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Abstract

Feedback control techniques developed in engineering are
applied to solve the problem of �nding a pricing model for
catastrophic derivatives that is both robust and stable in
operation. Speci�c application of non-linear robust con-
trol Lyapunov techniques are found to provide a pricing
paradigm for catastrophe based derivatives, the relative
performance of which, is measurably superior in terms of
stability and robustness to the popular equilibrium and
actuarial models that dominate the approach to pricing
of these emerging instruments.
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2 Introduction and problem state-
ment

� Rising losses from catastrophic events over the past
10 years culminating in the largest single loss event
� hurricane Katrina in 2005, the cost of which cur-
rently stands at $81bn and will probably top $100bn
by the time all claims are settled according to Swiss
Re and PCS..

� Katrina was the costliest natural disaster in U.S. his-
tory.

� Up until end 2005, aggregate insured losses had in-
creased every year since 1970.

� Rising catastrophic losses have adversely impacted
the solvency of the insurance industry.

� So. . . ..



Insured Losses, U.S. Catastrophes, 1997 ­ 2006(1)

Number of Number of  Original $ In 2006 $
Year Catastrophes claims (mns) bns bns

1997 25 1.6 2.6 3.3
1998 37 3.6 10.1 12.5
1999 27 3.2 8.3 10
2000 24 1.5 4.6 5.4
2001 20 1.5 26.5 30.2
2002 25 1.8 5.9 6.6
2003 21 2.7 12.9 14.1
2004 22 3.4 27.5 29.3
2005 24 4.4 62.3 64.3
2006 33 2.3 9.2 9.2

(1) Includes catastrophes causing insured losses to the industry of at
least $25 million and affecting a significant number of policy holders
and insurers.
(2) Adjusted to 2006 dollars by the Insurance Information Institute.

Source: ISO's Property Claims Services unit; Insurance
Information Institute.



� There has been a search for new products to provide
coverage against catastrophe risks.

� Possible solutions tried so far have been:

1. CAT-linked bonds.

2. CAT-linked swaps.

3. Exchange traded CAT-linked futures and options.

� Features of these solutions:

1. Spread premium is very high relative to the ex-
pected loss of bond principal.

2. Presence of a smile in relationship between pre-
mium spreads and loss probabilities.



CAT­Bond Premium Spread v Loss Probs ­ The Smile
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� The main problem with CAT derivative valuation is
that insurance markets are incomplete, so the use of
no-arbitrage arguments is not guaranteed to generate
a unique price process.

� Two main approaches to the pricing problem:

1. Partial/general equilibrium models � derive risk
premium from equilibrium model; e.g. Aase (1993),
Cummins & Geman (1995), Geman & Yor (1997
and Muermann (2003).

2. Actuarial models �e.g. Wang (2002) and Young
(2005).

� Problems with all of the models used so far:

1. Do not explain the presence and persistence of
the smile.

2. Do not explain why premium spreads for CAT
risks are so high.



3. Do not explain why premium spreads fall when
moving from low probability of occurrence to high
probability of occurrence CAT securities.

� It is worth noting that Wang�s (2002) transform with
two factors (to capture greed and fear as well as risk
aversion) does do a better job of explaining these
problems, but the linkage between the two factors
and the underlying economic model is not grounded
in a relevant economic model.

� The major problem with the existing approaches is
that they are principally concerned with pricing risk
and not with capturing the uncertainty surrounding
the catastrophic event(s).

� Clearly, the presence of unmodeled uncertainty is
leading to misspeci�cation in existing models, so we
need to look for an alternative approach that deals
explicitly with uncertainty and its consequent model
misspeci�cation.



3 Robustness

� What is needed are models that are robust in the
face of such misspeci�cation and uncertainty.

� What exactly do we mean by robust?

� Webster�s dictionary de�nes robust as: �..performing
without failure under a wide range of conditions. . . �.

� A good place to look for an approach that performs
without failure under a wide range of conditions by
explicitly incorporating uncertainty, is in engineering
where there are known techniques for dealing with
both model and parameter uncertainty.

� Robust control theory is an engineering technique
that originated in the need to deal with systems that
have modeling uncertainty.



� Modeling uncertainty arises due to:

1. Uncertain parameters.

2. Unmodeled dynamics.

3. Intentional model simpli�cation �linearisation and/or
model reduction.

4. Inexact data � insu¢ cient or inconsistent exper-
imental results.

� The traditional models referred to above assume that
decision making is "open-loop" - i.e. once decisions
are made they are not altered by feeding back the
e¤ects of subsequent events and actions, so uncer-
tainty remains regarding 1-4 above.

� In contrast, robust control theory deals with uncer-
tainty by explicitly incorporating the e¤ects of feed-
back into the decision making process through the
use of a "closed-loop" decision making model.



� A nominal model is constructed to describe a �nan-
cial system and then used to generate optimal deci-
sion rules: e.g. the optimal hedge.

� Uncertainty means that the optimal decision rules
can frequently be overly sensitive to small changes
in the model speci�cation, measurement, data and
disturbances.

� The objective is therefore to identify a type of deci-
sion rule that works well for a neighbourhood of al-
ternative models (including the nominal model) and



so is una¤ected by modeling inadequacies, data er-
rors, mis-measurement and uncertainty; such deci-
sion rules are said to be robust.

� The key problem is to jointly achieve robustness and
stability with respect to disturbances and model un-
certainty.

� Closed loop feedback is used to capture and reduce
the impact of uncertainty.

� Using a state space approach within the robust opti-
mal control framework allows the valuation problem
to be represented by classes of tractable di¤erential
equations.



� Conceptually, the nominal model, G, and the con-
troller process,K, are connected together by a closed
feedback loop that allows uncertainty to enter the
system.

Figure 2.1: Incorporating Feedback To Reduce
Uncertainty

� Given G, the robust control problem involves con-
structing a controller, K(in this case the hedging
rule), that guarantees closed-loop stability and per-
formance in the presence of any uncertainty belong-
ing to a given family or neighbourhood of admissible
models in the neighbourhood of the nominal model.



3.1 Review of existing robust approaches

� The Black & Scholes (1973) model is generally for-
mulated in terms of a stochastic framework.

