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Abstract

In this paper, we generalize Russell’s (1999) autoregressive conditional intensity
model in several directions. First, we propose a framework which nests both propor-
tional intensity structures as well as accelerated failure time structures. Second, the
process dynamics are extended to allow for long range dependence in the intensity
process. Third, we account for spill-over effects between consecutive trading days by
incorporating inter-day dynamics. Fourth, a semiparametric extension of the Burr
hazard rate for the modelling of the baseline intensity component is suggested. Ap-
plications of univariate and bivariate versions of the model to trade intensities and
price change intensities based on the IBM stock traded at the New York Stock Ex-
change illustrate the usefulness of the proposed extensions. Significant long memory
effects are observed. Furthermore, we find evidence for non-stationary patterns in the
intensity series. In contrast, the inter-day dynamics are weak and only identifiable
on a sufficiently long time series. Moreover, we observe the presence of acceleration
effects and a rejection of proportional intensity structures. Finally, it turns out that
a semiparametric specificaton of the baseline intensity component is necessary to cap-
ture the distributional properties of the data. The latter is particularly important for
trade durations.

Keywords: Multivariate point processes, intensity function, proportional intensity
vs. accelerated failure time model, long memory.

JEL Classification: C22, C32, C41

1 Introduction

The modelling of financial transaction data is an ongoing topic in the financial economet-

rics literature. A key property of transaction data is the irregular spacing in time which
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necessitates to consider the data statistically as point processes. The importance of point

processes in financial econometrics has been stressed in the seminal papers by Engle (2000)

and Engle and Russell (1998). They proposed the Autoregressive Conditional Duration

(ACD) model in which the durations between consecutive events are modelled in terms

of an autoregressive accelerated failure time model. Since the ACD model is specified

in discrete time, it is not able to appropriately describe multivariate point processes in

which the individual processes occur asynchronously. For this reason, Russell (1999) sug-

gested to model point processes in a continuous-time setting by directly parameterizing

the (multivariate) intensity function instead of the inter-event durations. He proposed

the Autoregressive Conditional Intensity (ACI) model which is a proportional intensity

model in which the intensity function is parameterized as a multiplicative function of a

baseline intensity and a function following a log-linear vectorial ARMA-type process which

is updated at each point of the process.

However, recent literature on financial point processes realized four major deficien-

cies of basic ACD or ACI type models in applications to financial duration data. First,

Jasiak (1998) found clear evidence for long memory in financial duration processes. More-

over, applications of ACD and ACI models to financial duration processes typically reveal

autoregressive parameters which are close to non-stationarity and indicate a strong per-

sistence in the process. Second, Bauwens, Giot, Grammig, and Veredas (2004) illustrated

that even highly parameterized ACD specifications are not able to fully capture the distri-

butional properties of trade durations. Similar evidence was provided by Hall and Hautsch

(2004) who found a Burr parameterization of the baseline intensity to be not sufficient

to model trading intensities. Third, Bowsher (2002) illustrated significant evidence for

daily spill-overs in trade intensities and price change intensities which is typically ignored

in many applications. Fourth, several studies like e.g. Dufour and Engle (2000), Fernan-

des and Grammig (2000) and Hautsch (2003) among others illustrated the presence of

asymmetric news impacts in ACD models.

In this paper, we propose a framework for (multivariate) autoregressive intensity

processes which generalizes Russell’s ACI model in the aforementioned directions: First,

we relax the assumption of a proportional intensity model and allow for accelerated failure

time specifications in which components determining the intensity (such as functions of

past durations or covariates) might accelerate or decelerate the time to failure. The
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distinction between proportional intensity models and accelerated failure time models

and thus the motivation for this extensions emanates from the traditional literature on

failure times in biostatistics and labor economics1. In the literature of financial point

processes this distinction is present since the ACD model belongs to the class of accelerated

failure time model whereas the ACI model is based on a proportional intensity structure.

However, the resulting model proposed in this paper nests both the basic ACI model as

well as a special type of ACD model as special cases.

Second, we allow for long range dependence in the intraday intensity process by

extending the (short memory) GARCH type dynamics to the case of non-summable au-

tocovariances. By adapting the long memory ARCH(∞) model proposed by Koulikov

(2003), we model the process dynamics in terms of a fractionally integrated process which

is updated by lagged integrated intensities. Moreover, we capture inter-day spillovers by

incorporating a daily intensity component which follows itself an autoregressive structure.

This structure allows to separate between intradaily and daily process dynamics.

Third, in order to allow for more distributional flexibility, we propose a semipara-

metric specification of the baseline intensity component. The major idea is to parameterize

the baseline intensity in terms of a Burr hazard function which is augmented by a spline

function based on a flexible Fourier form according to Gallant (1981). Fourth, the intraday

dynamics are extended to allow for asymmetric news impacts.

The resulting model is called Generalized Long Memory ACI (GLMACI) model and

is applied to trade durations and price durations based on the trading process of the IBM

stock at the New York Stock Exchange (NYSE). Estimating and evaluating univariate

and bivariate specifications of the GLMACI model illustrate the usefulness of the proposed

specifications. We find significant evidence for long range dependence in trade durations as

well as price durations. In contrast, only weak inter-day dynamics are found. Particularly

for trade durations which are analyzed based on a time series capturing one month, the

latter effects are hard to identify. For price durations which are investigated on the basis

of a two-month sample, weak but significant inter-day effects are found. Furthermore,

the analyzed duration processes reveal evidence for acceleration effects in dependence of

intraday dynamics and seasonalities. It turns out that the basic proportional intensity
1See Kalbfleisch and Prentice (1980) and Kiefer (1988) as well as Lancaster (1997) for classical references

in both areas.
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structure is rejected. Finally, besides the existence of asymmetric news impact effects we

find a semiparametric specification of the baseline intensity to be necessary in order to

capture the distributional properties of the financial duration data. In line with empirical

evidence (see e.g. Bauwens, Giot, Grammig, and Veredas, 2004) this effect is particularly

apparent for trade durations.

The remainder of the paper is structured as follows: In Section 2, we illustrate the

univariate GLMACI model. The multivariate extension is given in Section 3. Section 4

describes the statistical inference whereas Section 5 presents the empirical application of

the model. Finally, Section 6 concludes.

