for
only one dataset, and even in this case the minimum-variance-constrained strategy has a lower
CEQ, its turnover is 2-6 times higher, and it has zero investment in several assets leading to an
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unbalanced portfolio. Dynamic asset allocation strategies, which are optimal when the investment
opportunity set is stochastic, also do not out-perform the 1/N policy; moreover, the dynamic
policies often entail taking very extreme short and large positions in assets.

4.2 Results for ten sector portfolios

The results for the fist dataset, consisting of returns on 10 sector portfolios of the S&P500, are
reported in Table 3. Panel A of this tables gives the in-sample Sharpe ratio for different static
allocation strategies. From this panel, we see that in-sample it is the mean-variance portfolio that
has the highest Sharpe ratio of 0.38481. The Sharpe ratio for the 1/N strategies is only 0.18762.31

Panel B of Table 3 reports the out-of-sample statistics about the performance of different static
allocation strategies. From this panel we see that the strategies with the highest Sharpe ratio
are the two 1/N strategies: the Sharpe ratio for the case with rebalancing is 0.18762—just as it
was in-sample. The Sharpe ratio for the case without rebalancing is 0.17245. The single-asset
strategy where one invests entirely in the S&P 500 also performs quite well; it has the third-
highest Sharpe ratio, which is 0.14436. The strategy with the lowest Sharpe ratio is the three-
fund strategy, followed by the mean-variance strategy. The strategies with constraints perform
better than the unconstrained strategies. The Data-and-Model approach in which the investor
places 50% confidence in the CAPM (ω = 0.5) also does better than the unconstrained strategies.
Looking at the P-values with respect to the 1/N rule with rebalancing, we see that out-of-sample its
performance is not significantly different from that of the 1/N rule without rebalancing (P-value of
0.29), but the P-value for the Data-and-Model strategy is 0.11, for the mean-variance-constrained
strategy is 0.09, and for the minimum-variance-constrained strategy is 0.01.

The CEQ of each strategy is also reported in Panel B of Table 3. The ranking of the strategies
by CEQ is very similar to that by Sharpe ratios: The 1/N strategy with rebalancing has the
highest CEQ followed by the 1/N strategy without rebalancing, and then the single-asset strategy
of holding the market portfolio.

The turnover of each strategy is reported in Panel B of Table 3. The single-asset strategy
and the 1/N strategy with no rebalancing have zero turnover. The 1/N strategy with rebalancing
has a turnover of 0.03051 (that is, on average 3.051% of wealth is traded every month), while the
turnover of the minimum-variance-constrained strategy is 0.07526. The unconstrained strategies,
such as the mean-variance, minimum-variance, Data-and-Model, and three-fund, have much higher
turnover than the constrained strategies; for instance, the minimum-variance strategy has a turnover
of 0.19964, while the mean-variance strategy has a turnover of 1.1894, which is the highest of all
strategies considered.

Panel C of Table 3 gives statistics about the time-series of the weights allocated to each asset un-
der each strategy. From this panel we see that the 1/N strategy (with rebalancing) has 1/11 invested
in the eleven risky assets available (the 10 sector portfolios and the S&P500) with zero variation,
which is measured by the standard deviation. The unconstrained policies have substantial variation
in the portfolio weights. The constrained strategies, on the other hand, have lower variation, but
typically do not invest at all in some of the assets. For example, the mean-variance-constrained
strategy never invests in Energy, Material, Industrials, Consumer-Discretionary, Telecom, Utilities
and the S&P500.

31In-sample, there is no rebalancing and so the two versions of the 1/N strategy are identical.
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4.3 Results for ten industry portfolios

The results of this dataset are reported in Table 4. Because the results are very similar to those
for the dataset on ten sector portfolios described above, we only discuss the differences.

Panel A of Table 4 shows that in-sample the Sharpe ratio is highest for the mean-variance
strategy, 0.21239, which is substantially higher than that for the 1/N strategies (without or with
rebalancing) that have a Sharpe ratio of only 0.13531. From Panel B, which gives the out-of-sample
performance measures, we see that the Sharpe ratio for the mean-variance strategy has dropped
to −0.03634 from its in-sample value of 0.21239. A similar drop in performance is noticed for all
the other unconstrained strategies: the Sharpe ratio of the three-fund and Bayes-Stein strategies is
also negative, while that for the Data-and-Model strategy is 0.01881. The presence of constraints
raises the Sharpe ratio substantially relative to that of the unconstrained policies; for instance,
the Sharpe ratio for the minimum-variance constrained strategy is 0.14253. The highest Sharpe,
however, is for the unconstrained minimum-variance strategy, 0.15536. The Sharpe ratio for the
1/N policy with rebalancing, of course, is the same as it was in sample, 0.13531, and the difference
with the Sharpe ratio of the minimum-variance strategy has a P-value of 0.29. Even the 1/N
policy without rebalancing has a Sharpe ratio whose difference from that of the Sharpe ratio for
the minimum-variance strategy has a P-value of 0.24. Thus, even though the minimum-variance
portfolio has the highest Sharpe ratio, the difference between this and the Sharpe ratio for the 1/N
strategies is not statistically significant. Similarly, the CEQ of the minimum-variance-constrained
strategy is 0.00517, while the CEQ for the 1/N policy with rebalancing is 0.00498 and for 1/N
without rebalancing is 0.00466. Again, these differences are not significant: the P-value is 0.39 for
the case with rebalancing and 0.49 for the case without rebalancing.

Turnover for each strategy is reported in the last row of Panel B of Table 4 and is 0.02162
for the 1/N -with-rebalancing strategy, while the turnover for the strategies from the optimizing
models is much higher: for instance, the turnover for the minimum-variance-constrained strategy
is 0.0557, for the minimum-variance strategy is 0.46800, and for the Bayes-Stein, Data-and-Model,
and mean-variance strategies is more than 100.

Panel C of Table 4 shows that the unconstrained policies, such as the mean-variance, minimum-
variance, Bayes-Stein, three-fund, and Data-and-Model, all entail very unreasonable positions that
vary from very large negative to very large positive holdings. The constrained policies, on the other
hand, have much more reasonable positions.

4.4 Results for nine international equity indexes

The results for asset allocation across international equity indices are presented in Table 5. The
in-sample Sharpe ratio for the mean-variance strategy is 0.20902, while that for the 1/N strategies
is 0.12767 and for the single-asset-strategy (investing in the World index) is 0.12392. From Panel B,
we see that out-of-sample it is the minimum-variance portfolio that has the highest Sharpe ratio,
but now it is the constrained minimum-variance strategy that has the higher Sharpe ratio of 0.15014
while the unconstrained policy has a Sharpe ratio of 0.14896. The minimum-variance strategies are
followed by the 1/N -with-rebalancing strategy, which has a Sharpe ratio of 0.12767. The P-value
for the difference in the Sharpe ratio of the minimum-variance-constrained and the 1/N -with-
rebalancing strategy is 0.15, while the P-value relative to the 1/N -without-rebalancing strategy is
0.07. The highest CEQ is also for the unconstrained minimum-variance strategy, 0.00543, with the
CEQ of the constrained minimum-variance strategy being slightly lower, 0.00537. The CEQ for
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the 1/N -with-rebalancing strategy is 0.00461 and for the case without rebalancing is 0.00401; their
difference with the CEQ of the minimum-variance strategy is statistically insignificant (P-values
are 0.23 and 0.12).

Again, turnover is substantially different for the 1/N strategies and the strategies from the opti-
mization models. The single-asset and the 1/N -without-rebalancing strategies have zero turnover,
while that of the 1/N -with-rebalancing strategy is 0.02931. The turnover of the minimum-variance-
constrained strategy is 0.06647, with the other strategies having still higher turnover; for instance,
the turnover of the unconstrained minimum-variance strategy is 0.214, the three-fund strategy
is 24.01, the Data-and-Model is 40.89, the Bayes-Stein strategy is 51.59, and the mean-variance
strategy is 124.14.

The insights from Panel C of Table 5, which summarizes the behavior of the weights in each
asset over time for the different strategies, are similar to those for the earlier datasets: the weights
for the unconstrained strategies, with the exception of the minimum-variance portfolio, range from
very large negative to very large positive positions.

4.5 Results for US market, SMB, and HML portfolios

Results for this dataset are contained in Table 6. As before, Panel A shows that in-sample the
mean-variance strategy has the highest Sharpe ratio, 0.28507. The Sharpe ratio for the three-fund
strategy is 0.27123. The 1/N strategies have a Sharpe ratio of 0.22403, and the only strategy with
an even lower in-sample Sharpe ratio is the single-asset strategy of holding the market portfolio,
which has a Sharpe ratio of 0.11377.