� Many stochastic control problems are set up in terms
of a cost criterion which is some sort of expectation
of a functional of the process.

� But for option pricing, the seller would like to guar-
antee a certain bound on the cost - i.e. for almost
every path of the noise process, the option writer
would like to ensure that no loss will be incurred.

� So, even in the simple stochastic framework the op-
tion pricing problem is very nearly formulated as a
robust control problem.

� There are two main ways of incorporating distur-
bances or noise processes into systems:



1. As stochastic processes with associated �ltrations
and probability measures.

2. Treat the disturbances as unknown, but deter-
ministic processes of �nite energy - this is the
approach taken in the H1 and (more generally)
the robust optimal control methodologies.

� Four derivations of the robust optimal control prob-
lem have been tried:

1. Deterministic, di¤erential games - McEneaney
(1995), replaces Ito integral with Stratonovich
integral to price option using stop-loss hedging
assumption.

2. Game theoretic - Bernhard (2001, 2005) uses
game theory to solve linear HJB equation indi-
rectly using H1 techniques.

3. Ambiguity aversion - Zhu (2007) uses a modi-
�ed equilibrium model, solving the resulting lin-
ear HJB equation directly.



4. Game theoretic - Weston & Salmon (2008) solve
non-linear Lyapunov equations directly.

� The �rst one does not explain the smile.

� The second one explains the smile, but does not pro-
duce robust hedges.

� The third one explains the smile and produces robust
hedges.

� So, what are the steps to applying robust optimal
control theory to pricing derivative securities?

� The �rst three approaches also result in placing an
in�ated value on the catastrophic risk.



� McEneaney (1995) uses a combination of the rela-
tionship between the Ito and Stratonovich integrals
and robust control techniques to obtain a simple op-
tion price independent of volatility - the price derived
corresponds to a stop-loss hedging strategy (see Hull,
1993 for example).

� Zhu (2007) in contrast, uses a generalised equilib-
rium framework by allowing a representative agent to
act in a robust control framework against model mis-
speci�cation with respect to rare events, then derives
the corresponding equivalent martingale measure.

� The discussion will now be around the use of a non-
linear robust control framework as a means of deal-
ing with the uncertainty around model speci�cation
with respect to rare events in the sense of Anderson,
Hansen and Sargent (2000).



3.2 Non-linear robust approach

� So if the application of the basic robust optimal con-
trol model produces high prices what are the bene�ts
of incorporating the inherent non-linearities into the
option pricing model?

1. Solving the HJI equation is frequently impractical
for all but a small and relatively simple set of
linear models.

2. Robust control Lyapunov equations can be used
to construct an optimal control rule directly with-
out having to solve the HJI equation.

3. The existence of a Lyapunov function is su¢ cient
to prove stability and performance in the required
region.

4. If the value function, V (x); is negative de�nite,
the equilibrium is asymptotically stable.



5. Can be easily cast in a state space setting making
it �exible for dealing with securities that have
prices which depend on di¤erent states.

� Use non-linearities in the control function to improve
stabilisability and robustness - don�t �ght reality -
conceptually it works as follows:

Figure 2.2: Stability Compared



� How then does this basic idea translate into to a
robust optimal control Lyapunov approach ?

� To begin with, consider a simple representation of a
system of catastrophic and �nancial variables, (com-
plete with a number of simplifying assumptions, most
of which will be successively relaxed) and assume
there is some interest rate generating process, F (x) ;
where x is a vector of state variables describing the
interest rate.

� Assume also that there exists a hedging strategy,
G (x)u that uses a non-catastrophe related zero
coupon bond (whose value is determined by x) to
hedge the CAT bond.

� The �nal element is a disturbance input, H (x)w;

capable of capturing catastrophic shifts.



� It is assumed that u; the control or hedging strat-
egy, is used to balance the hedging portfolio. These
elements are linked together to form the following
system

_x = F (x) +G (x)u+H (x)w (1)

F; G and H are all assumed to be continuous func-
tions.



� It is also assumed that the system is stabilisable and
that the state is available for feedback - not an un-
reasonable assumption given that G is the hedging
policy which will be dynamic and feedback into the
model.

� The key assumption, however, is that a control Lya-
punov function is known for this system. In other
words, assume that a C1 (i.e. continuous in the �rst
derivative), positive de�nite function of the form

V : X �! R+ (2)

is known, such that

inf
u2U

rV (x) � [F (x) +G (x)u] < ��V (x) (3)

for all x 6= 0 and for some function �V .

� The critical concept is to use the control Lyapunov
function V as a robust control Lyapunov function for
the uncertain system of equation 1.



� As Freeman &Kokotovic (1995) point out, this ro-
bust control Lyapunov function can be chosen in-
dependently of the uncertainty so that there is no
knowledge of the structure of the disturbances, H:



� This means that for a CAT bond, it is possible to
derive a robust control Lyapunov function without
any knowledge of the structure of the catastrophic
disturbance.

� This is a very strong feature of the model compared
with the actuarial and equilibrium approaches where
the assumption is made that there is a probability
distribution for the catastrophic events and is one
that ensures its robustness in the presence of uncer-
tainty surrounding the likely arrival of catastrophic
events.

� From control theory it is known that to be a robust
control Lyapunov function V must satisfy

inf
u2U

sup
w2B

rV (x)�[F (x) +G (x)u+H (x)w] < ��V (x)

(4)
for all x 6= 0:



� Having provided an overview of the model, how does
the robust optimal control compare with the actuar-
ial and equilibrium models?

� In order to be able to answer this question, it is �rst
necessary to provide a precise de�nition of the vari-
ables in the model.



� As far as the �nancial market variables are concerned,
Cox and Pedersen assume these to be modelled on
the �ltered probability space 
(1); }(1);Þ1; where

(1) is taken to be �nite such that it represents all
paths that the �nancial variable can take over the
time k = 0; 1; :::; T:

� However, the point of the robust approach is to move
away from using a speci�c form of probability distrib-
ution to characterise the state space for the variables
in the model.

� As Cox and Pedersen point out, their results also
hold for in�nite sample spaces, so the extension to
a more general notion of a state-space seems intu-
itively acceptable.

� The key concept in making this transition for the
purposes of robustness is the need to deal with the
initial information state.