2 The Univariate GLMACI Model

2.1 Statistical Background on Simple Point Processes

Let t denote the calendar time and let {ti}i∈{1,2,...,n} be a sequence of random arrival times

with 0 < t1 < . . . < tn. The series of points {ti} is called a (simple) point process. Define

N(t) :=
∑

i≥1 1l {ti≤t} as the right-continuous counting function. Denote Ft as the history

(inclusive possible (exogenous) covariates) of the point process N(t) up to t. Then, the

point process N(t) is said to be adapted to the filtration Ft. A key concept in point

process theory is the (stochastic) intensity function. Define λ(t) as a scalar, positive,

left-continuous Ft-predictable process with right hand limits. Then, if

E[N(s)−N(t)|Ft] = E
[∫ s

t
λ(u)du|Ft

]
(1)

(almost surely) for all t, s with 0 ≤ t ≤ s, we call λ(t) the intensity of N(t) (see

e.g. Brémaud, 1981). A more intuitive representation of the intensity function is obtained

by considering the limit case when s ↓ t. Then, we have

λ(t) := lim
∆↓0

1
∆

E [N(t + ∆)−N(t)| Ft] . (2)

A direct consequence of (1) is that E[N(t)] = E
[∫ t

0 λ(u)du
]

= E[Λ̃(t)], where Λ̃(t) :=
∫ t
0 λ(u)du is referred to as the Ft-compensator of N(t). Furthermore, if the point process

N(t) is integrable, i.e. E[N(t)] < ∞, ∀ t ≥ 0, Definition (1) implies that the process

N(t)− Λ̃(t) (3)
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is a mean zero martingale.

The stochastic properties of the compensator Λ̃(t) play an important role in the

theory of point processes and are exploited to construct diagnostic tests for point process

models (see e.g. Bowsher, 2002). A central theorem is the random time change theorem

for point processes. Brown and Nair (1988) prove that the point process formed from

the (continuous) process Λ̃(t) with event arrival times t̃i :=
∫ t
0 λ(s)ds is a Poisson process

with unit intensity.2 Consequently, the integrated intensity Λ(ti−1, ti) :=
∫ ti
ti−1

λ(s)ds cor-

responds to the increment of a Poisson process and is standard exponentially distributed.

Therefore, Λ(ti−1, ti) can be interpreted as a generalized error (e.g. in the spirit of Cox

and Snell, 1968) that establishes a link between the intensity function and the implied

waiting time until the next event.

2.2 The Basic Model

Define N̆(t) :=
∑

i≥1 1l {ti<t} as the left-continuous counting function. Then, the basic

structure of the univariate generalized ACI model is given by

λ(t) = λ0 (η(t))ΦN̆(t)+1s(t), (4)

η(t) := x(t) ·
[
ΦN̆(t)+1s(t)

]δ
, (5)

where ΦN̆(t) is a function capturing the model dynamics as well as possible covariates,

x(t) := t − tN̆(t) denotes the time elapsed since the last event (the so-called backward

recurrence time), and λ0(·) denotes a baseline intensity function. Furthermore, s(t) is a

(deterministic) function of time capturing possible seasonality effects. The function ΦN̆(t)

is indexed by the left-continuous counting function and is updated instantaneously after

the arrival of a new point. Hence, Φi is constant for ti−1 < t ≤ ti. The evolution of

the intensity function between two consecutive arrival times is determined by the function

λ0(·) depending on a function of time, η(t), corresponding to the time elapsed since the

last event scaled by ΦN̆(t)+1 and s(t). Hence, η(t) can be interpreted as a transformation

of the time scale on which the baseline intensity λ0(·) is defined. If δ > 0, the model

dynamics and seasonalities accelerate the time until the next event, whereas for δ < 0 the

time scale is decelerated. For the special case δ = 1, we obtain the counterpart of the
2See Theorem 1 in Brown and Nair (1988).
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so-called accelerated failure time (AFT) model. Correspondingly, for δ = 0, we obtain the

counterpart of the classical proportional intensity (PI) model.3

The non-negativity of λ(t) is ensured by parameterizing Φi in log-linear form which

is augmented by a function of covariates zi, observable at each event arrival point ti,

Φi = exp
(
Φ̃i + z′i−1γ

)
. (6)

As proposed by Russell (1999), the key idea of the ACI model is to specify the dy-

namic function Φ̃i in terms of the past sequence of integrated intensities, {Λ(tj−1, tj)}i
j=2.

Exploiting the standard exponential property of Λ(tj−1, tj), a natural i.i.d. innovation

term is given by

εi := 1− Λ(ti−1, ti) (7)

with the property E[εi] = 0.

In order to extend Russell’s parameterization of Φ̃i to the case of long range de-

pendence, we parameterize it in terms of an infinite series representation as proposed by

Koulikov (2003) and given by

Φ̃i = ω + α

∞∑

j=1

θj−1εi−j , (8)

where {θj : j ≥ 0} ⊆ R0+ is an infinite sequence of coefficients with θ0 = 1 and ω and α are

model parameters. Koulikov (2003) proves that the process (8) is covariance stationary

and ergodic as long as εi is a (zero mean) martingale difference, and the coefficients

θj are square-summable. Following Granger and Joyeux (1980), or Hosking (1981), a

possible parameterization of the coefficients θj is given by a power series expansion of

(1− βz)−1(1− z)−d as given by

θj :=
j∑

k=0

βkθ∗j−k, (9)

where

θ∗j :=
Γ(d + j)

Γ(d)Γ(1 + j)
∀ j ≥ 0, (10)

3See e.g. Kalbfleisch and Prentice (1980), Kiefer (1988) or Lancaster (1997).
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are the coefficients of the expansion of (1 − z)−d, β is a model parameter with |β| < 1

and Γ(·) denotes the gamma function. For d ∈ (0, 1), (10) produces a non-summable

autocovariance function, and thus long memory according to the classification of McLeod

and Hipel (1978). For 0 < d < 1
2 , the power series expansion implies a sequence of square-

summable hyperbolic decaying coefficients and thus ensures covariance stationarity. By

replacing z by the lag (or backshift) operator L, we can re-write Φ̃i as

Φ̃i = ω + α(1− βL)−1(1− L)−dεi−1 (11)

with (1− L)−dεi−1 =
∑∞

j=1 θj−1εi−j .

Special Cases

In the following we discuss several special cases nested in the encompassing model. For

convenience, we assume s(t) = 1.

(i) For d = 0, (11) modifies to the basic ACI(1,1) specification as proposed by Russell

(1999), i.e.

Φ̃i = ω + α(1− βL)−1εi−1 (12)

= ω + αεi−1 + β(Φ̃i−1 − ω),

where α denotes the innovation parameter and β the persistence parameter.