From Panel B, we see that the strategy with the highest out-of-sample Sharpe ratio of 0.25462
is the three-fund strategy of Kan and Zhou (2005). Quite close to this are the Sharpe ratios for
the Bayes-Stein strategy, 0.25363 and the minimum-variance strategies (both with and without
constraints), 0.24925. The Sharpe-ratio for the 1/N -with-rebalancing strategy is, of course, the
same as it was in-sample, 0.22403, while that of the 1/N -without-rebalancing strategy is 0.22711.
Again, the difference between the Sharpe ratio of the best strategy from the optimizing asset-
allocation models and the 1/N strategies is not statistically significant; the P-value of the three-fund
strategy against the 1/N -with-rebalancing strategy is 0.22 and against the 1/N -without-rebalancing
strategy is 0.17.

Panel B of Table 6 also gives the CEQ for the different strategies. The strategy with the
highest CEQ is the mean-variance strategy (0.00448) followed by the Data-and-Model strategy
(0.00438), the three-fund strategy (0.00437), the Bayes-Stein model (0.00430) and the single-asset
strategy (0.00423). The CEQ for the 1/N -with-rebalancing strategy is 0.00394 (with a P-value of
0.30 against the mean-variance strategy) and the CEQ for the 1/N -without-rebalancing strategy
is 0.00381 (with a P-value of 0.21 against the mean-variance strategy).

Turnover for the different strategies is reported in the last row of Panel B of Table 6. The
turnover for the 1/N -with-rebalancing strategy is 0.0237, while that of the three-fund strategy
(which has the highest Sharpe ratio) is 0.06175 and that of the mean-variance strategy (which has
the highest CEQ) is 0.06720.

Panel C of Table 6 provides statistics about the evolution of the portfolio weights over time for
the different strategies. We see that both the three-fund strategy and the mean-variance strategy
entail taking short positions in the SMB portfolio, with the mean-variance portfolio also taking
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short positions in the market portfolio. Compared to the other datasets studied above, the weights
in each asset show substantially less variation for this dataset. This is not surprising, given that
the investable assets in this experiments are represented by broad portfolio of stocks.

The reason why the strategies from the Bayes-Stein, minimum-variance, and mean-variance
models perform quite well for this dataset, even in the absence of constraints, is that the three
factor portfolios (SMB, HML, and MKT) are almost statistically independent from each other.
Consequently, the variance-covariance matrix is well-conditioned (nonsingular), and hence, the
policies obtained from the optimizing models are less extreme and fluctuate less over time because
the error in estimating expected returns is not magnified when the vector of mean excess returns
is multiplied by the inverse of the well-conditioned covariance matrix.32

4.6 Results for US Market, HML, SMB and Twenty Size- and Book-to-Market-
sorted portfolios assuming a single-factor model

Results for this dataset are presented in Table 7. Panel A of this table shows that in-sample the
mean-variance strategy has the highest Sharpe ratio (0.50882), while the Sharpe ratio for the 1/N
strategy is only 0.16744, and the Sharpe ratio for the single-asset strategy of holding the market
portfolio is 0.11377.

Panel B shows that the out-of-sample Sharpe ratio of the mean-variance strategy drops steeply to
−0.00467. Now, it is the minimum-variance-constrained strategy that has the highest out-of-sample
Sharpe ratio, 0.25574, followed by the other constrained strategies (Bayes-Stein-constrained and
mean-variance-constrained). The 1/N -without-rebalancing strategy has a Sharpe ratio of 0.18906,
while the 1/N -with-rebalancing strategy has a Sharpe ratio of 0.16744. The Sharpe ratio for the
single-asset strategy (investing in the market portfolio) is only 0.11377, but even this is higher than
that of the unconstrained strategies (Data-and-Model, mean-variance, Bayes-Stein, three-fund, and
minimum-variance). In contrast to all the other datasets, in this dataset the difference in the Sharpe
ratio for the best-performing strategy (minimum-variance-constrained) and the 1/N strategies is
statistically significant: the P-value for the 1/N -without-rebalancing strategy is 0.07 and that for
the 1/N -with-rebalancing strategy is 0.04. The reason why the minimum-variance-constrained
strategy performs so well is that the investable assets are large portfolios whose second-moments
can be estimated with higher precision, and as a consequence the portfolio weights under this
strategy do not fluctuate as much (see Panel C).

Studying the CEQ of the different strategies, we see that it is the 1/N strategy (without
rebalancing) that has the highest CEQ, 0.008, followed by the mean-variance constrained that has
a CEQ of 0.00745. The CEQ of the 1/N -with-rebalancing strategy is 0.00705. The minimum-
variance-constrained strategy has a CEQ that is much lower, only 0.00398; the difference in this
CEQ and that for the 1/N -without-rebalancing strategy has a P-value of 0.03 and the difference
with that for the 1/N -with-rebalancing strategy has a P-value of 0.08. So even though the minimum-

32The condition number of a symmetric positive definite matrix is the ratio of its largest to its smallest eigenvalue.
The larger the condition number of a covariance matrix, the closer it is to being singular. Moreover, when computing
portfolio policies as w = 1

γ
Σ̂−1µ̂, the impact of the estimation error in µ̂ and Σ̂ on the quality of the computed policy

w is proportional to the condition number. See Golub and Loan (1996, Chapter 2). For the SMB, HML, and MKT
dataset, the condition number of the sample covariance matrix ranges between 3.6 and 8. This is a much smaller
condition number than those we have observed for the other empirical datasets, which range between 8 and 378,235.
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variance constrained strategy has a higher Sharpe ratio than that for the 1/N strategies, its CEQ
is lower.

Turnover of the different strategies is given in the last row of Panel B of Table 7. Turnover
for the 1/N -without-rebalancing strategy is zero and that for the 1/N -with-rebalancing strategy
is 0.0185. The turnover for the minimum-variance constrained strategy (the one with the highest
Sharpe ratio) is 0.03235. The turnover values for the mean-variance-constrained and Bayes-Stein
policies are 8 to 10 times higher, and the turnover for the unconstrained strategies (Data-and-Model,
mean-variance, Bayes-Stein and three-fund) is even higher, ranging from 47 to 151.

Panel C of Table 7 gives some information about the properties of the portfolio weights—to
conserve space, we report only the weights in SMB, HML and the market portfolio. From this
panel, we see that 1/N -with-rebalancing strategy has 1/23 = 0.043 invested in each risky asset; the
unconstrained policies, on the other hand, have very unreasonable portfolio weights that range from
very large negative positions to very large positions. The minimum-variance-constrained strategy
has zero invested in 19 out of the 20 size- and book-to-market-sorted portfolios, with most of
the wealth being invested in the HML portfolio (0.554 on average), the SMB portfolio (0.249 on
average), and the market portfolio (0.114 on average).

The reason why the unconstrained strategies from the optimizing models perform poorly relative
to the constrained strategies for this dataset is that the size- and book-to-market-sorted portfolios
have high betas (between 0.85 and 1.5). Thus, the covariance matrix is closer to singular. Moreover,
for this dataset we need to estimate the parameters of 23 different portfolios. So estimation error is
much more important than for the previous dataset. As a result, the unconstrained mean-variance,
minimum-variance, and Bayes-Stein policies perform poorly. Of course, in this case imposing
constraints reduces the effect of estimation error, and hence, the constrained policies perform much
better.

Also, note that the reason that the 1/N policy does not perform relatively well in this dataset
is because the size- and book-to-market-sorted portfolios are not a good investment; that is, they
have a low Sharpe ratio out of sample, and one would be much better off investing 1/3 in SMB,
HML, and MKT (Table 6 shows that this would give a Sharpe ratio of 0.22403 for the case with
rebalancing), instead of investing 1/23 in each of the 23 portfolios (which, from Table 7, has a
Sharpe ratio of only 0.16744). Moreover, note that only the constrained-minimum-variance policy
does better in this dataset than investing 1/3 in each of the three factors. The reason why the
constrained minimum-variance policy does so well is because the constraints, along with ignoring
expected returns, neutralize the impact of estimation error.