� It is known (e.g. Helton and James 1999) that care-
ful choice of the initial state makes an enormous dif-
ference in the implementability of the controller or
hedging process G(x) and strongly a¤ects the dy-
namic behaviour of the system.



� Therefore, within the robust control Lyapunov ap-
proach, we will consider four �nite dimensional Euclid-
ean spaces: the state space (interest rate or �nan-
cial variable such as the price of a discount bond) �;
the control or hedging space U , the disturbance or
catastrophe generating space W and the measure-
ment space Y: Given a continuous function f :� �
U � W � R ! �, a di¤erential equation can be
formed

_x = f (x; u; w; t) (5)

where x 2 � is the state variable,u 2 U is the
control or hedging input, w 2 W is the catastrophic
disturbance input and t 2 R is the time variable.

� Associated with the di¤erential equation 5 are ad-
missible measurements, admissible disturbances and
admissible controls - with each being characterised
by a set-valued constraint.



� Taking the admissible measurements �rst, a mea-
surement for equation 5 is a function y : � � R
such that y (�; t) is continuous for each �xed t 2 R
and y (x; �) is locally L1 for each �xed x 2 � (i.e.
bounded on a neighbourhood of every point). As-
suming a measurement constraint of the form Y :

��R Y; then a measurement y (x; t) is deemed
admissible when y (x; t) 2 Y (x; t) for all (x; t) 2
�� R:



� The importance of this de�nition is that it allows for
measurement uncertainty due to imperfections in the
measurement process, perhaps because there may be
several di¤erent measurement trajectories associated
with a single state trajectory.

� In equation 5, a disturbance is a function w : � �
U � R ! W; such that w (�; �; t) is continuous for
each �xed t 2 R and w (x; u; �) is locally L1 for
each �xed (x; u) 2 �� U :

� Therefore, given a disturbance constraint W : � �
U � R  W; it is possible to state that a distur-
bance w (x; u; t) is admissible when w (x; u; t) 2
W (x; u; t) for all (x; u; t) 2 �� U � R:

� This is central to the modelling of the catastrophe
space because admissible disturbances can include
both exogenous disturbances such as catastrophes



and feedback disturbances, such that they encom-
pass a large class of memoryless model and input
uncertainties and form part of the basis of the ap-
proach in yielding guaranteed stability framework for
robust non-linear control.



� In equation 5, a control is a function u : Y�R! U
such that u (�; t) exhibits continuity for each �xed
t 2 R and u (y; �) is locally L1 for each �xed y 2
Y:

� Following the same approach, given a control con-
straint U : Y � R  U ; it is possible to say that
a control is admissible when u (y; t) 2 U (y; t) for
(y; t) 2 Y�R and that u (y; t) is jointly continuous
in (y; t) :

� As F&K point out, it might be expected that a con-
stant control constraint U (y; t) � U0 should be
enough but for the purposes of our model there are
valid and desirable reasons for allowing the constraint
to depend on the measurement y:

� The most glaringly obvious example is that it might
be desired not to hedge the CAT bond using some
possibly expensive strategy when the value of the
CAT bond remains within an acceptably "normal"
region.



� The function f , taken with the set valued constraints
U; W and Y; comprises a systemX

= f (x; u (y (x; t))) (6)

and a solution, x (t) ; to this system solves the initial
value problem

_x = f (x; u (y(x; t) ; t); w(x; u(y(x; t); t); t); t) x (t0) = x0
(7)

given a measurement y(x; t); a disturbancew (x; u; t) ;
a control u (y; t) and an initial condition (x0; t0) 2
�� R:



� Classical existence theorems from control theory guar-
antee that the right hand side of equation 7 is con-
tinuous in x and locally L1 in t; which means that
solutions to

P
always exist (locally in t) but need

not necessarily be unique.

� It is also important to note that the above formu-
lation can also include �xed order dynamics by re-
de�ning the system

P
:

� For example, �xed order dynamics can be imposed
by adding auxiliary variables to the state, control and
measurement variables but the essential point that
emerges from this problem statement is that solu-
tions to

P
are robustly, globally and asymptotically

stable.

� In order to derive a catastrophe derivative valuation
framework based on this approach, it is necessary to
take into account three particular issues:



1. First, it must be remembered that for non-linear
systems the feedback gain between inputs and
outputs at each state depends on initial condi-
tions.

2. Second, the non-linearities inherent in the model,
such as convexity of the payo¤ function, must be
modelled as part of the initial conditions.

3. Third, there must be an existing methodology for
calculating the required quantities.

� Fortunately, robust control Lyapunov analysis sat-
is�es all three demands and is the approach upon
which the following analysis is constructed.



� At its simplest, a control Lyapunov function for a
system of the form _x = f (x; u) is a C1 positive
de�nite, radially bounded function V (x) such that

x 6= 0 (8)

inf
u2U

rV (x) � f (x; u) < 0 (9)

where U is a convex set of admissible values of the
control variable, such that the derivative of the func-
tion can be made negative pointwise by the choice
of control values.

� A function V 2 V (X ) is a robust control Lyapunov
for a system � when there exist cv 2 R+ and �v 2
P (X ) such that

inf
u2U(y;t)

sup
x2Q(y;c;t)

sup
w2W (u;t)

h
LfV (x; u; w; t) + �v (x; t)

i
< 0

(10)
for all y 2 Y; all t 2 R and all c > cv; and where
LfV is a Lyapunov derivative.



� This formulation of the robust control Lyapunov func-
tion is important as it is generalisable in a number of
directions such that it provides a signi�cant degree
of �exibility.

� Note that both control and disturbance inputs enter
the equation and that the de�nition copes with both
measurement feedback and state feedback.



� This capability to deal with feedback is particularly
valuable when devising valuation models as it means
that more realistic hedging strategies can be repre-
sented.

� Notice also that the term cv enables the modeler to
cope with the three issues in stabilisability (in addi-
tion to asymptotic stabilisability) identi�ed above.