(ii) If the baseline intensity λ0(·) is non-specified, and δ = 1, ω = α = β = 0, then the

model corresponds to the standard (non-dynamic) AFT model (see e.g. Kalbfleisch

and Prentice, 1980) as given by

λ(t) = λ0

[
x(t) exp(zN̆ (t)′γ)

]
exp(zN̆ (t)′γ). (13)

It is well known that it can be alternatively written as a log-linear model in terms

of the inter-event durations xi := ti − ti−1,

ln xi = −z′i−1γ + ξi, i = 1, . . . , n, (14)

where ξi is an error term that follows a non-specified continuous distribution.
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(iii) If the baseline intensity λ0(·) is non-specified, and δ = ω = α = β = 0, then

the model corresponds to the well-known class of (non-dynamic) semiparametric PI

models (see Cox, 1972) given by

λ(t) = λ0(x(t)) exp(zN̆ (t)′γ). (15)

It is well known that the PI and AFT model coincide if the baseline intensity λ0(·)
is parameterized according to an exponential distribution (λ0(·) = λ), or a Weibull

distribution, λ0(·) = pλ(x(t)λ)p−1, with λ > 0, p > 0 (see e.g. Kalbfleisch and

Prentice, 1980).

(iv) If λ0 (·) = 1, then Φ−1
i corresponds to the conditional expectation of the duration

xi, i.e.

Φi = E[xi|Fti−1 ]
−1 := Υ−1

i (16)

with

Υi = exp
(
Υ̃i − z′i−1γ

)
(17)

Υ̃i = −ω + α(1− βL)−1(1− L)−d(xi−1/Υi−1 − 1), (18)

which corresponds to a (long memory) exponential type Log-ACD model based on

centered standardized durations as innovations. In the case of d = 0, the model

modifies to

Υ̃i = −ω + α(1− βL)−1 xi−1

Υi−1
. (19)

(v) If λ0 (η(t)) = p · η(t)p−1(1 + κη(t)p)−1 and δ = 1, then

Φi = E[xi|Fti−1 ]
−1

[
κ1+1/pΓ(1 + 1/κ)

Γ(1 + 1/p)Γ(κ−1 − 1/a)

]
:= Υi, (20)

where Υi is given by (17) and

Υ̃i = −ω − α(1− βL)−1(1− L)−dεi−1, (21)

corresponding to a special type of Burr type (long memory) ACD model with the

integrated intensity as innovation term.
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2.3 Extensions of the Basic Model

2.3.1 Long-Term Dynamics

A typical property of transaction data is that it is not continuously observed. On all

markets which do not operate on a 24h basis, the intraday trading activity is subjected

to overnight effects and weekend or holiday effects. Typically, these effects are taken

into account by the inclusion of appropriate overnight dummy variables and by a re-

initialization of the model dynamics at the beginning of each trading day. An alternative

approach is to take daily spill-overs and possible inter-day dynamics explicitly into account.

Bowsher (2002) proposes a generalization of a Hawkes (1971) process by allowing for spill-

overs in the intensity from one to the next trading day. Here, we propose an alternative

approach which allows to capture possible long-run effects which are updated on a daily

level.

Denote τ(t) as an integer variable indexing the current trading day observed at time

t. Furthermore, define t†τ(t) and t‡τ(t) as the time of the opening and closure of the trading

day τ(t), respectively. Then, we propose re-specifying (4) as

λ(t) = λ0 (η(t))ΦN̆(t)+1s(t)Ψτ(t), (22)

where Ψτ(t) is a function varying only on a daily level and is given by

Ψτ(t) = aζ(t) + bΨτ(t)−1. (23)

The innovation term is specified as

ζ(t) = 1−
Λ

(
t†τ(t)−1, t

‡
τ(t)−1

)

N
(
t‡τ(t)−1

)
−N

(
t†τ(t)−1

) (24)

and exploits the basic results of the martingale theory of point processes. Following (3),

it is shown that (N(t)−N(s))− Λ(t, s) is a mean zero martingale. Consequently, ζ(t) is

a mean zero martingale as well.

Hence, both types of dynamics Φi and Ψτ(t) are driven by functions of the lagged

integrated intensity. In order to distinctly separate both types of dynamics, we assume

that Φi is exclusively only an intraday component. Consequently, the dynamics of Φi do

not run over consecutive trading days and are re-initialized at the beginning of each day.
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In this sense, we allow for long memory processes within individual trading days and short

memory processes across trading days.4

2.3.2 Component-Specific Acceleration Effects

A further extension is to allow for component-specific acceleration effects by re-formulating

(5) as

η(t) := x(t) · ΦδΦ
N̆(t)+1

s(t)δsΨδΨ
τ(t), (25)

where δΦ, δs and δΨ are specific acceleration parameters affecting the individual compo-

nents separately. Hence, this specification allows us to identify whether a possible accel-

eration/decelaration effect is mainly driven by the inter-day dynamics, seasonality effects

or intra-day dynamics. If δΦ = δs = δΨ = δ, the model collapses to the basic specification

(5).

2.3.3 Flexible Baseline Intensities

Recent literature on financial duration processes (see e.g. Hautsch, 2003 or Bauwens, Giot,

Grammig, and Veredas, 2004) illustrate that the distributional properties of financial du-

rations are not easily modelled even by highly flexible distributions. Particularly the

distribution of the time between consecutive transactions reveals peculiarities which typ-

ically cannot be captured in a fully parametric framework. In the given intensity setting

distributional properties of the underlying durations are captured by the specific form of

the baseline intensity function. Since in this framework no pseudo-maximum likelihood

arguments are available and a valid statistical inference of intensity processes depends on

the correct parameterization of λ(t), a flexible form of the baseline intensity λ0(·) is par-

ticularly important. In order to allow for a higher flexibility we propose to specify λ0(·)
in a semiparametric way which encompasses the Burr hazard as a special case.

Define ν(t) := 1− exp(−x(t)) as a transformation of the backward recurrence time

x(t) with the property ν(t) ∈ [0; 1]. Then, we propose to augment a Burr parameterization

by the exponential transformation of a flexible Fourier form as proposed by Gallant (1981).
4A straightforward extension would be also to allow for long memory dynamics across individual trading

days by adopting the structure given in (8). However, our empirical results do not provide evidence for
inter-day long range dependencies.
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Hence, λ0(η(t)) is given by

λ0(η(t)) =
p · η(t)p−1

1 + κη(t)p
· exp

[
M∑

m=1

pm,s sin(2 ·mπν(t)) + pm,c cos(2 ·mπν(t))

]
, (26)

where M denotes the order of the process and pm,s and pm,c are coefficients to be estimated.

Depending on the choice of M this specification allows to capture any particularly form of

the baseline intensity function nesting the case of a pure Burr parameterization for pm,s =

pm,v = 0 for all m = 1, . . . , M . In the empirical section (Section 5) we will illustrate that

this flexible form is needed to capture the distributional properties of financial durations

and induces a significant improvement of the goodness-of-fit.