4.7 Results for US Market, HML, SMB, and Twenty Size- and Book-to-Market-
sorted portfolio assuming a three-factor model

The results of this dataset are not discussed in detail because they are very similar to those for the
dataset just described, where instead of a three-factor asset pricing model there was a single-factor
asset pricing model. As one might expect, the only strategy for which there is some difference in this
dataset is the Data-and-Model approach but even for this strategy the change is not substantial.
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4.8 Results for US Market, HML, SMB, MOM, and Twenty Size- and Book-
to-Market-sorted portfolio

For this dataset, Table 8 shows that in-sample the highest Sharpe ratio is attained by the mean-
variance strategy, 0.52372. Imposing constraints reduces the Sharpe ratio—for the mean-variance-
constrained policy it is only 0.21060. The Sharpe ratio for the 1/N strategies is even lower, 0.16749.

The out-of-sample Sharpe ratios in Panel B of Table 8 tell a different story. The highest
Sharpe ratio is for the Bayes-Stein-constrained strategy (0.19664), followed by the mean-variance-
constrained strategy (0.18921), and then the 1/N -without-rebalancing strategy (0.18701) and the
1/N -without-rebalancing strategy (0.16749). The minimum-variance-constrained strategy has a
lower Sharpe ratio of 0.14768. The difference in the Sharpe ratios for the Bayes-Stein-constrained
strategy and the 1/N strategies (without or with rebalancing) are not significant: the P-values are
0.37 and 0.18, respectively. The unconstrained strategies (Bayes-Stein, mean-variance, minimum-
variance and Data-and-Model) perform quite poorly.

In terms of CEQ, we see from Panel B of Table 8 that it is the 1/N -without-rebalancing
strategy that has the highest CEQ, 0.00789, followed by the mean-variance-constrained strategy
(0.00745), Bayes-Stein-constrained (0.00730), the 1/N -with-rebalancing strategy (0.00681) and the
single-asset strategy (0.00423). The unconstrained strategies do quite poorly in terms of CEQ, just
as they did for the Sharpe ratio.

Turnover, which is given in the last row of Panel B of Table 8, is 0.01938 for the 1/N -without-
rebalancing strategy but 0.25821 for the Bayes-Stein-constrained strategy (which had the highest
Sharpe ratio). The unconstrained strategies have substantially higher turnover: 4.55 for the three-
fund strategy, 6.71 for the Data-and-Model strategy, 12.39 for the mean-variance strategy, and
23.99 for the Bayes-Stein strategy.

Panel C of Table 8 gives, for the various strategies, the holdings in SMB, HML, MOM and
the market portfolio (holdings in the other 20 assets are not reported). From this panel, we see
that the 1/N -with-rebalancing strategy has 1/24 = 0.42 invested in each asset. We also see that
the unconstrained strategies (mean-variance, Bayes-Stein, three-fund, and Data-and-Model) have
substantial variation in weights—the positions vary from large negative to large positive quantities.
The minimum-variance portfolio behaves better. The constrained policies, of course, show even
less variation, but they involve a zero investment in several assets; for instance, the mean-variance-
constrained strategy has a zero investment in 12 of the 24 risky assets, while the minimum-variance-
constrained strategy has almost the entire wealth invested in the MOM portfolio with almost zero
in all the other assets.

Overall, the interpretation of the results for this dataset is similar to that for the dataset
discussed in Section 4.6. The main difference is the presence of the MOM portfolio, which has
a very low variance. As a result, the unconstrained policies do a bit better because they invest
in the MOM portfolio. The performance of the constrained policies is similar to what it was for
the dataset discussed in Section 4.6, except that now the constrained minimum-variance policy
does much worse in terms of Sharpe ratio. This is because the minimum-variance policy invests
almost everything in the MOM, which has a very low variance. While this reduces variance, it also
substantially reduces the mean because the MOM portfolio also has a very low mean return.
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4.9 Results for US Market and 10-year nominal bond with stochastic interest
rates

There are two important limitations of the analysis conducted so far: (1) We have assumed that the
moments of asset returns follow very simple processes (i.i.d.) so that the investment opportunity is
constant over time, and (2) that the investor is myopic (i.e. chooses a portfolio without considering
the gains from intertemporal hedging). We address both these limitations by considering investors
who are maximizing utility of lifetime consumption by choosing dynamic asset-allocation strategies
that are designed to take advantage of changes in the investment opportunity set. In this section,
we consider the case of stochastic interest rates, and in the next we examine the case where expected
returns on assets are time varying. Note that in contrast to the datasets considered so far, which
consisted of returns on a monthly frequency, the two datasets for the two dynamic models are on
a quarterly frequency.

The results for the case with stochastic interest rate are given in Tables 9. The optimal asset
allocation strategy for this case is analyzed in Campbell and Viceira (2001) and has been reviewed
in Section 2.3.1 with the data described in Section 3.3.8. The results for the dynamic portfolio
strategy is given in the very last column of Tables 9.33 In the table we consider the case where
risk aversion is three (γ = 3), because the CEQ values for the case where γ = 1 are too small (of
the order 10−70) for meaningful comparisons (for completeness, the CEQs for the case of γ = 1
are reported in Footnote 34). Note also that because the dataset is quarterly, so the statistics we
report in the tables are quarterly rather than monthly.

From Panel A of Table 9 we see that in-sample, by construction the mean-variance strategy has
the highest Sharpe ratio, 0.41952. The 1/N strategies have an in-sample Sharpe ratio of 0.41105.
Note that the dynamic strategy does not have the highest Sharpe ratio because the objective
function for the dynamic strategy is not the optimization of mean-variance utility but instead the
expected utility from lifetime consumption, with the utility function being the one in Epstein and
Zin (1989).

From Panel B of Table 9 we see that out-of-sample the strategy with the highest Sharpe ratio is
the 1/N -with-rebalancing strategy which has a Sharpe ratio of 0.41105, while the dynamic strategy
has a Sharpe ratio of 0.35284, and the difference between the two has a P-value of 0.10. We do
not report the dynamic strategy for the case with short-selling constraints because for the case of
γ = 3, the constraints are not binding (this can be seen by examining the statistics for the portfolio
policies reported in Panel C). The minimum-variance strategies have Sharpe ratios of 0.35229 and
the Bayes-Stein constrained of 0.31188. The mean-variance constrained strategy has a Sharpe ratio
of 0.29979. The unconstrained mean-variance and Bayes-Stein policies have lower Sharpe ratios,
which are statistically different from that of the 1/N policy.

As discussed above, the appropriate metric for these policies is the expected utility from lifetime
consumption. We report this in terms of the CEQ value, and we now find that the relative perfor-
mance of the dynamic strategy improves: its CEQ is 0.00223. However, the single-asset strategy
(that is, holding the market portfolio) has a slightly higher CEQ of 0.00229, while the CEQ of the
1/N strategies is, 0.00219, which is only slightly smaller than that for the dynamic strategy.34

33We do not consider the Data-and-Model strategy for this dataset because it did not make sense to view the
returns on the 10-year bond as being driven by the market factor or the market, HML, SMB, and MOM factors.

34For the case of unit risk aversion, the CEQ of the dynamic strategy is 5.7 × 10−73, for the strategy of holding
just the market it is 2.3× 10−72, and for the 1/N (with-rebalancing) strategy it is 1× 10−73.
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Looking at the turnover reported in the last row of Panel B of Table 9, we see that the turnover
for the 1/N -with-rebalancing strategy is 0.02464 while that for the dynamic strategy is 0.04225.

Panel C of Table 9 gives us a sense of the portfolio weights for the various strategies described
above. We see that the only strategies that invest very little in the market are the minimum-
variance policies (on average, only 0.032 is invested in the market). The other strategies have a
substantial investment in the market portfolio.

4.10 Results for 5-year bond and US Market with time-varying expected re-
turns

We now turn to the results for the analysis of dynamic asset allocations when expected asset returns
are time-varying. The optimal asset allocation strategy for this case is analyzed in Campbell and
Viceira (1999) and Campbell, Chan, and Viceira (2003), and summarized in Section 2.3.2. Just as
for the previous dataset, we consider the case where risk aversion is three (γ = 3). Note also that
when examining the performance of the dynamic model out-of-sample, we consider two cases: one,
where the estimation is done each quarter (labeled “re-est”) and the other, where the estimation is
done only once (labeled “one-est”). We also report the results for the case where the weights are
constrained to be between 0 and 1.

From Panel A of Table 10, we see that in-sample the model with the highest Sharpe ratio,
0.39357, is the dynamic model. The minimum-variance and the three-fund strategies have similar
Sharpe ratios in-sample. The Sharpe-ratio for the 1/N strategies is 0.35383. The single-asset
strategy has a Sharpe ratio of 0.30517, which is the lowest of all strategies.