� Finding a function V that is a solution to � and is
also robustly globally uniformly and asymptotically
stable and which also converges to a residual and
compact set 
 2 X necessitates �nding admissible
controls known as pointwise min-norm control laws,
which are so called because at each point x; their
value is the unique element of U of a minimum norm
that satis�es the control constraint U(x) whilst also
making the worst-case Lyapunov derivative at least
as negative as ��v (x) :



� The good news from a computational perspective is
that it is possible to compute the value of a point-
wise min-norm control law at any point x by solving
a convex, static minimisation programming problem
that is completely determined by the data �; V and
�v:

� The further good news is that this static problem has
a simple explicit solution in a wide variety of circum-
stances, a number of which are directly applicable to
the CAT bond valuation problem.

� The only restriction is that the system must be jointly
a¢ ne in u and w:



� To see how this works in practice, take an example
of a system _x = f(x; u; w) for continuous functions
f0; f1 and f2

_x = f0 (x) + f1 (x)u+ f2 (x)w (11)

and suppose that V is a robust control Lyapunov
function for this system such that D : X �U ! R,
then

D (x; u) := max
w2W (x)

h
LfV (x; u; w) + �v (x)

i
(12)

which, upon substituting, gives

D (x; u) = rV (x) � f0 (x) +rV (x) � f1 (x)u(13)
+ k rV (x) � f2 (x) k +�v (x) (14)

Using the simpli�cations

 0 (x) : = rV (x) � f0 (x)+ k rV (x) � f2 (x) k +�v (x)(15)

 1 (x) = [rV (x) � f1 (x)]T (16)

and de�ning K : X  U ; gives

K (x) =
n
u 2 U :  0 (x) +  T1 (x)u < 0

o
(17)



which �nally gives the simpli�ed expression for the
pointwise min-norm control law

m (x) =

8<: � 0(x) 1(x)

 T1 (x) 1(x)
when  0 (x) > 0

0 when  0 (x) � 0

9=;
(18)

for all x 2 V �1 (cv;1) :

� This then is the expression that will enable the calcu-
lation of the robust control law that will provide both
a hedging strategy in the face of both a catastrophe
and disturbances to the underlying interest rate en-
vironment.

� The initial rigidity of joint a¢ neness of the control
and the disturbance can be relaxed through an inte-
gral back stepping procedure described by Freeman
&Kokotovic (1995, 1997), but it was found that such
relaxation added relatively little to the robustness or
stability of the results described in the next section.



4 Empirical results

� The basic zero coupon CAT bond presented in these
results has the following structure. It is assumed to
pay an amount, Z; at maturity, T , contingent upon
a threshold time � > T:

� The no arbitrage, present value (discounted at a con-
tinuously compounded rate of R) of the zero coupon
CAT bond associated with a threshold loss level, D,
catastrophic �ow, M , an aggregate loss process, L
and a distribution of incurred losses, F , that pays Z
at maturity, is given by

V 1t = E [Z exp f�R (t; T )g (1�Nt) jFt]

where � = inf (t : Lt > D) and Nt = I(Lt > D)�.
�Baryishnikov et al (1998) also show that this is a doubly stochastic
Poisson process with intensity

�s = ms f1� F (D � Ls)g I (Ls < D)



� It is assumed that the threshold event is the time
at which the accumulated losses exceed the thresh-
old level, D, i.e. � = inf (t : Lt > D) : To simplify
the computations, the zero coupon CAT bond val-
uations reported are assumed to redeem at par of
$100 at maturity if aggregate losses do not exceed
the threshold level, D. However, unlike Burnecki,
Kukla and Taylor (2001) it is assumed that if accu-
mulated losses exceed the threshold, then the bond
holder receives a recovery amount, Bt, calculated as

B = Z �Nt

where Nt is stated as percentage of Z.



� The following results are therefore reported for vary-
ing levels of accumulated catastrophic losses incurred
prior to maturity, expressed as a percentage. To
achieve this scaling, the PCS loss data was simply
re-based to 100 at the beginning of the calculation
period.

� Figure 2.3 therefore illustrates the behaviour of the
price of a series of such zero coupon CAT bonds (as-
sumed to have been issued at a discount with accre-
tion to par and with price expressed as a percentage
of par) for given combinations of time to maturity
and percentage loss.

� The valuations were produced using the Cox-PIDE
model. The CAT bond valuations are at increasing
monthly maturities from 1 month out to 12 months
(e.g. 1m maturity, 2m maturity, 3m maturity etc),
all with identical issue date of 01 August 1992. The
results in �gure 2.3 are for CAT bonds based on PCS



loss data for the 12 months beginning 01 August
1992 for the National index, which was chosen specif-
ically because it contained the largest (at that time)
and most costly world insurance loss in the form of
hurricane Andrew which occurred on 23 August 1992
and produced total insured losses of $15.5bn in 1992
dollar terms (or $20.8bn in 2004 dollar terms).



� Figure 2.3 presents a number of interesting features.
First, it is clear that increasing the threshold loss level
increases the value of the CAT bond. This behav-
iour makes intuitive sense, since raising the threshold
loss level means less likelihood of losses consuming
the entire value of the bond. For comparative and
sanity check purposes, it is encouraging to note that
the pro�le shown in �gure 2.3 is consistent with re-
sults produced by both Burnecki, Kukla and Taylor
(2003) and Baryshnikov, Mayo and Taylor (2001)
from similar studies of CAT bond pricing using PCS
data.
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Figure 2.3: Short-term CAT bond valuation using
Cox-PIDE
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Figure 2.4: Short-term CAT bond valuation using
numerical HJI



� Now compare the results in �gure 2.3 with the results
of performing the same valuation exercise using the
same period PCS loss index data for the same overall
set of maturities and loss levels, but using instead the
robust numerical HJI model to value the CAT bond.
The results of these robust model computations are
shown in �gure 2.4. What is immediately, though
not unsurprisingly apparent, is that the robust nu-
merical HJI model results in much higher prices for
the CAT bond across almost all maturities and levels
of threshold loss.