2.3.4 Asymmetric News Response

A simple extension of the basic parameterization of Φ̃i is to allow for an asymmetric news

impact function. The recent literature on financial duration models5 illustrates that the

impact of past duration innovations on the conditional expected waiting time until the

next event arrival is nonlinear. A simple way to allow for an asymmetric news impact

while ensuring the zero mean property of the innovation term is to allow for a kinked news

impact function in the spirit of Nelson (1991). Hence, (11) is modified to

Φ̃i = ω + α(1− βL)−1(1− L)−dεi−1 + ς(1− βL)−1(1− L)−dε̄i−1, (27)

where ε̄i := |εi| − E[|εi|] and ς denotes the asymmetry parameter.

3 The Multivariate GLMACI Model

Let {Zi}i∈{1,...,n} be a sequence of {1, 2, . . . ,K}-valued random variables representing K

different types of events. If {ti}i∈{1,...,n} is a simple point process with 0 < t1 < . . . < tn,

we call the process {ti, Zi} an K-variate marked point process. Let {tki }i∈{1,...,nk}, k =

1, . . .K, be K sequences of arrival times with corresponding counting processes Nk(t) :=
∑

i≥1 1l {tki≤t}, k = 1, . . .K. Then,

E[Nk(s)−Nk(t)|Ft] = E
[∫ s

t
λk(u)du|Ft

]
(28)

5See e.g. Fernandes and Grammig (2001), Dufour and Engle (2000) or Hautsch (2003).
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defines the k-type intensity process with compensator Λ̃k(t) :=
∫ t
0 λk(u)du. In Theorem 1

in Brown and Nair (1988) it is proven that the point processes formed from the multivariate

process of compensators
(
Λ̃1(t), Λ̃2(t), . . . , Λ̃K(t)

)
are independent Poisson processes with

unit intensity. As a result, the k-type integrated intensities Λk(tki−1, t
k
i ) :=

∫ tki
tki−1

λk(s)ds

∀ k = 1, . . . , K are independently standard exponentially distributed. This property is an

important building block of the (generalized) multivariate ACI specification.

Following the notation in Section 2, denote Φk
N̆(t)

, λk
0(·), sk(t) and Ψk

τ(t) as the

corresponding k-type intensity components associated with intra-day dynamics, the base-

line intensity, seasonality effects as well as inter-day dynamics, respectively. Then, the

multivariate GLMACI model is given by

λk(t) = λk
0

[
η1(t), . . . , ηK(t)

]
Φk

N̆(t)+1
sk(t)Ψk

τ(t), (29)

where

ηk(t) :=

{
ηk(tN̆(t)) + x(t) · Ξ(t) if tN̆(t) was of type r 6= k

x(t) · Ξ(t) if tN̆(t) was of type k
(30)

and

Ξ(t) :=
K∏

r=1

(
Φr

N̆(t)+1

)δk
r,Φ

(sr(t))δk
r,s

(
Ψr

τ(t)

)δk
r,Ψ

. (31)

Furthermore, δk
r,Φ, δk

r,s and δk
r,Ψ denote parameters determining the impact of possible

acceleration/deceleration effects of the individual r-type intensity components on the k-

type process. According to eq. (29) and (30), the acceleration/deceleration effects act

piecewise on the backward recurrence times and change at each point of the pooled process.

I.e., the time scale might be scaled in different directions between the arrivals of two

consecutive points of the same process.

According to the univariate specification we specify Φk
i as

Φk
i = exp

(
Φ̃k

i + z′i−1γ
k
)

, (32)

where γk denotes the k-type parameter vector associated with explanatory variables.

Define εi as a scalar innovation term and yj
i as an indicator variable taking on the

value 1 if the i-th event is of type j. Then, Φ̃k
i is assumed to follow the process

Φ̃k
i = ωk +

K∑

j=1

{
αk

j (1− βk
j L)−1(1− L)−dk

εi−1

}
yj

i−1, (33)

12



where αk
j , βk

j and dk for k, j = 1, . . . ,K are autoregressive parameters depending on the

type of the most recent point of the pooled process. In a multivariate framework there

are two ways to specify the innovation term. As proposed by Russell (1999), εi can be

specified in terms of the integrated intensity associated with the type of the most current

point. Then, εi is given by

εi =
K∑

k=1

(
1− Λk(tki−1, t

k
i )

)
yk

i

and corresponds to a (random) mixture of the series of integrated intensity functions

{Λ(tki−1, t
k
i )}{i=1,...,nk} for k = 1, . . . , K. Since the latter are mean zero i.i.d. variates, the

resulting mixture εi is a mean zero i.i.d. innovation term as well. Alternatively, Bowsher

(2002) suggested to specify the innovation in terms of the integrated intensity of the pooled

process, i.e.

ε̃i = 1− Λ(ti−1, ti),

where Λ(ti−1, ti) :=
∑K

k=1 Λk(ti−1, ti). Following the arguments above, ε̃i is also a mean

zero i.i.d. innovation term.

Therefore, each of the processes Φ̃k
i , k = 1, . . . , K, correspond to a univariate long

memory process with regime-switching dynamics in dependence of the type of the most

recent point. The individual processes are linked together since they are jointly updated

by εi at each point of the pooled process. Note that we do not allow for cross-dependences

in the persistence terms, i.e. Φ̃k
i is only updated by εi and own lags. Correspondingly, the

process Φ̃k
i can be re-formulated as

Φ̃k
i = ωk +

K∑

j=1

{
αk

j

∞∑

s=1

θk
s−1,iεi−s

}
yj

i−1,

where

θk
s,i :=

{
θk∗
s if s = 1

θk∗
s +

∑s
m=1 θk∗

s−m

∏m−1
r=0

∑K
j=1 βk

j yj
i−r if s > 1,

(34)

where θk∗
s is given by (10). Hence, due to the regime switching behavior of the persistence

parameters βk
j depending on the type of the previous event, the power series expansion

depends on i and thus varies over the time series. A sufficient condition for covariance

stationarity of the process Φ̃k
i is that |βk

j | < 1, ∀ j, k and 0 < dk < 1
2 .
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The inter-day dynamics Ψk
τ(t) are specified as a straightforward multivariate ex-

tension of (23). Define Ψτ(t) =
(
Ψ1

τ(t), . . . , Ψ
K
τ(t)

)′
as the (K × 1) vector of inter-day

components. Then, we parameterize Ψτ(t) as

Ψτ(t) = Aζ(t) + BΨτ(t)−1,

where A and B are (K ×K) matrices of innovation and persistence parameters, respec-

tively, and ζ(t) =
(
ζ1(t), . . . , ζK(t)

)′ is a (K×1) vector of innovation terms with elements

ζk(t) = 1−
Λk

(
t†τ(t)−1, t

‡
τ(t)−1

)

Nk
(
t‡τ(t)−1

)
−Nk

(
t†τ(t)−1

) , k = 1, . . . , K.