Panel B of Table 10 shows that out-of-sample the 1/N -without-rebalancing strategy has the
highest Sharpe ratio, 0.39886. The dynamic strategy where the estimation is done only once
has the next-highest Sharpe ratio of 0.36337, while the Sharpe ratio of the 1/N -with-rebalancing
strategy is 0.35383, with the difference against the dynamic strategy with estimation done only once
being statistically different. The dynamic strategy where estimation is done each quarter has the
lowest Sharpe ratio, 0.12151. Imposing short-selling constraints raises the Sharpe ratio to 0.25696.

As mentioned in the previous section, the appropriate metric for these policies is not the Sharpe
ratio but rather the expected utility of lifetime consumption, which we express in terms of the CEQ.
According to this metric, the best strategy is investing in a single asset, the market, which has a
CEQ of 0.00349. The 1/N -without-rebalancing strategy has the next-highest CEQ of 0.00324, and
the CEQ of the 1/N -with-rebalancing strategy is 0.00311. The dynamic strategies (estimation
done only once and estimation done each quarter) have the lowest CEQ of all policies, 0.00201
and 0.00191, respectively.35 Imposing short-selling constraints improves the CEQ marginally to
0.00277.

The turnover for the dynamic strategies is also quite high, especially when compared to the
turnover for the 1/N strategies. Short-selling constraints lead to a substantial reduction in turnover.
Panel C of Table 10 gives some useful insights about the investment in each asset under the different
strategies. For instance, we see that the dynamic policies entail taking extreme long and short
positions, especially in the case where the estimation is done only once. The same is true of the
other unconstrained policies.

35For the case of unit risk aversion, the CEQ of the single-asset strategy of investing in the market is 2.58×10−59, the
CEQ of the 1/N -with-rebalancing strategy is 2.74× 10−61, and the CEQ of the dynamic strategy (with rebalancing)
is 1.04× 10−64.
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5 Simulations

In addition to the nine empirical datasets analyzed in the previous section, we also consider a
dataset generated through simulation. Our objective in undertaking this exercise is to examine
whether the results from the empirical datasets are confirmed by a dataset of known statistical
properties and also to gain some insights into the nature of the estimation error.

5.1 Details of data simulations

For simulating returns, we adopt the following approach.36 We assume that the market is composed
of N risky assets and one risk-free asset. The N risky assets include K factors. The excess returns
of the remaining N −K risky assets are generated by the following model

Ra,t = α+BRb,t + εt, (27)

where Ra,t is the (N − K) vector of excess asset returns, α is the (N − K) vector of mispricing
coefficients, B is the (N −K)×K matrix of factor loadings, Rb,t is the K vector of excess returns
on the factor (“benchmark”) portfolios, and εt is the (N − K) vector of noises. We assume that
factor returns and noises follow a multivariate normal distribution with the following moments for
all t

E[εt] = 0,

E[εt ε>t ] = Σε,

E[Rb,t] = µb,

E[(Rb,t − µb) (Rb,t − µb)>] = Σb,

cov(Rb,t, ε>t ) = 0.

Finally, the risk-free rate follows a normal distribution with mean rf and variance σ2
rf

.

To initialize the simulation we need to choose values for (i) the average risk-free rate rf and its
variance σ2

rf
, (ii) the mispricing α, (iii) the factor loading B, (iv) the mean µb of the factors and

their variance-covariance matrix Σb and (v) the variance Σε of the noise.

In our base case, we assume there are four risky assets (N = 4) and a single factor (K = 1). We
choose the risk-free rate to have annual average of 2% and standard deviation of 2%. The factor
return has an annual average of 8% and a standard deviation of 16%. This amounts to an annual
Sharpe ratio of 0.5 for the factor. The mispricing α is set to zero and the factor loadings B for each of
the other three risky assets are evenly spread between 0.5 and 1.5. Finally, the variance-covariance
matrix of noise Σε is assumed to be diagonal with each of the three elements of the diagonal drawn
from a uniform distribution with support [0.15, 0.25], that is, the cross-sectional average annual
idiosyncratic volatility is 20%. We use Monte-Carlo sampling to generate monthly return data for
2000 years (T = 24, 000).37 We use an estimation window length of 10 years (M = 120), which
matches our choice when analyzing the empirical datasets.

36This is similar to the approach adopted in MacKinlay and Pastor (2000).
37The longer the time series of simulated data, the more statistically significant the differences between the out-of-

sample performances of different policies. For an infinitely long time series, the P-values of these differences would all
be zero. A time series of T = 24, 000 offers a good trade-off between accuracy and computation time. In particular,
using MATLAB we can perform all out-of-sample calculations for the case with N = 4 in around 30 minutes. However,
because the factor return has a monthly mean of 0.64% and a monthly volatility of 4.6%, we know that the mean of
the out-of-sample factor return will lie with 95% confidence in the interval 0.64%± 2σc, where σc = 4.6%/

√
24000.
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After studying the base case, we perform sensitivity analysis with respect to the following:
the length of the estimation window, M = {120, 1200, 3000, 6000}, the number of risky assets,
N = {4, 10, 100}, and the cross-sectional average annual idiosyncratic volatility (10%, 20%, 30%).

5.2 Results for the base case

Table 11 reports the Sharpe ratio for different static portfolio strategies for data simulated using
the base case parameters.38 There is an additional strategy considered in these tables: the last
column in these tables titled “mean-variance-true” reports the Sharpe ratio of the portfolio strategy
where the investor is assumed to know the parameters generating returns.

From Panel A of this table, we see that in sample the mean-variance portfolio has the highest
Sharpe ratio, 0.14794. The 1/N strategy has a Sharpe ratio of 0.13045. Finally, note that the
mean-variance-true strategy has a Sharpe ratio of 0.14771, which is slightly smaller than that of
the mean-variance portfolio. This is not surprising because in-sample, the mean-variance policy
computed from the sample mean and variances must always achieve the best performance.

Panel B shows that out-of-sample, the single-asset and mean-variance-true strategies perform
the best, with a Sharpe ratio of 0.14773. This is because the data was generated assuming a single-
factor structure, and both the single-asset and the mean-variance-true policies invest all wealth
in the factor portfolio. On the other hand, when the investor does not know the true moments
and needs to estimate them, then the strategy with the highest point estimate of the Sharpe ratio
is the minimum-variance-constrained, with a Sharpe ratio of 0.13299. The 1/N -with-rebalancing
strategy follows closely with a Sharpe ratio of 0.13046, with the difference between the two Sharpe
ratios not being statistically significant (P-value of 0.17). The Sharpe ratios of the mean-variance,
Bayes-Stein, three-fund, and Data-and-Model policies are much lower and their corresponding P-
values demonstrate that their difference with the Sharpe ratio of the 1/N -with-rebalancing strategy
is statistically significant. As in the empirical datasets, the Sharpe ratio of the mean-variance,
minimum variance, and Bayes-Stein strategies improve with the imposition of constraints, which
alleviate the effect of estimation error.

In terms of CEQ, the 1/N -with-rebalancing strategy performs better than the strategies from
the optimal models of myopic asset allocation. The P-values show that the difference in the CEQs
is statistically significant.

5.3 Increasing the estimation window length

We now consider the case where the length of the estimation window is 100 years (M = 1200)
instead of 10 years. The results for this case are reported in Table 12.

The in-sample performance of all strategies for this case, reported in Panel A, is identical to that
for the case with (M = 120). This is because for both cases, the in-sample data (that is, all 24000
observations) are the same. Panel B shows that the out-of-sample performance of the single-asset,
1/N , and mean-variance-true policies is the same as in Table 11, because these policies do not use
any estimated parameters. The Sharpe ratio of all other policies improves when the estimation
window length is increased from 10 to a 100 years. As a result, the Data-and-Model, Bayes-Stein,
three-fund, and mean-variance policies outperform the 1/N -with-rebalancing policy. Moreover, the
P-values of the differences between their Sharpe ratios and that of the 1/N -with-rebalancing policy

38In the simulations, we consider only the static portfolio strategies and not the dynamic policies.
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are significant. Unlike for shorter estimation window lengths, the imposition of constraints does
not increase the Sharpe ratios of the Bayes-Stein and mean-variance policies.39

In terms of CEQ, the 1/N -with-rebalancing policy is also outperformed by the mean-variance
and Data-and-Model policies, and the P-values of the differences are significant. Contrary to the
Sharpe ratios, the CEQs of the mean-variance and Bayes-Stein policies increase with the imposition
of constraints. This is because the CEQ is a linear function of the variance, whereas the Sharpe
ratio is a nonlinear function of the standard deviation. As a result, changes in the mean and variance
impact Sharpe ratio and CEQ differently.