� There are a number of possible explanations for this
result:

1. First and trivially, could be that the Cox-PIDE
model fundamentally undervalues the value of
catastrophic events, that by their very de�nition
are much less likely to occur and would therefore
be in the tail of a distribution. This is clearly one



possible explanation. However, following Bur-
necki, Kukla and Taylor (2003), the results re-
ported in �gure 2.3 were in fact generated using
the heavy-tailed Burr distribution to �t the PCS
loss distribution, so this explanation is only par-
tially acceptabley. Therefore, it would appear
that despite using a heavy tailed loss distribu-
tion, the Cox-PIDE model appears to undervalue
the CAT bond; the undervaluation is dramati-
cally higher at lower loss levels and shorter times
to maturity and then declines with both loss level
and maturity to around 30% for the 12 month
and 100% loss level combination.What is also in-
teresting is the pattern of di¤erences between the
two approaches. Figure 2.5 shows the percentage
undervaluation between Cox-PIDE and numeri-
cal HJI. The pattern of di¤erences are worthy of
note. First, it should be born in mind that the
results in �gures 2.3 and 2.4 are limited to bonds

ySee Appendix 2 for details of the �tting procedure and some of the
results of the calibration.



with maturities ranging from 1 month to 1 year.
The undervaluation appears much greater for the
shorter maturities and lower loss levels (rising to
a peak for the 2 month and 30% threshold loss
level), before tailing-o¤ to an over-valuation of
around 30% for the longer maturities and higher
loss levelsz. An immediately obvious question is
why does the pattern of di¤erences change so
signi�cantly? One possible explanation is that
the Cox-PIDE fundamentally undervalues the im-
pact of smaller, individual catastrophes that oc-
cur more frequently, but that the undervaluation
e¤ect is eroded with the e¤ects of time and as
loss levels rise.

2. A second possible explanation is that the pat-
tern of undervaluation could also be a function
of the volatility of claims estimates due to the
way in which the catastrophes are reported and

zNote that all of the results used to plot the �gures contained in
this chapter are provided in numerical form in Appendix 3).



the index adjusted. This would appear to �t with
the fact that there is a distinct pattern to the
way in which catastrophes are reported. Typi-
cally, an initial estimate of the number of claims
and their total value gets published and then re-
�ned during the development period. The initial
uncertainty around the losses associated with a
catastrophe therefore declines as estimates be-
come �rmer. Detailed examination of data for
individual catastrophes appears to bear this out,
as catastrophes exhibit a higher level of volatil-
ity in initial claims estimates (due to the initial
lack of hard facts as losses take time to assess
and claims then take further time to complete
and submit), which then declines as facts emerge,
loss estimates crystalise and claim numbers and
values stabilise.

3. A third possible explanation is that the mis-valuation
could be attributable to seasonal e¤ects. There



is a well known and heavily documentedx pat-
tern of hurricane and tropical storm occurrence
in the southern USA during the late summer and
autumn. This weather pattern accounts for a
signi�cant proportion of the insured losses that
form the PCS index. Even though the heavy-
tailed Burr distribution was used to �t the PCS
data, it may be the case the Burr distribution
is simply not capable of adequately capturing
the e¤ects of the well known pattern to the oc-
currence of hurricanes and storms in the south
eastern USA during this period. The spike in
catastrophes is clearly evident in the steep slope
in both �gures 2.3 and 2.4, which both clearly
show the dramatic impact of hurricane Andrew
in August and September 1992. Figure 2.5 shows
that the Cox-PIDE model signi�cantly underval-
ues the impact on the CAT bond price of this
catastrophe for short dated maturities when the

xSee for example the Insurance Information Institute website at:
www2.iii.org/facts.



number and size of claims is still at its most
volatile, indicating a lack of robustness with re-
spect to the occurrence of large catastrophic events.



7d

2m

4m

6m

8m

10
m 12

m

0%Loss

20%Loss

40%Loss

60%Loss

80%Loss

100%Loss

­100%

­50%

0%

50%

100%

150%

200%

Time to
 maturity

% difference

Robust v non­robust
CAT Bond pricing:
Numerical HJI ­ Cox
PIDE

((Numerical­HJI ­ Cox­PIDE) / Cox­PIDE)*100

Increasing
undervaluation

by Cox­PIDE

Figure 2.5: Short-term CAT bond model valuation:
Numerical HJI - Cox-PIDE

� An immediately interesting question is whether or
not the cost of robustness varies according to the
robust model approach employed. Therefore, to in-
vestigate whether the pattern exhibited in the re-
sults of the numerical HJI model was mainly a func-
tion of a particular facet of the HJI model, a linear



robust control Lyapunov model was used to value
CAT bonds using the same range of maturities, the
same underlying PCS loss data and the same range
of loss levels as used for the Cox-PIDE and numer-
ical HJI models. Figure 2.6 provides the results of
these CAT bond valuations for the linear robust con-
trol Lyapunov valuation model developed earlier in
this paper.

� What is immediately clear is that all three models
display relatively smooth monotonic valuation pro-
�les throughout the ranges of loss levels and time to
maturity. This is to some extent to be expected as all
three models contain signi�cant linearisations. The
numerical HJI model used in this analysis is, in par-
ticular, an explicitly linear model - which, as already
explained earlier in this paper means that signi�cant
control e¤ort (and therefore associated higher con-
trol cost, which is in turn re�ected in a higher valua-
tion) can be wasted attempting to combat inherent
non-linearities.



� The �nal logical step is therefore to extend the analy-
sis by including the non-linear version of the robust
control Lyapunov model in its piece-wise min-norm
form. Once again, the same maturities, loss lev-
els and PCS data were used to produce compara-
ble CAT bond valuations, the results of which are
reported in �gure 2.8. Examination of �gure 2.8
immediately shows the bene�t of explicitly incorpo-
rating the non-linearities, as the behaviour of CAT
bond value around low loss levels and short time to
maturity is now much smoother than in the simple
linear Lyapunov case shown in �gure 2.6.



� Worthy of note is the interesting behaviour arises
when the relative performance of the non-linear Lya-
punov model is compared with the non-robust Cox-
PIDE model - as shown in �gure 2.9.

� Two features are worthy of comment:

1. First, is that there is now a much lower range
of variability in valuation around the Cox-PIDE
model, suggesting that robustness appears to have
been achieved at a much lower cost by explicitly
incorporating non-linearities into the robust con-
trol Lyapunov model.