Finally, the k-type baseline intensity function λk
0

[
η1(t), . . . , ηK(t)

]
is specified as the

product of single hazard functions. Define νk(t) := 1 − exp(−xk(t)), then a multivariate

extension of (26) is given by

λk
0

[
η1(t), . . . , ηK(t)

]
=

K∏

r=1

pk
rη

r(t)pk
r−1

1 + κk
rη

r(t)pk
r

exp

[
M∑

m=1

pk
m,r,s sin(2 ·mπνr(t))

]
(35)

× exp
[
pk

m,r,c cos(2 ·mπνr(t))
]
, pk

r > 0, κk
r ≥ 0,

(36)

where pk
r , κk

r , pk
m,r,s and pk

m,r,c are distributional parameters reflecting the impact of the

r-type backward recurrence time on the k-type baseline intensity.

Hence, the multivariate GLMACI model allows to test for four channels through

which the individual point processes are linked together: First, there might be inter-

dependences in short-run dynamics as determined by the autoregressive parameters αk
j ,

j 6= k. Second, we allow for spill-overs in inter-day dynamics as characterized by the

off-diagonal elements in the matrices A and B. Third, there might be cross-relations in

accelerations/decelarations of the time scale as captured by the parameters δk
r,Φ, δk

r,s and

δk
r,Ψ for r 6= k. Finally, we allow for cross-interdepences between the process-specific base-

line intensity functions and backward recurrence times. These effects are determined by

the parameters pk
r , κk

r , pk
m,r,s, and pk

m,r,c for r 6= k.

4 Statistical Inference

As shown by Karr (1991), valid statistical inference can be performed based on the intensity

function solely, where the log likelihood function of a K-variate marked point process
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{ti, Zi}i∈{1,...,n} with covariate series {zi}i∈{1,...,n} is given by

lnL({ti, Zi, zi}i∈{1,...,n}) =
n∑

i=1

K∑

k=1

(−Λk(ti−1, ti)) + ln
[
λk(ti)

]
yk

i . (37)

Hence, the model is straightforwardly estimated by maximum likelihood. Exploiting the

martingale property of compensators, we can conduct various diagnostic tests to assess

the goodness-of-fit of the model. In particular, we perform diagnostics based on three

different types of model residuals. First, we evaluate the stochastic properties of the

estimated integrated intensities

ek
i,1 := Λ̂k(tki−1, t

k
i ),

which must be i.i.d. standard exponentially distributed under correct model specification.

Second, we analyze the properties of the ACI residuals

ei,2 :=
K∑

k=1

(
1− Λ̂k(tki−1, t

k
i )

)
yk

i ,

which correspond to mixtures of i.i.d. standard exponentially distributed variates and thus

must be i.i.d. standard exponentially distributed themselves. Furthermore, we evaluate

the properties of the estimated integrated intensity based on the pooled process. Hence, a

third type of model residuals is obtained by

ei,3 = 1− Λ̂(ti−1, ti) = 1−
K∑

k=1

Λ̂k(ti−1, ti).

Note that all three types of model residuals coincide in the univariate case (K = 1).

Using the residual series, model evaluation can be done by testing the dynamical and

distributional properties. The dynamical properties are easily evaluated based on Port-

manteau statistics or tests against independence such as proposed by Brock, Scheinkman,

Scheinkman, and LeBaron (1996). The distributional properties can be evaluated based

on a a test against excess dispersion. Engle and Russell (1998) propose the asymptotically

normal test statistic
√

ne/8 σ̂2
e , where ne denotes the number of residuals and σ̂2

e denotes

the empirical variance of the corresponding residual series. Alternative checks of the dis-

tributional properties of the residuals can be done by the computation of the probability

integral transform (PIT) based on the exponential distribution

uk
i :=

∫ ek
i

−∞
exp(−s)ds = 1− exp(−ek

i ). (38)
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Diebold, Gunther, and Tay (1998) show that under correct model specification, the dis-

tribution of the uk
i series is be i.i.d. uniformly distributed.

5 Empirical Application

The GLMACI model is applied to trade durations and price durations based on the IBM

stock traded at the New York Stock Exchange (NYSE). The sample period covers the

two months January and February 2001. The trade durations are defined as the time

between consecutive transactions. The price durations are defined as the time between

absolute cumulative midquote changes of a certain size. The size of the absolute cumulative

midquote changes is chosen as five times of the average size of absolute trade-to-trade

midquote changes. This results in average price durations of approximately 45 seconds.

Overnight spells as well as all trades before 9:45 and after 16:00 are removed.6

Table 1 shows the descriptive statistics of the individual trade duration series. It

turns out that the IBM stock is heavily traded with on average 7 seconds between two con-

secutive trades. Furthermore, we observe the well known very persistent serial dependence

in both duration series.

Table 2 shows the estimation results of univariate GLMACI models for trade dura-

tions. Because of the high liquidity of the IBM stock resulting in 58,332 observations for

January 2001 solely, we restrict the analysis for the case of trade durations to the January

sample. The function s(t) is assumed to capture intraday seasonalities and is specified in

terms of a linear spline function

s(t) = 1 +
S∑

j=1

νj(t− τj) · 1l {t>τj}, (39)

where τj , j = 1 . . . , S, denote the S nodes within a trading day and νj the corresponding

parameters. We use six nodes (S = 6) dividing the trading hours from 9:45 to 16:00 into

equal-sized time intervals. Panels A shows the results of a basic ACI(1,1) model with

asymmetric news impact function. The autoregressive parameters indicate a high persis-

tence and relatively low innovation parameters. Nevertheless, the parameter α is highly

significant and positive. Furthermore, no convincing evidence for an asymmetric news
6Note that trading starts at 9:30. However, the first 15 minutes are removed in order to avoid particular

opening effects.
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impact is found. As shown by Figure 17, the estimated baseline intensity function reveal

a non-monotonic shape of the baseline intensity which is decreasing in the long run. The

residual diagnostics reveal that the model is not able to capture the dynamic properties

of the data. The Ljung-Box statistics show evidence for clear serial dependence in the

residual series. Moreover, the tests against excess dispersion indicate evidence against

exponentiality and thus distributional misspecification. The quantile-quantile (QQ) plots

shown in Figure 1 illustrate that distributional misspecifications are particularly driven

by observations revealing high intensities and thus small durations. This is a well known

result in the literature of financial duration models as e.g. illustrated by Bauwens, Giot,

Grammig, and Veredas (2004). In Panel B the model is extended by inter-day dynamics.