Finally, comparing the turnover reported in Panel B of Table 11 and Table 12, we see that with
a longer estimation window, the turnover of the optimizing models also becomes more reasonable,
but even with an estimation window of 100 years, turnover for strategies from optimizing models
is higher than it is for the 1/N -with-rebalancing strategy.

The above results indicate that, for our the dataset simulated using the base-case parameter
values, an estimation window of about 100 years is needed before the mean-variance and other
optimizing policies beat the 1/N policy. We now study how the length of the estimation window
needed for the mean-variance policy to outperform the 1/N policy in terms of Sharpe ratio varies
with the level of idiosyncratic volatility and the number of risky assets.

5.4 Varying the magnitude of idiosyncratic volatility

In our simulations, we find that the estimation window length necessary for the mean-variance
policy to beat the 1/N policy in terms of Sharpe ratio is longer whenever the idiosyncratic volatil-
ity decreases relative to the volatility of the factor portfolio. For instance, we find that with a
cross-sectional average annual idiosyncratic volatility of 10% (as opposed to the 20% used in the
base case), the mean-variance strategy outperforms the 1/N -with-rebalancing policy only for an
estimation window length of 500 years (the table with the results for this case is not reported).

The reason for this is that the smaller the idiosyncratic volatility, the closer is the covariance
matrix of asset returns to being singular. In particular, when the idiosyncratic volatility is zero and
the returns on all risky assets are perfectly correlated, the covariance matrix has rank one. Because
the inverse of the covariance matrix of asset returns is used to compute the mean-variance portfolio
weights, the impact of estimation error is larger whenever idiosyncratic volatility is smaller relative
to factor volatility.

A good measure of the singularity of a covariance matrix is its condition number; that is, the
ratio of its largest to its smallest eigenvalue. The larger the condition number of a covariance matrix,
the closest it is to being singular. In our simulated data set, the condition number of the covariance
matrix of asset returns is 6.99 for idiosyncratic volatility of 10%, 2.22 for idiosyncratic volatility of
20%, and 1.64 for idiosyncratic volatility of 30%. This roughly implies that when we compute a
portfolio policy as w = 1

γ Σ̂−1µ̂, the impact of the estimation error in µ̂ and Σ̂ on the quality of the
computed policy w is proportional to 1.64, 2.22, and 6.99 when the idiosyncratic volatility is 30%,
20%, and 10%, respectively. See Golub and Loan (1996, Chapter 2) for a discussion on condition
numbers and their impact in the numerical solution of linear systems.

39The Sharpe ratio of the minimum-variance policy, on the other hand, does increase with the imposition of
constraints.
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5.5 Increasing the number of risky assets

Table 13 gives the results for the case with 100 risky assets (N = 100) and estimation window of
100 years (M = 1200).40 Panel A gives the in-sample performance of all policies. As in the base
case, the mean-variance strategy has the highest Sharpe ratio, 0.15868. The 1/N strategies have
a Sharpe ratio of 0.14609. Note that the in-sample Sharpe ratios of both the mean-variance and
1/N policies grow as the number of risky assets grows. This is because the investor can choose
from a larger number of risky assets and thus can achieve a better Sharpe ratio. But the in-sample
Sharpe ratio of the minimum-variance policy decreases dramatically. This is because the minimum-
variance policy ignores information about the mean returns and focuses in minimizing variance. As
a result, although the in-sample variance of the min-variance policy decreases substantially when
there are more risky assets, the in-sample mean also decreases substantially41 and the combined
effect yields a decrease in the Sharpe ratio. Observe that this effect is not as marked for the
constrained minimum-variance policy because of the regularizing effect of the constraints.

Panel B gives the out-of-sample performance of the policies. The single-asset and the mean-
variance-true strategies have the highest Sharpe ratio, 0.14773. As mentioned before, this is not
surprising because the data is generated assuming a single-factor structure. When the investor does
not know the true moments and needs to estimate them, then the strategy with the highest point
estimate of the Sharpe ratio is the 1/N -with-rebalancing policy with a Sharpe ratio of 0.14640. The
out-of-sample Sharpe ratios of the mean-variance, minimum-variance, Bayes-Stein, three-fund, and
Data-and-Model policies dramatically decrease with an increase in the number of risky assets. The
reason for this is that the estimation error is larger when there are many assets. To see this, note that
the number of parameters to be estimated grows quadratically with the number of assets, whereas
the amount of data available grows only linearly with the number of assets. This is confirmed by
the fact that the imposition of constraints helps the performance of the mean-variance, minimum-
variance, and Bayes-Stein policies. Also, note that the difference between the Sharpe ratio of the
1/N -with-rebalancing policy and all optimizing policies is statistically significant.

Finally, the turnover of all static optimal policies increases dramatically when the number of
assets increases.

5.6 Summary of insights from simulations

Our simulations indicate that if one knew the true value of the moments, then obviously the
strategy with the highest out-of-sample Sharpe ratio would be the one suggested by the mean-
variance model. But if the moments have to be estimated, then the relative performance of the
1/N and the optimal asset-allocation strategies depends on the length of the estimation window.
As one would expect, the longer the estimation window, the better the performance of optimal
asset-allocation strategies. Moreover, we find that the estimation window length necessary for the
optimal strategies to outperform the 1/N strategy is larger whenever: (a) the idiosyncratic risk
is smaller or (b) the number of assets is larger. For instance, for the case where wealth can be
allocated across four risky assets with an idiosyncratic volatility of 20%, we need an estimation

40We have chosen to keep the estimation window of 100 years because the optimizing policies are more stable for
longer estimation windows and this facilitates the sensitivity analysis.

41The mean return on the portfolio decreases because the unconstrained minimum-variance strategy involves being
long assets with low betas and short assets with high beta. Consequently, the mean return is low because the lower
the beta, the lower the mean return of a stock. As the number of assets increases, and the more spread out are the
betas, the stronger is this effect.
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window of 50 years in order for the mean-variance policy to outperform 1/N . But with four
assets and idiosyncratic volatility of 10%, we need 500 years, and with 100 assets and idiosyncratic
volatility of 20%, we need more than 1000 years. Finally, we also observe that for longer estimation
windows the turnover of the optimal strategies decreases and the imposition of constraints has a
smaller effect in improving performance.

6 Robustness checks: Results for other specifications

In this manuscript, we have reported only a small subset of the experiments we considered. (In all,
we had more than 360 tables.) As mentioned before, in choosing which set of results to present,
we tried to pick the setting that would be least favorable to the 1/N strategy. Below, we mention
some of the other experiments we studied.

6.1 Results for different levels of risk aversion

For all the static asset allocation policies, we have reported results for only the case where risk
aversion equals unity. For the dynamic asset allocation models, we report results only for the
case where risk aversion equals three, with the CEQ for the case of unit risk aversion reported in
footnotes. In general, we considered the following levels of risk aversion: γ = {1, 2, 3, 4, 5, 10, 20}.
We found that the results were not very different across risk aversion levels. In particular, the
results for the unconstrained static policies were not affected at all by the level of risk aversion,
which is a consequence of two-fund separation (and because we are looking at the performance
of the fund of just risky assets). There was a small effect of the level of risk aversion on the
performance of the constrained policies (for which two-fund separation does not hold) because the
level of risk aversion determines whether the constraints will be binding or not. The only quantity
that is influenced significantly by the choice of risk aversion is the CEQ. But, even in this case, the
qualitative results for different levels of risk aversion are similar to those reported for the case of
unit risk aversion.42

6.2 Results for different lengths of the estimation window

In the paper, we have reported results only for the case where the length of the estimation window
is M = 120, which corresponds to 10 years for monthly data and to 30 years for quarterly data. For
monthly data, we considered also the case of M = 60, while for quarterly data we considered the
cases of M = 40 and M = 60. Having a smaller estimation window only reduces the performance
of the optimal models of asset allocation. This effect is discussed in the simulations reported above.

6.3 Results for different holding periods

The results we present in the paper are for a holding period of one period, which is one month for
the dataset with monthly returns and one quarter for the dataset with quarterly returns. Because
Chan, Karceski, and Lakonishok (1999) and Jagannathan and Ma (2003) consider a holding period
of one year, we also considered a holding period of one year and found that it does not affect our
conclusions.

42Given that we report both the mean and variance of portfolio returns, the CEQ of the static policies for values
of risk aversion other than unity can be computed from the information provided in the tables.