2. The second interesting feature is the pronounced
double peakiness in valuation di¤erences. This is
most pronounced around the 50% and 80% loss
levels. For the very short dated CAT bonds this
would appear to coincide with the re-estimation
volatility associated with the uncertainty surround-
ing the losses from hurricane Andrew. The fact



that this behaviour is far less pronounced in the
case of the longer dated CAT bonds seems to
lend support to such conjecture.



� The contrast in performance between the three ro-
bust models is clearly seen when comparing the re-
sults in �gure 2.5 (numerical HJI v Cox-PIDE), �g-
ure 2.7 (linear Lyapunov v Cox-PIDE) and �gure 2.9
(non-linear Lyapunov v Cox-PIDE).

� The �rst point to note is that the numerical HJI
model exhibits a much smoother di¤erence pro�le
with respect to the Cox-PIDE model compared with
the linear Lyapunov model, but at a higher cost than
the non-linear Lyapunov model. Figure 2.7 shows
an interesting pattern of di¤erences which is most
marked around the lower loss levels and shorter times
to maturity.

� The numerical HJI model imposes a much greater
cost penalty to robustness than the linear Lyapunov
model, which is re�ected in much higher valuations.
This pattern is particularly pronounced in the short-
term and low loss cases which in the context of the



current analysis are precisely those CAT bonds most
subject to the impact of hurricane Andrew. The pat-
tern of di¤erences then falls away, becoming far less
signi�cant in the case of increased time to maturity
and higher loss levels.

� The �nal step in this CAT bond research was to
analyse the importance of time to maturity in deter-
mining the cost of robustness. Focus has so far been
limited to short dated CAT bonds, but the critical
question is whether examining bonds with a maxi-
mum maturity of only 12 months is likely to exac-
erbate or hide any valuation patterns that may be
associated with achieving robustness.

� On the one hand, identifying the cost of robustness
may be argued to be a simpler task by concentrating
on short-dated CAT bonds. Unfortunately, on the
other hand, little can be inferred about the dynamics
of robustness over time if attention is restricted to
such a short space of time.



� The next logical step is therefore to extend the ma-
turity of the CAT bonds for all four models. Accord-
ingly, all four CAT bond models were therefore re-run
using the same loss levels, but using instead 10 years
worth of PCS data beginning 01 January 1990 and
ending 31 December 1999. The time to maturity
of the longest CAT bond was extended to 10 years
at 6 monthly intervals, i.e. 6m, 12,m, 18m,...,108m,
114m, 120m. In other words, CAT bonds with 20 dif-
ferent maturities ranging from 6 months to 10 years
(but all with an identical start date of 01 January
1990) were valued using each of the four models.
The results of each set of valuations is reported in
�gures 2.10 (Cox-PIDE), 2.11 (numerical HJI), 2.12
(linear Lyapunov) and 2.13 (non-linear Lyapunov),
with comparisons to Cox-PIDE being presented in
�gures 2.14 (numerical HJI v Cox-PIDE), 2.15 (lin-
ear Lyapunov v Cox-PIDE) and 2.16 (non-linear Lya-
punov v Cox-PIDE).

� The results for these longer maturity CAT bonds pro-
vide a number of further insights into the robustness



and stability of the three robust valuation models.
The �rst and most obvious feature to emerge from
the long-dated CAT bond valuations is the funda-
mentally di¤erent shapes of the valuation surfaces
when compared with those generated for the short
dated CAT bonds. The most interesting set of re-
sults is for the numerical HJI valued bonds shown in
�gure 2.11, which exhibit an extremely high implied
cost of robustness as can be vividly seen in �gure
2.14. Detailed examination of the results revealed
that the principal reason for this behaviour was that
for the longer dated bonds severe cost penalties were
being incurred by the numerical HJI algorithm in or-
der to ensure stable solutions. These cost penalties
translated directly into higher valuations as the HJI
model consumed increasing numbers of processing
cycles searching for a stable solution to satisfy the
robustness and stability constraints.

� The second feature of interest is the presence of a
much clearer valuation di¤erential between the nu-
merical HJI model on the one hand and the two ro-
bust control Lyapunov models on the other hand.



The numerical HJI algorithm used in the compu-
tations follows the standard power series approach
of Al�brecht (1961) for solving in�nite time optimal
control problems{. Why does this di¤erential occur
and how should it be interpreted? To answer these
questions, consider that in contrast to the numerical
HI algorithm, the two Lyapunov based models both
use the Freeman and Kokotovic approach of �nding a
meaningful cost function such that the given robust
control Lyapunov function is the corresponding value
function. This implicitly provides a solution to the
equivalent linear HJI equation, thereby enabling the
direct computation of the robust optimal control law.
Therefore, providing that the cost function belongs

{Al�brecht�s (slightly modi�ed) method solves the HJI partial di¤er-
ential equation in the neighbourhood of the origin using a power
series method. This ultimately reduces the quadratic terms of the
HJI pde to an easily solvable Riccati equation and a linear optimal
feedback rule. This is then solved using function SB02PD ported
from the Slicot library as explained in Appendix 1. This function
solves the continuous algebraic Riccati equations using the matrix
sign function method with condition and forward error bound esti-
mates.



to a meaningful class of cost functions, the resulting
control law is robust and guaranteed to inherit all the
required optimality properties. The robust control
Lyapunov approach uses an inverse optimal robust
stabilisation problem of �nding a meaningful cost
function, such that a given robust control Lyapunov
function is the corresponding value function. This
results in a solution to the equivalent linear HJI prob-
lem that is both stable and robust. In the case of the
non-linear robust optimal control Lyapunov model,
this further translates into solutions that take advan-
tage of the non-linearities in the valuation problem
that exist explicitly because the catastrophic events
are driven by highly complex non-linear relationships.
The outcome in the case of the non-linear robust
control Lyapunov model is smoother and less expen-
sive robustness - in other words, the cost of robust-
ness is lower in the non-linear case as the solution
takes advantage of the non-linearities rather than
�ghting against them, which translates directly into
lower robustness costs.