However, as indicated by the corresponding p-values and model diagnostics these effects

are insignificant and lead to no improvements of the goodness-of-fit and the dynamic

properties of the model. Hence, inter-day dynamics are obviously of minor importance for

trade durations. A further reason might be that the number of underlying trading days is

not sufficient to clearly identify these effects. For this reason, we skipped these effects in

the other specifications. Pancel C shows the estimates of a specification which accounts

for long memory. The estimates reveal clear evidence for the existence of long range de-

pendence. Nevertheless, the estimate d̂ ≈ 0.6 indicates that the coefficients of the power

series expansion are not square-summable and thus the intensity process is not necessarily

covariance stationary. Nevertheless, the model dynamics are clearly improved. In par-

ticular, the Ljung-Box statistics show that the null hypothesis of no serial dependence in

the residuals cannot be rejected. The BIC value indicates that the inclusion of long range

dependence clearly improves the model’s goodness-of-fit. Panel D shows the estimates of

GLMACI models with a semiparametric specification of the baseline intensity. It turns

out that the flexible parameterization of the baseline intensity significantly improves the

explanatory power of the model. The plotted estimated baseline intensity (Figure 2) re-

veals a clear non-monotonous shape for small durations. This pattern is probably caused

by the fact that the smallest measurable unit of a duration at the NYSE is one second

which leads to a clear discreteness in the left tail of the distribution. Obviously, this

discreteness is also reflected by the distribution of the resulting integrated intensities and
7The plots shown in Figure 1 are based on specification C in Table 2. The corresponding plots for

specifications A and B look very similar and are not shown in the paper.
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cannot be sufficiently captured by a Burr distribution. In contrast, the semiparametric

specification implies a significant improvement of the goodness-of-fit as revealed by the

QQ-plot in Figure 2. Moreover, no evidence for excess dispersion is found anymore.

Panel E displays the results of a specification which accounts for acceleration effects.

We allow for component specific acceleration effects associated with the intraday dynamics

and seasonalities. The highly significant parameters δΦ and δs indicate that the intraday

dynamics and seasonalities imply clear acceleration and respectively deceleration effects.

In particular, in periods of a high intensity given the time of the day the time scale is scaled

upwards corresponding to a leftwards shift of the baseline intensity. Since the baseline

intensity has a non-monotonous shape this means that the baseline intensity increases

for small durations and decreases for long durations. Interestingly, we observe a counter-

balancing effect induced by the seasonality component. I.e., in periods of seasonality

driven high intensity the time scale is scaled downwards. However, we can conclude that

a proportional intensity specification is rejected in favor of an accelerated failure time

specification leading to an improved goodness-of-fit as indicated by the BIC. The plot of

the estimated baseline intensity function (Figure 3) reveals a similar pattern as shown in

Figure 2. Finally, Figure 7 plots the estimated intraday seasonality function based on the

estimates in Panel E which are quite representative for all other specifications. It shows

the well-known U-shaped intraday pattern.

Table 3 shows the corresponding estimates based on price durations. Because of

the lower frequency of price durations, we use the full sample January-February 2001. In

contrast to the trade durations, we find significant evidence for a positive serial dependence

in the inter-day component (Panel B). Nevertheless, even though the specification leads

to a better goodness-of-fit of the model it is not sufficient to fully capture the dynamic

properties of the process. Again, the inclusion of a long memory component is necessary

to achieve a significant improvement of the model’s dynamical properties as indicated

by the residual diagnostics and the BIC. However, again we find a value of d ranging

between 0.51 and 0.55 indicating the presence of long range dependence, however not

necessarily covariance stationarity. The estimates of ς reflect the presence of asymmetric

news impact effects. It turns out that positive price intensity shocks have a stronger effect

on the future intensity than negative intensity shocks. Hence, in periods where the price

intensity, i.e. the instantaneous volatility, is higher than expected, we observe a stronger
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impact on the expected intensity. The QQ-plot based on specification C (Figure 4) as

well as the test on excess dispersion reflect that the Burr parameterization of the baseline

intensity captures the distributional properties of the data quite well. Nevertheless, we

find an increased goodness-of-fit based on the semiparametric specifications in Panels D

and E. Similarly to the processes of trade durations, evidence for discreteness in the left

tail of the distribution is found (Figures 5 and 6) which is captured by the semiparametric

specification. Again, clear evidence for acceleration effects (Panel E) are found. Actually,

the acceleration effect in periods of a high intensity given the time of the day is clearly

stronger as for trade durations. In contrast to the specifications for the trading intensity,

we also find significant acceleration effects for the seasonality component. For the inter-day

component only insignificant effects are found. Nevertheless, even though specification E

implies an increased explanatory power as indicated by the BIC, the QQ-plot reveals a

worse goodness-of-fit in terms of the distribution of the estimated integrated intensities.

Hence, slight evidence for over-fitting is provided. Overall, the estimated seasonality

component (Figure 7) is very similar to that estimated based on trade duration.

Table 4 shows the estimation results of bivariate GLMACI specifications for the

trading intensity and the price change intensity based on the sample period January 2001.

In order to ensure model parsimonity we do not include asymmetric news impact effects.

Furthermore, the backward recurrence function is restricted to a diagonal specification

of the Burr parameters κ and the parameters of the semiparametric extension. How-

ever, the estimates of the Weibull parameters indicate a strong interdependence in the

backward recurrence functions. Hence, the baseline intensity function of one intensity

component is driven not only by the own backward recurrence time but also by that of

the other component. Panel A displays a basic bivariate ACI(1,1) specification. We find

persistence parameters which are very close to unity8 indicating that the process is highly

persistent and nearly integrated. Interestingly, we do not find significant evidence for

cross-dependences in the innovations of the intraday component. Hence, intraday shocks

in the trading activity or the volatility do not lead to spill-overs in the corresponding other

component. This finding is also confirmed by all other specifications. The residual diag-

nostics indicate that this specification does not sufficiently capture the distributional and

dynamical properties of the underlying duration series. In Panel B, the model dynamics
8Actually, one of the regime-switching parameters even slighly exceeds one
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are extended by long memory effects as well as interday dynamics. Confirming the results

based on the univariate specifications, we find clear evidence for long range dependence

with parameters d exceeding the value 0.5. Nevertheless, it turns out that the goodness-

of-fit is significantly improved. The Ljung-Box statistics of the integrated intensities and

GLMACI residuals indicate no evidence for remaining serial dependence. Furthermore, we

observe no significant inter-day dependences. As indicated by the significant parameter

a22 only for the process of price intensities slight evidence for daily dependencies are found.