30



6.4 Results for Sharpe ratio computed over the full holding period

The Sharpe ratio we report for the myopic portfolio choice models is a one-period Sharpe ratio;
that is, it is computed for the case where agents care about wealth next period. In principle, one
might be interested also in the long-horizon Sharpe ratio, that is, the Sharpe ratio computed over
the entire holding period of the portfolio. We address this concern in our simulations by considering
also the experiment where we simulate many paths of returns, and compute the Sharpe ratio for
terminal wealth across these paths (instead of across realizations for a single path); we find that the
qualitative insights from these long-horizon Sharpe ratios are similar to the ones that are reported
in the paper.

6.5 Results for all assets, not the portfolio with just risky assets

In the current version of the paper, we report results only for the performance of the fund of just
risky assets, rather than the performance of the overall portfolio (consisting of both the riskless
asset and the risky assets). The reason for making this choice was that we wanted to focus on the
effect of asset allocation alone, and if one considered the performance of the overall portfolio, then
that would depend also on market-timing ability. But, even if one considers the performance of
the overall portfolio that includes the riskfree asset, the results are very similar to those reported
in the manuscript.

6.6 Results for other asset classes

Finally, most of the asset classes we have considered contain only financial assets, such as bonds
and equities. One might wonder whether the results would be different if one included other asset
classes, such as commodities and real estate, which have a lower correlation with equities. Note
that if one were allocating wealth across assets that were relatively uncorrelated, then keeping all
else fixed, the loss from naive rather than optimal diversification when using the 1/N rule would
be smaller rather than larger.

7 Conclusions

We have compared the performance of the 1/N allocation rule (without and with rebalancing over
time) to the optimal policies from static and dynamic models of asset allocation. We consider
both constrained and unconstrained strategies. The comparison with the static allocation rules is
done for nine different datasets. The comparison with the dynamic asset allocation rules is done
using the two datasets used in the original studies. In addition to these datasets, we also consider
simulated data.

Our main finding from the empirical datasets is that the 1/N allocation rule (with or without
rebalancing at each trading date) performs quite well out-of-sample: it often has a higher Sharpe
ratio and certainty-equivalent value than the policies suggested by both the static and the dynamic
models of optimal asset allocation, and it always has a lower turnover than that for the strategies
from the optimizing models. Our simulation analysis suggests that if one knew the true moments of
asset returns, then it would be best to use the portfolio weights suggested by an optimizing model.
But if the moments have to be estimated, then the relative performance of the 1/N and the optimal
asset-allocation strategies depends on the length of the estimation window. As one would expect,
the longer the estimation window, the better the performance of optimal asset-allocation strategies.
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But we find that the estimation window length necessary for the optimal strategies to outperform
the 1/N strategy may be very large: For instance, for the case where wealth can be allocated across
four risky assets with an idiosyncratic volatility of 20%, we need an estimation window of 50 years
in order for the mean-variance policy to outperform 1/N . But with four assets and idiosyncratic
volatility of 10%, we need 500 years, and with 100 assets and idiosyncratic volatility of 20%, we
need more than a 1000 years.

Hence, the main finding of our analysis is that for many asset allocation problems, the large
error in forecasting moments of asset returns may overwhelm the gains from optimization, and
so the 1/N rule may outperform the strategies from optimizing models. This finding has three
implications. One, when evaluating the performance of a particular strategy for optimal asset
allocation, the 1/N näıve-diversification rule should serve at least as a first obvious benchmark.
Two, while there has been considerable progress in the design of optimal portfolios, more energy
needs to be devoted to improving the estimation of parameters for the moments of asset returns
or the processes driving these moments. Three, in addition to using just the statistical moments
of returns, it may be useful to include other conditioning variables in constructing portfolios. This
includes both firm-specific information and macroeconomic variables; see, for example, Brandt,
Santa-Clara, and Valkanov (2005) and Brandt and Santa-Clara (2005).
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A Details for myopic asset allocation strategies

A.1 Bayesian “Data-and-Model” portfolios

We assume the market is composed of N risky assets and one risk-free asset. The N risky assets
include K factors. The excess returns of the remaining N −K risky assets follow the factor model
defined in (27). Then, the “true” mean vector and variance-covariance matrix of returns are:

µ =
(
µa
µb

)
, Σ =

(
BΣbbB

> + Σε BΣbb

ΣbbB
> Σbb

)
, (A1)

where Σbb is the variance-covariance matrix of the returns on the K factors. If the asset pricing
model is true, then µa = Bµb and the mispricing term α is zero.

Let B̂ and Σ̂ε be the maximum likelihood estimators of the factor loadings B and of the variance-
covariance matrix of residuals, Σε, obtained by estimating the unrestricted regression in (27). These
will be the estimators chosen by an investor who completely ignores the prediction of the asset
pricing model. Similarly, let B and Σε be the quantities obtained by estimating the model (27) with
the restriction that α = 0. These would be the estimators chosen by an investor who dogmatically
believes in the asset pricing model.

A Bayesian investor expresses his belief about the validity of the asset pricing model by postu-
lating a prior belief on the mispricing term α. The prior on α, conditional on Σε, is assumed to
have a Normal mean zero and variance τΣε:

p(α|Σε) = N (0, τΣε), (A2)

with τ determining the precision of the prior belief over the validity of the asset pricing model.43

Finally, let µ̂a, µ̂b and Σ̂bb be, respectively, the sample mean of the assets’ return Rat, and the
sample mean and variance of the factors’ returns Rbt.

Under the assumptions described above, Wang (2004) shows how to obtain estimators for the
expected return and variance covariance matrix that account for the belief of a Bayesian investor
over the validity of a particular asset pricing model. More specifically, (see Wang (2004, Theorem
1) if one denotes by

ŜR
2

= µ̂>b Σ̂−1
bb µ̂b (A3)

the square of the highest Sharpe ratio of the efficient frontier spanned by the mean and variance
of the factor portfolios, and by

ω =
1

1 +Mτ/(1 + ŜR
2
)

(A4)

the degree of confidence a Bayesian investor places in the asset pricing model (that is, ω = 1 implies
dogmatic belief in the model), then a Bayesian “Data-and-Model” (DM) investor with a degree of
confidence ω in the model will use the following shrinkage estimators of the expected return and

43The priors on the factor loadings, B, the variance-covariance of the residuals, Σε, as well as on the expected
returns and variance-covariance matrix of the factors are assumed to be non-informative because the asset-pricing
model does not impose any restrictions on these parameters.
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variance-covariance matrix of the investable assets:

µ̂DM = ω

(
Bµ̂a
µ̂b

)
+ (1− ω)

(
µ̂a
µ̂b

)
(A5)

Σ̂DM =

(
Σ̂DM
aa (ω) Σ̂DM

ab (ω)

Σ̂DM
ab (ω)> Σ̂DM

bb (ω)

)
, (A6)

where

Σ̂DM
aa (ω) = κ (ωB + (1− ω)B̂) Σ̂bb (ωB + (1− ω)B̂)>

+ h (ωδ + (1− ω)δ̂) (ωΣε + (1− ω)Σ̂ε), (A7)

Σ̂DM
ab (ω) = κ (ωB + (1− ω)B̂) Σ̂bb, (A8)

Σ̂DM
bb (ω) = κΣ̂bb, (A9)

and

δ =
M(M − 2) +K

M(M −K − 2)
− k + 3
M(M −K − 2)

· Ŝ2

1 + Ŝ2
, (A10)

δ̂ =
(M − 2)(M + 1)
M(M −K − 2)

, (A11)

κ =
M + 1

M −K − 2
, (A12)

h =
M

M −N − 1
. (A13)

Observe, from equations (A5) and (A6), that the parameter ω acts as a linear shrinkage factor for
the means and a quadratic shrinkage factor for the variance.

A.2 Optimal “Three-Fund” portfolios

After choosing the parameters c and d in (11) that maximize expected utility of a mean-variance
investor, Kan and Zhou (KZ), propose the following “three-fund” optimal portfolio weights:

ŵKZ =
(M −N − 1)(M −N − 4)

γM (M − 2)

[(
ψ̂2
a

ψ̂2
a + N

M

)
Σ̂−1µ̂+

(
N
M

ψ̂2
a + N

M

)
µ̂MINΣ̂−11N

]
, (A14)

where

ψ̂2
a =

(M −N − 1)ψ̂2 − (N − 1)
M

+
2(ψ̂2)

N−1
2 (1 + ψ̂2)−

M−2
2

M Bψ̂2/(1+ψ̂2)((N − 1)/2, (M −N + 1)/2)
, (A15)

ψ̂2 = (µ̂− µ̂MIN)>Σ̂−1(µ̂− µ̂MIN), (A16)

and where the Incomplete Beta function is given by

Bx(a, b) =
∫ x

0
ya−1(1− y)b−1dy. (A17)
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B Details for dynamic asset allocation strategies

This appendix summarizes the methodology used in Campbell and Viceira (1999, 2001, 2002) and
Campbell, Chan, and Viceira (2003) to obtain solutions for the consumption and portfolio choice
of an infinitely lived investor for the case of stochastic interest rates and predictable asset returns.