� The �nal issue to consider is whether the relative
performance of the three robust models presented so
far provide su¢ cient information to draw de�nitive
conclusions about the cost of robust valuation in the
face of massive catastrophic events such as hurricane
Andrew? Looking �rst at the short-term valuation
results, all three robust models can be seen to exhibit
substantial di¤erences compared to the Cox-PIDE
model for the 1-6 month securities and up to around
the 50% loss level. The pattern of di¤erences then
appears to be less pronounced for the 6-12 month
securities and higher loss levels. This may at least in
part be due to the volatility of the claims estimates
referred to above being handled di¤erently in the cost
function within the models. the liner and non-linear
Lyapunov approaches

� As far as the long-term valuation results are con-
cerned, the impact and tail e¤ects of hurricane An-
drew can be seen quite clearly between the four mod-
els. Once again, the numerical HJI model exhibits



extreme cost penalties right across the loss level spec-
trum for the shorter maturities and in the middle of
the loss threshold range, but these penalties fall o¤
very rapidly as the initial impact e¤ect of Andrew
decays. The cost of robustness for the numerical
HJI is therefore far higher even for the very longest
bonds at all but the very lowest loss levels. Detailed
examination of the diagnostics for the numerical HJI
once again reveals the same explanation as in the
shorter dated case. What is also worthy of note is
that the pattern of extreme cost penalties appears to
have quite a lengthy tail to its decay structure. The
tail has three discernible phases, which can best be
observed by looking at the longest dated bonds. The
�rst phase covers the initial impact of Andrew and
appears to last out to around 3 years. During this
phase the cost penalties begin extremely high, but
fall o¤ very rapidly. The second phase is from around
3 to 5 years, during which time the cost penalties
continue to fall but at a much slower pace. The �-
nal phase, from 5 to 10 years sees the cost penalties
�attening out, but still remaining high.



� In contrast, the two Lyapunov models no longer con-
tinue to attract extremely high cost penalties com-
pared with the Cox-PIDE model as can be clearly
seen when comparing �gures 2.14, 2.15 and 2.16.
What is even more interesting is that the two Lya-
punov models actually exhibit valuations below the
Cox-PIDE for some combinations of shorter matu-
rities and higher loss levels. Closer examination of
the diagnostics for the linear Lyapunov model re-
vealed that incorporation and consequent in�uence
of feedback yielded smoother solutions so that the
cost penalties associated with achieving robustness
were substantially reduced. In the case of the non-
linear Lyapunov model the extra in�uence of the
lower cost penalties associated with incorporating
the non-linear dynamics further reduced the costs
of robustness. This �nding for the non-linear robust
control Lyapunov function is a signi�cant �nding as
it underlines that the costs of robustness to uncer-
tainty may not be so high as to make robust strate-
gies una¤ordable. The point is that in times when



catastrophic events do not occur - which by their
very de�nition tends to be most of the time - the
costs of robustness make it totally uneconomic as a
valuation methodology. However, when catastrophic
events are brought into the picture, the costs of ro-
bustness become far more acceptable compared the
possible levels of loss, which may include bankruptcy
or ruin at the limit.

� Notwithstanding the above possible explanations for
the valuation di¤erences between the Cox-PIDE and
the numerical HJI models, arguably the more inter-
esting question is whether the robust model actually
overvalues the bene�ts of robustness. One way of
answering this question is by resorting to a compar-
ison of the CAT bond valuations with the out-turn
in the PCS indexk. The answer to this question can

kAn equally valuable cross-check would be to compare the results of
the CAT bond models with the traded prices of puts and calls in the
CBOT options prices. However, the option contracts did not trade
for the entire period of interest of the short-dated CAT bonds. See
Appendix 2 for details of the periods covered by the PCS options
data available from CBOT.



be only partially inferred from the results presented
in �gures 2.3, 2.4 and 2.5. Hurricane Andrew oc-
curred on 23rd August 1992, so the �rst month in
which estimates of likely loss were fully available was
September 1992. The relative di¤erences in value
before and after the impact of hurricane Andrew can
be seen in �gure 2.5.
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Figure 2.6: Short-term CAT bond valuation using
Linear Lyapunov
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Non-Linear Lyapunov



7d 1m

2m

3m

4m

5m

6m

7m

8m

9m 10
m 11

m 12
m

0%Loss

20%Loss

40%Loss

60%Loss

80%Loss

100%Loss

­100%

­80%

­60%

­40%

­20%

0%

20%

40%

60%

80%

% difference

Tim
e to

 m
aturity

Robust v non­robust
CAT Bond pricing:
Non­Linear
Lyapunov ­
Cox­PIDE

((Non­Linear Lyapunov ­ Cox­PIDE) / Cox­PIDE)*100

Figure 2.9: Short-term CAT bond model valuation:
Non-Linear Lyapunov v Cox-PIDE



7d

2y

4y

6y

8y

10y

0%
Lo

ss

10
%

Lo
ss

20
%

Lo
ss

30
%

Lo
ss

40
%

Lo
ss

50
%

Lo
ss

60
%

Lo
ss

70
%

Lo
ss

80
%

Lo
ss

90
%

Lo
ss

10
0%

Lo
ss

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00
% of Par

Tim
e t

o m
aturit

y

CAT Bond
Pricing:
Poisson
PIDE

Figure 2.10: Long-term CAT bond valuation:
Cox-PIDE



0.5y

2.5y

4.5y

6.5y

8.5y

0%
Lo

ss

10
%

Lo
ss

20
%

Lo
ss

30
%

Lo
ss

40
%

Lo
ss

50
%

Lo
ss

60
%

Lo
ss

70
%

Lo
ss

80
%

Lo
ss

90
%

Lo
ss

10
0%

Lo
ss

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

% of Par

Tim
e t

o m
aturit

y

Robust CAT
Bond
Pricing:
Numerical
HJI

Figure 2.11: Long-term CAT bond valuation:
Numerical HJI
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Figure 2.12: Long-term CAT bond valuation:
Linear Lyapunov
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Figure 2.13: Long-term CAT bond valuation:
Non-Linear Lyapunov
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� Having analysed the theoretical costs of robustness,
it is relevant to consider how such valuation tech-
niques would actually have fared in practice. There
are two points here:

1. First, actual property insurance claims of approx-
imately USD 60 billion were made between 1990



and 1996 (Canter, Cole, and Sandor; 1996) re-
sulting in the insolvency of a number of insur-
ance �rms. These bankruptcies were brought on
in the wake of hurricanes Andrew (Florida and
Louisiana a¤ected, 1992), Opal (Florida and Al-
abama, 1995) and Fran (North Carolina, 1996),
which caused combined damage totalling USD
19.7 billion (Canter, Cole, and Sandor; 1996).
These, along with the Northridge earthquake (1994)
and similar disasters, led to an interest in al-
ternative means for underwriting insurance. In
1995, when the CAT bond market was born, the
primary and secondary (or reinsurance) indus-
tries had access to approximately USD 240 bil-
lion in capital (Canter, Cole, and Sandor; 1996;
Cummins and Danzon; 1997). Given the capi-
tal level constraints necessary for the reinsuring
of property losses and the potential for single-
event losses in excess of USD 100 billion, this was
clearly insu¢ cient. A loss of $100 billion would
consume approximately 30 - 40% of the equity



capital of the US insurance industry but would
be less than 0.5% of the value of the US stock
and bond markets. Whether such problems could
have been avoided by insurers attempting more
sophisticated risk management through the is-
suance of CAT bonds that had been valued using
robust valuation methods is di¢ cult to assess di-
rectly. However, what can be concluded is that in
terms of total revenue, the prevailing Cox-PIDE
model produced fundamental mis-valuations that
would have resulted in a signi�cant lack of risk
mitigation and cash�ow - particularly if the CAT
bonds had been short-term securities.

2. Could CAT bonds have been issued in amounts
that would have been su¢ cient to enable the re-
quired risk mitigation? It is undoubtedly the case
that the international capital markets provided a
potential source of risk appetite for the reinsur-
ance market. An estimated capitalisation of the
international �nancial markets around the time of



hurricane Andrew, of about USD 19 trillion un-
derwent an average daily �uctuation of approxi-
mately 70 basis points or USD 133 billion (Sigma;
1996). So, clearly the capacity to bear such large
amounts of catastrophic risk was (and remains)
much greater in the capital markets. However,
the under-capitalisation of the reinsurance indus-
try (and the consequent potential default risk)
meant that there was a tendency for CAT rein-
surance prices to be highly volatile which dis-
couraged many potential issuers from using CAT
bonds. This was re�ected in the traditional in-
surance market, with rates on line being signi�-
cantly higher in the years following catastrophes
and dropping o¤ in the intervening years (Sigma;
1997; Froot and O�Connell; 1997). This het-
erogeneity in pricing had a very strong damping
e¤ect, forcing many re-insurers to leave the mar-
ket, which in turn has adverse consequences for
the primary insurers. A number of reasons for
this volatility have been advanced (see for ex-
ample Cummins and Danzon; 1997 and Winter;
1994).



� Some of the traditional assumptions of derivative se-
curity pricing are not correct when applied to these
instruments due to the properties of the underlying
contingent stochastic processes. There is evidence
that certain catastrophic natural events have (par-
tial) power-law distributions associated with their
loss statistics (Barton and Nishenko; 1994), which
if true, would overturns the traditional log-normal
assumption of derivative pricing models and makes
robustness hard if not impossible to achieve without
using non-linear models.

� There are also well-known statistical di¢ culties as-
sociated with the moments of power-law distribu-
tions��, thus rendering it impossible to employ tra-
ditional pooling methods and consequently the cen-
tral limit theorem. Given that heavy-tailed or large

��This has become a signi�cant research topic in its own right - see
for example, "Multifractal Power Law Distributions: Negative and
Critical Dimensions and Other �Anomalies, Explained by a Simple
Example", by Benoit B. Mandelbrot, in the Journal of Statistical
Physics, Vol. 110, Nos. 3�6, March 2003.



deviation results assume, in general, that at least
the �rst moment of the distribution exists, there will
be di¢ culties with applying extreme value theory to
this problem (Embrechts, Resnick, and Samorodnit-
sky; 1999). It would seem that these characteristics
may render traditional actuarial or derivatives pricing
approaches ine¤ective.

� Although there is some similarity with the valuation
of defaultable bonds, there are additional features
to modelling the CAT bond price which are not to
be found in models of ordinary corporate or govern-
ment securities. The main feature is that the trigger
event that underlies CAT bond pricing is dependent
on both the frequency and severity of natural dis-
asters. The Cox-PIE model in this section is used
to reduce to a minimum any assumptions about the
underlying distribution functions in the interests of
generality of application. However, given the daily
availability of PCS loss data, it is also appears to be



reasonable to assume that loss levels are instanta-
neously measurable and updatable, which makes it
straightforward to adjust the underlying process to
accommodate a development period and it is this
feature that is explicitly included in the next section
where results of CAT option valuation are reported
that once again use PCS loss data.

� There is a natural similarity between the pricing of
catastrophe bonds and the pricing of defaultable bonds.
Defaultable bonds, by de�nition, must contain within
their pricing model a mechanism that accounts for
the potential (partial or complete) loss of their prin-
cipal value. Defaultable bonds yield higher returns,
in part, because of this potential defaultability. Simi-
larly, CAT bonds are o¤ered at high yields because of
the unpredictable nature of the catastrophe process.
With this characteristic in mind, a number of pricing
models for defaultable bonds have been advanced
(e.g. Jarrow and Turnbull, 1995, Du¢ e and Single-
ton, 1999, Zhou and 1997). The trigger event for



the default process has similar statistical character-
istics to that of the equivalent catastrophic event
pertaining to CAT bonds.yy

yyIn an allied application to mortgage insurance, the similarity be-
tween catastrophe and default in the log-normal context has been
commented on (Kau and Keenan; 1996).



5 Conclusions

� This research has developed and applied modern ro-
bust control techniques to produce practical solu-
tions to real-world �nancial problems in derivative
pricing, hedging and risk management.

� Robustness in decision making has been shown to be
important, achievable in a cost e¤ective manner and
computationally tractable in these 3 distinct cases.

� Speci�cally incorporating non-linearities is shown to
be important because doing so:

1. Ameliorates the impact of model reduction par-
ticularly as there are a broader range of controls
from which to choose.

2. Increases the range and e¢ ciency of control laws
available making robustness less costly and less
wasteful.



3. Produces a robust and stable solution methodol-
ogy that is �exible, tractable and computation-
ally e¢ cient.
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