Figure 8 shows the QQ-plots of the GLMACI residuals ei,1 as well as of the pooled residu-

als ei,3. We clearly observe distributional misspecifications particularly for high intensities

and thus small durations. Panel C shows the results of an GLMACI specification with a

semiparametric specification of the baseline intensity function. In order to ensure model

parsimonity, we choose an order of the polynomial M = 2. As in the univariate specifi-

cations we find an increase of the model’s explanatory power and goodness-of-fit which is

also revealed by the QQ-plots of the residuals ei,3 (Figure 9). Nevertheless, the diagnostics

and QQ-plots still indicate deviations from the exponentiality for high realizations of the

integrated intensity of the pooled process. This indicates that the specification is not able

to fully capture the properties of the joint intensity process and requires a higher order

M (as it has been used for the univariate specifications). Panel D shows the results of

a specification which allows for acceleration/deceleration effects where we assume that

δj
j,Φ = δj

j,s = δj
j,Ψ ∀ j = 1, 2 and δj

k,Φ = δj
k,s = δj

k,Ψ ∀ k, j = 1, 2. For trade durations,

we observe that the deceleration effect dominates, whereas for price durations we observe

acceleration effects. Furthermore, no significant acceleration effects of the time scale for

trade durations induced by price intensities is observed. In contrast, the time scale of

price durations is significantly scaled downwards in periods of a high trading intensity.

As revealed by the BIC, the inclusion of acceleration/deceleration effects increases the

model’s goodness-of-fit. As shown in Panel E we find significant evidence for significant

component-specific acceleration/deceleration effects. Confirming our results above the

time scale underlying trade durations is significantly scaled downwards when the intraday

seasonality component is high. However, intraday and interday dynamics do not cause

significant acceleration effects. In contrast, the time scale underlying price durations is

most strongly accelerated by intraday and interday dynamics whereas seasonality effects

do not have significant impacts. Furthermore, we observe decelerating spill-over effects be-
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tween both baseline intensity components which are driven by interday dynamics. Hence,

the time scales of trade (price) durations are scaled downwards whenever the intraday

dynamics of price (trade) intensities are high. In contrast, no spill-over effects implied by

the seasonality components are observed. Surprisingly, high inter-day components of price

durations significantly accelerate the time scale of trade durations. Hence, this effect acts

in opposite direction as the corresponding effect implied by intraday dynamics. However,

since the interday dynamics are only weakly identifiable, this result should be treated with

caution. Nevertheless, the corresponding coefficient is highly significant. As indicated by

the BIC, we find that this specification leads to a further improvement of the goodness-of-

fit of the model. Hence, this flexibilization is supported by the data which indicates the

importance of including component-specific acceleration/deceleration effects.

For all specifications, the model diagnostics indicate that the model is able to cap-

ture the dynamical properties of the data. Nevertheless, as revealed by the QQ-plots of

the estimated integrated intensities (Figures 10 and 11) we still find evidence for distri-

butional misspecification. This is not necessarily reflected in excess dispersion, however,

particularly by the tails of the distribution of the integrated intensities. These results

indicate that also in a multivariate specification, a semiparametric specification of the

baseline intensity is indispensable in order to achieve a satisfying goodness-of-fit.

6 Conclusions

In this paper, we proposed a generalization of the Autoregressive Conditional Intensity

(ACI) model introduced by Russell (1999). The so-called Generalized Long Memory ACI

(GLMACI) model parameterizes the multivariate intensity in terms of a multiplicative

function of a multivariate baseline intensity component, two dynamic VAR-type compo-

nents capturing intraday and interday dynamics as well as a component capturing de-

terministic seasonality effects. The baseline intensity component is specified as a semi-

parametric function of the backward recurrence times in the individual components and

nests a Burr hazard rate as special case. The backward recurrence times are measured

based on a calendar time scale which might be scaled upwards or downwards in depen-

dence of the most recent realizations of the intraday and interday dynamics as well as

intraday seasonalities. In this sense, the model nests both a proportional intensity com-
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ponent (like the original ACI model) as well as an accelerated failure time model in the

spirit of an Autoregressive Conditional Duration (ACD) model proposed by Engle and

Russell (1998). Moreover, we allow for long range dependence in the intraday dynamics

by adopting the approach by Koulikov (2003) and parameterizing the latter in terms of

a fractionally integrated process in terms of past realizations of the integrated intensity.

Finally, the interday dynamics are parameterized as a (short memory) VAR type process

which is updated by martingale innovations based on the integrated intensity as well as

the number of observations computed over the last trading days.

Applications of univariate and bivariate versions of the GLMACI model to trade and

price durations based on the IBM stock traded at the New York Stock Exchange show that

the proposed extensions are supported by the data and lead to an improved specification.

The most important findings can be summarized as following: First, clear evidence for

long range dependence in both trade intensities as well as price intensities is found. How-

ever, our estimates reveal evidence that the coefficients of the underlying infinite series

representation are not necessarily square-summable implying that the intensity processes

are not covariance stationarity. Second, we find significant acceleration/deceleration ef-

fects. I.e., the underlying time scales on which the baseline intensities are measured are

scaled upwards or downwards in dependence of the magnitudes of the individual intensity

components. In the bivariate specification, we even find evidence for cross-dependences in

the acceleration/deceleration effects. A relatively robust finding is that the time scale of

trade durations is primarily negatively affected by intraday seasonalities. In contrast, the

time on which price durations are measured is accelerated by intraday and interday dy-

namics. Third, it turns out that a Burr parameterization of the baseline intensity function

is not sufficient to fully capture the distributional properties of the underlying durations.

This is particularly true for the distribution of trade durations which reveals peculiari-

ties on the left tail which are not easily captured even by very flexible parameterizations.

However, the semiparametric extension proposed in this paper leads to clearly improved

goodness-of-fit.

Overall, our results show a clear outperformance of the GLMACI model compared

to a basic ACI model. Nevertheless, a few issues still remain and require further research.

One particularly important issue is to further study the stationarity properties of inten-

sity processes. Actually, our findings provide evidence that financial intensity processes
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are driven by non-trivial dynamics including both stationary as well as non-stationary

components accompanied by long memory effects.