Consider a discrete-time portfolio and consumption problem with an infinitely-lived investor.
There are N assets available for investment, one of which is taken to be a reference asset, usually
a short-term instrument (which need not be riskfree).

To allow separation between intertemporal rate of substitution and risk aversion, investors are
assumed to have recursive preferences as in Epstein and Zin (1989),

U(Ct, Et(Ut+1)) =
[
(1− δ)C

1−γ
θ

t + δ
(
Et

(
U1−γ
t+1

)) 1
θ

] θ
1−γ

, θ ≡ 1− γ

1− ψ−1
, (B1)

where Ct represents consumption at time t, γ > 0 is the coefficient of risk-aversion, ψ is the
elasticity of intertemporal substitution, 0 < δ < 1 a time discount factor, and Et(·) the conditional
expectation operator.44 At each time t, the investor allocates his wealth after consumption across
the N available assets in order to maximize lifetime expected utility under the budget constraint

Wt+1 = (Wt − Ct)Rp,t+1, (B2)

where Wt is the wealth at time t and Rp,t is the (gross) return on a portfolio of the N available
assets,

Rp,t = R1,t +
N∑
i=2

wi,t(Ri,t −R1,t), (B3)

with wi,t being the portfolio weight on asset i. Notice that, unlike the previous section, we denote by
Ri,t the gross return on asset i and that, from expression (B3), Asset 1 is taken to be the reference
asset. Under these conditions, Epstein and Zin (1989) show that the first-order optimality condition
(Euler equation) for consumption is

Et


[
δ

(
Ct+1

Ct

)− 1
ψ

]θ
Rθ−1
p,t+1Ri,t+1

 = 1, for all i = 1, . . . , N. (B4)

Campbell and Viceira obtain the approximate portfolio and consumption policies after under-
taking the following steps. First, apply a first-order Taylor expansion to the log of the budget
constraint (B2) around the unconditional mean of the log consumption-wealth ratio.45 This yields
the approximate budget constraint

∆wt+1 ≈ rp,t+1 +
(

1− 1
ρ

)
(ct − wt) + k, ρ = 1− exp{E(ct − wt)}, (B5)

where k = log(ρ) + (1 − ρ) log(1 − ρ)/ρ, ρ is the log-linearization parameter and wt = log(Wt).
Second, apply a second-order Taylor expansion to the log of the Euler equation (B4) around the
conditional means of ∆ct+1 ≡ log(Ct+1/Ct), rp,t+1 ≡ log(Rp,t+1) and ri,t+1 ≡ log(Ri,t+1).

44The special case of time-separable utility obtains when γ = ψ−1.
45The approximation will be exact only if the consumption-wealth ratio is constant over-time, as it happens when

the elasticity of intertemporal substitution ψ is equal to one.
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The outcome of these approximation is the following pair of Euler equations,

Et(∆ct+1) = ψ log δ + ψEt(rp,t+1) +
θ

2ψ
V art(∆ct+1 − ψrp,t+1) (B6)

Et(ri,t+1 − r1,i) +
1
2
V art(ri,t+1 − r1,i) =

θ

ψ
Covt(ri,t+1,∆ct+1) + (B7)

(1− θ)Covt(ri,t+1, rp,t+1)− Covt(ri,t, r1,t+1).

Equation (B6) is the Euler equation for the optimal log consumption-wealth ratio ct − wt ≡
log(Ct/Wt) and equation (B7) is the Euler equation characterizing optimal portfolios wt.

In the next two subsections, we specialize the above general framework to the case of portfolio
choice with stochastic interest rates and with predictable asset returns.

B.1 Optimal portfolios with stochastic interest rates

Campbell and Viceira (2001) consider a discrete-time, two-factor model of the term structure where
the two factors are (i) the expected log return on the short-term indexed bond and (ii) the expected
log rate of inflation. Each factor is assumed to follow a normal first order auto-regressive AR(1)
process with constant variance, which implies that log bond yields are linear in the factors.46

The real factor is chosen to be the expected log return on the one-period real (indexed) bond.
Let the log return on the short-term indexed bond be r1,t+1. Modeling this return is equivalent
to modeling the negative of the log of the stochastic discount factor, Mt+1, which prices all the
asset in the economy, because r1,t+1 = − logEt(Mt+1) ≡ −mt+1. Using a discrete-time version of
Vasicek (1977), it is assumed that −mt+1 obeys the following AR(1) process

−mt+1 = xt + vm,t+1, (B8)

xt+1 = (1− φx)µx + φxxt + εx,t+1, (B9)

vm,t+1 = βmxεx,t+1 + εm,t+1, (B10)

where the quantities εx,t+1 and εm,t+1 are normally distributed white noise shocks with variances
σ2
x and σ2

m. Note that xt is the real factor and denotes the conditional expectation of the negative
of the log of the pricing kernel.

The nominal factor is taken to be the expected log of inflation rate. Denote by πt+1 the realized
log-inflation. As above, using a discrete-time version of Langetieg (1980), the model assumes that
πt+1 follows a normal AR(1) process of the form

πt+1 = zt + vπ,t+1, (B11)

zt+1 = (1− φz)µz + φzzt + vz,t+1, (B12)

vz,t+1 = βzxεx,t+1 + βzmεm,t+1 + εz,t+1, (B13)

vπ,t+1 = βπxεx,t+1 + βπmεm,t+1 + βπzεz,t+1 + επ,t+1, (B14)

where εz,t+1 and επ,t+1 are normally distributed white noise shocks with variances σ2
z and σ2

π, and
zt is the nominal factor, which denotes the conditional expectation of the log inflation. Notice that

46The model belongs to the class of “affine” term structure models (see Dai and Singleton (2000) and Duffie and
Kan (1996)).
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the model allows for the shocks to realized inflation, vπ,t+1, and to expected inflation, vz,t+1, to
be correlated with each other and with the real shocks to the model. In particular, that expected
inflation rate zt+1 can be correlated with the stochastic discount factor (i.e., the short-term real
rate) implies that the Fisher hypothesis does not hold in this model and nominal interest rates do
not move one-for-one with expected inflation.47

The above term-structure model belongs to the class of affine models which admits as a solution
log yields that are linear in the state variables. The log return on the one-period indexed bond can
be expressed as

r1,t+1 = xt −
1
2
(
β2
m xσ

2
x + σ2

m

)
, (B15)

and the one-period log return on an n-maturity indexed bond in excess of the one-period log interest
rate is given by

rn,t+1 − r1,t+1 =
1
2
B2
n−1σ

2
x − βmxBn−1σ

2
x −Bn−1εx,t+1, (B16)

where Bn is a function only of maturity n defined as Bn = 1−φnx
1−φx . From the fundamental pricing

equation 1 = Et(Mt+1Rt+1) and the above result, one obtains that the risk premium on an n-period
bond is given by

Et(rn,t+1 − r1,t+1) +
1
2
V art(rn,t+1 − r1,t+1) = Covt(rn,t+1 − r1,t+1,−mt+1)

= −βmxBn−1σ
2
x. (B17)

Note that the conditional covariance is constant over time and depends only on bond maturity.

To evaluate the effect of stochastic interest rates on practical asset allocation problems, Camp-
bell and Viceira (2001) introduce also equity in the model as an alternative long-term investment
asset. They assume that the unexpected log return on equities is affected by the same shocks
influencing the expected and unexpected part of the log stochastic discount factor. Specifically,
letting re,t+1 denote the log return on equity, the model considered implies that

re,t+1 − Et(re,t+1) = βex εx,t+1 + βem εm,t+1. (B18)

This specification is consistent with a representative-agent Lucas economy where expected aggregate
consumption growth follows an AR(1) process (see Campbell (1999)). The risk premium on equities
over a one-period real return is

Et(re,t+1 − r1,t+1) +
1
2
V art(re,t+1 − r1,t+1) = Covt(re,t+1 − r1,t+1,−mt+1)

= −βmxβexσ2
x + βemσ

2
m. (B19)

As in the case of n-period bond, the risk premium on equity is constant over time.

Campbell and Viceira (2001) obtain the approximate consumption and portfolio policy by
(i) guessing a functional form for the log consumption-wealth ratio, (ii) using this guess, as well
as, the expression of the risk-premia for the long term bond (B17) and for equity (B19) implied
by the term-structure model in the log-linearized Euler equation (B7), and (iii) verifying the guess
and solving for the coefficients characterizing the optimal consumption-wealth ratio.

47In other words, this means that nominal bond prices can include an inflation risk premium as well as a real term
premium.
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The outcome of this approach is a linear specification for the log-consumption-wealth ratio

ct − wt = b0 + b1xt, (B20)

where

b0 =
ρ

1− ρ

[
(1− ψ)(1− γ)

2γ

(
βmx+

ρ

1− ρφx

)2

σ2
x −

1
2
(1− ψ)σ2

m

−ψ log δ + k + µx(1− φx)
ρ(1− ψ)
1− ρφx

]
(B21)

b1 = (1− ψ)
ρ

1− ρφx
, (B22)

and ρ = 1− exp{b0 + b1µx}. The solution is analytical, given the log-linearization parameter, ρ.

Denoting by rt the log return on the N risky assets, and using as a reference asset the short-term
indexed bond with log return r1,t, the optimal portfolio is given by

ŵCV =
1
γ
Σ̂−1
t â, (B23)

where Σ̂t is the time t estimate of the variance-covariance matrix for excess returns over the
reference (short-term) asset and

â = m̂ + γp̂ +
1− γ

1− ψ
ĥ. (B24)

The quantity m̂ denotes a vector of Jensen’s inequality adjusted mean excess returns, and captures
the myopic part of the portfolio,

m̂i = Et(ri,t+1 − r1,t+1) +
1
2
V art(ri,t+1 − r1,t+1). (B25)

The term p̂ is a vector of conditional covariances with the real return on the short-term bond,

p̂i = Covt[ri,t+1 − r1,t+1, r1,t+1]. (B26)

The term ĥt is a vector of conditional covariances with the consumption-wealth ratio and represents
the intertemporal hedging component of the optimal portfolio,

ĥt = Covt(rt+1 − r1,t+1, ct+1 − wt+1) =
ρ

1− ρφx
(1− ψ)Covt(rt+1 − r1,t+1, xt+1). (B27)

In our implementation, we use equations (B23) and (B20) as the optimal portfolio and con-
sumption rules in the presence of stochastic interest rates.

B.2 Optimal portfolios with time-varying expected returns

We now consider the model of dynamic asset allocation with time-varying expected returns. Let
zt denote the m × 1 dimensional vector containing (1) the log return r1,t on reference short-term
asset; (2) the log return xt on the remaining N asset, in excess of asset 1 (the reference asset) and
(3) a (m−N − 1)× 1 vector st of state variables, i.e.

zt =

 r1,t
xt
st

 =


r1,t

r2,t − r1,t
...

rn,t − r1,t
st

 . (B28)

38



The dynamics of zt are modeled as a first-order vector autoregressive (VAR) process of the form

zt+1 = Φ0 + Φ1zt + vt+1, (B29)

where Φ0 is a m × 1 vector, Φ1 is a m ×m matrix of coefficients, and vt+1 is a m × 1 vector of
normal i.i.d. shocks with mean zero and covariance Σv, that is,

vt+1
i.i.d.∼ N (0,Σv) (B30)

Σv =

 σ2
1 σ>

1x σ>
1s

σ1x Σ̂xx Σ>
xs

σ1s Σxs Σss

 . (B31)

As is clear from its specification, the above model does not allow for stochastic volatility but instead
assumes that the shocks are homoscedastic, independently distributed over-time but potentially
correlated in the cross-section.

Imposing this VAR structure on the evolution of state variables, Campbell, Chan, and Viceira
(2003) show that the optimal portfolios wCCV

t satisfying the log-linear Euler equation (B7) can be
expressed as a linear function of the state variables zt,

ŵCCV
t = Â0 + Â1 zt, (B32)

with

Â0 =
(

1
γ

)
Σ̂−1
xx

(
HxΦ0 +

1
2
σ2
x + (1− γ)σ1x

)
+
(

1− 1
γ

)
Σ̂−1
xx

(
−Λ0

1− ψ

)
(B33)

Â1 =
(

1
γ

)
Σ̂−1
xxΦ1 +

(
1− 1

γ

)
Σ̂−1
xx

(
−Λ1

1− ψ

)
, (B34)

where Hx is a N ×m selection matrix that select the vector of excess returns from the full state
vector zt, as defined in (B28) and where the quantities Λ0 and Λ1 are defined in the appendix of
Campbell, Chan, and Viceira (2003). A closer look at the N × 1 vector Â0 in (B33) and N ×m

matrix Â1 in (B34) reveals the intuitive nature of this results. The terms premultiplied by (1−1/γ)
in the above equation represent the effect of intertemporal hedging on the portfolio decision. If, for
example, the investor has log utility (γ = 1), then the portfolio holdings will not be affected by the
elasticity of intertemporal substitution ψ and the optimal portfolio is the myopic mean-variance
portfolio. Since the estimation of the moments for this portfolio is performed assuming a VAR
structure in the data, in general, the weights in this portfolio will not correspond to the weights
obtained by using an unconditional estimate of the moment, unless the VAR system includes only
a constant as an explanatory variable. This distinction is relevant when we compare dynamic
(conditional) portfolio policies to static policies.

Finally, the log consumption/wealth ratio (ct−wt) satisfying Euler equations (B7)-(B6) can be
expressed as a quadratic function of the state variables zt

ct − wt = b0 + B>
1 zt + z>t B2zt, (B35)

where b0, the m×1 dimensional vector B1 and the m×m matrix B2 are described in the appendix
of Campbell, Chan, and Viceira (2003). From the derivation there, it can also be seen that the
coefficient Â0 and Â1 in the optimal portfolio strategy depends on the parameters B1 and B2 of
the consumption-wealth ratio equation through the coefficient matrices Λ0 and Λ1.

In our implementation, we use equations (B32) and (B35) as the optimal portfolio and con-
sumption rules in the presence of predictability in asset returns.
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Table 1: List of asset-allocation models considered

This table lists the various asset-allocation models we consider. The first eleven models that are
listed are all static, while the last two are dynamic.

# Model
1 Single-asset portfolio (holding the market or benchmark portfolio)
2 Simple portfolio: 1/N without rebalancing
3 Simple portfolio: 1/N with rebalancing (this is our benchmark strategy)
4 Mean-variance portfolio (moments estimated using maximum-likelihood)
5 Mean-variance portfolio with borrowing and short-sale constraints
6 Minimum-variance portfolio
7 Minimum-variance portfolio with borrowing and short-sale constraints
8 Bayes-Stein shrinkage portfolio
9 Bayes-Stein shrinkage portfolio with borrowing and short-sale constraints

10 Data-and-Model approach (Pástor, 2000)
11 Three-fund portfolio (Kan and Zhou, 2005)
12 Dynamic model with stochastic interest rates
13 Dynamic model with time-varying asset returns

Table 2: List of datasets considered

This table lists the various datasets we consider, along with the period spanned by the data. Each
dataset also has a short-term asset which is assumed to be the 90-day nominal US T-bill. The first
seven datasets are all at a monthly frequency. The eighth and ninth datasets are at a quarterly
frequency. The last set of data are based on simulations of monthly returns.

# Dataset Period spanned
1 Ten sector portfolio that track sectors composing the S&P500 Jan. 1981–Dec. 2002
2 Ten industry portfolios Jul. 1963–Nov. 2004
3 Nine international equity indexes Jan. 1970–Jul. 2001
4 US market, SMB and HML portfolios Jul. 1963–Nov. 2004
5 US market, SMB and HML portfolios and twenty Size and Book-to-

Market sorted portfolios (using a one-factor model)
Jul. 1963–Nov. 2004

6 US market, SMB and HML portfolios and twenty Size and Book-to-
Market sorted portfolios (using a three-factor model)

Jul. 1963–Nov. 2004

7 US market, SMB, HML and MOM portfolios and twenty Size and
Book-to-Market sorted portfolios

Jul. 1963–Nov. 2004

8 US market portfolio and 10-year bond, with stochastic interest rates Jan. 1954–Sep. 1996
9 US market portfolio and 5-year bond, with time-varying returns Sep. 1952–Sep. 1999

10 Simulated data
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