Appendix A: Tables

Table 1: Descriptive statistics of trade durations and price durations of the
IBM stock traded at the NYSE. Extracted from the 2001 TAQ data base.
Sample period 02/01/01 to 28/02/01. The price durations are computed as
the time between cumulative absolute midquote changes of the size $0.059.
The following descriptive statistics are shown: Number of observations, mean,
standard deviation, minimum, maximum, 1%-, 5%-, 10%-, 50%-, 90%-, 95%-,
as well as 99%-quantile, the first five autocorrelations and the Ljung-Box
statistic associated with 20 lags.

trade durations price durations
Obs 114,910 20468
Mean 7.829 43.823
S.D. 7.442 59.242
Min 1.000 1.000
Max 205.000 1224.000
q01 1.000 1.000
q05 2.000 3.000
q10 2.000 5.000
q50 6.000 25.000
q90 16.000 100.000
q95 22.000 145.000
q99 37.000 289.000
ρ1 0.089 0.207
ρ2 0.101 0.172
ρ3 0.098 0.152
ρ4 0.093 0.175
ρ5 0.090 0.143
LB(20) 15041 1132.700
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Table 2: Maximum likelihood estimates of univariate GLMACI models. Based on trade
durations of the IBM stock traded at the New York Stock Exchange. Sample period:
02/01/01 until 31/01/01, 58, 332 observations. The spline function is based on 6 equally
spaced nodes between 9:45 a.m. and 4:00 p.m. Standard errors are based on the outer
product of gradients.

A B C D E
Est. p-v. Est. p-v. Est. p-v. Est. p-v. Est. p-v.

Baseline intensity parameters
ω 1.433 0.000 1.462 0.000 1.213 0.000 4.358 0.000 4.916 0.000
p 2.076 0.000 2.076 0.000 2.074 0.000 3.900 0.000 4.176 0.000
κ 1.432 0.000 1.431 0.000 1.416 0.000 50.130 0.270 61.598 0.289
p1,s -0.180 0.287 -0.160 0.373
p2,s 0.136 0.000 0.182 0.000
p3,s 0.091 0.000 0.122 0.000
p1,c 0.657 0.000 0.718 0.000
p2,c 0.228 0.001 0.239 0.002
p3,c 0.066 0.002 0.051 0.028

Acceleration parameters
δΦ 0.082 0.031
δs -0.372 0.000

Dynamic parameters
α 0.022 0.000 0.023 0.000 2.979 0.000 0.030 0.000 0.030 0.000
ς -0.003 0.074 -0.002 0.132 -0.264 0.269 -0.001 0.524 0.001 0.551
β 0.992 0.000 0.991 0.000 0.580 0.000 0.572 0.000 0.596 0.000
a 0.011 0.807
b 0.583 0.854
d 0.602 0.000 0.604 0.000 0.599 0.000

Seasonality parameters
ν1 0.241 0.075 -0.111 0.524 -0.197 0.172 -0.279 0.039 -0.524 0.000
ν2 -0.203 0.731 -0.357 0.256 -0.276 0.256 -0.127 0.575 0.075 0.684
ν3 -0.254 0.127 -0.052 0.849 -0.008 0.964 -0.152 0.406 0.160 0.300
ν4 -0.011 0.968 1.034 0.000 0.990 0.000 1.160 0.000 0.661 0.000
ν5 -0.387 0.144 -0.172 0.531 -0.140 0.481 -0.316 0.086 0.026 0.862
ν6 1.180 0.000 0.519 0.122 0.482 0.053 0.644 0.006 0.427 0.034
LL -50085 -50084 -50031 -49179 -49142
BIC -50151 -50161 -50114 -49295

Diagnostics of GLMACI residuals
Mean of ei 0.999 0.999 0.999 1.000 0.996
S.D. of ei 0.966 0.966 0.967 0.999 0.998
LB(20) of ei 60.030 0.000 57.142 0.000 16.067 0.712 15.029 0.774 16.495 0.685
Exc. disp. 5.600 0.000 5.593 0.000 5.514 0.000 0.150 0.880 0.348 0.727
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Table 3: Maximum likelihood estimates of univariate GLMACI models. Based on
price durations of the IBM stock traded at the New York Stock Exchange. The price
durations are computed as the time between cumulative absolute midquote changes of
the size $0.059. Sample period: 02/01/01 until 28/02/01, 20, 468 observations. The
spline function is based on 6 equally spaced nodes between 9:45 a.m. and 4:00 p.m.
Standard errors are based on the outer product of gradients.

A B C D E
Est. p-v. Est. p-v. Est. p-v. Est. p-v. Est. p-v.

Baseline intensity parameters
ω 0.769 0.000 0.879 0.000 0.775 0.000 1.064 0.000 1.762 0.000
p 1.218 0.000 1.218 0.000 1.218 0.000 1.420 0.000 1.689 0.000
κ 0.420 0.000 0.410 0.000 0.399 0.000 0.716 0.000 2.611 0.010
p1,s 0.114 0.000 -0.078 0.328
p2,s 0.030 0.034 -0.015 0.598
p3,s 0.015 0.183 -0.009 0.727
p1,c 0.151 0.000 0.287 0.000
p2,c 0.076 0.000 0.129 0.000
p3,c 0.042 0.002 0.106 0.000

Acceleration parameters
δΦ 0.845 0.000
δs 0.330 0.002
δΨ 1.125 0.000

Dynamic parameters
α 0.088 0.000 0.100 0.000 0.142 0.000 0.142 0.000 0.157 0.000
ς 0.032 0.000 0.038 0.000 0.062 0.000 0.061 0.000 0.068 0.000
β 0.969 0.000 0.943 0.000 0.227 0.000 0.208 0.002 0.166 0.009
a 0.155 0.000 0.086 0.000 0.086 0.000 0.069 0.000
b 0.639 0.000 0.826 0.000 0.830 0.000 0.925 0.000
d 0.513 0.000 0.523 0.000 0.550 0.000

Seasonality parameters
ν1 -0.279 0.155 -0.370 0.029 -0.513 0.000 -0.481 0.000 -0.392 0.014
ν2 -0.253 0.479 -0.160 0.603 0.031 0.897 -0.006 0.978 -0.144 0.602
ν3 0.180 0.538 0.234 0.359 0.168 0.392 0.163 0.409 0.178 0.405
ν4 0.738 0.005 0.630 0.007 0.641 0.000 0.666 0.000 0.738 0.000
ν5 -0.033 0.908 -0.011 0.965 0.034 0.859 0.032 0.871 0.054 0.803
ν6 -0.280 0.441 -0.218 0.482 -0.262 0.287 -0.256 0.310 -0.303 0.278
LL -18398 -18351 -18280 -18220 -18140
BIC -18457 -18421 -18354 -18324 -18259

Diagnostics of GLMACI residuals
Mean of ei 0.999 1.000 0.999 1.000 1.002
S.D. of ei 1.010 1.009 1.013 1.012 0.995
LB(20) of ei 95.548 0.000 54.256 0.000 23.737 0.254 24.756 0.210 24.850 0.207
Exc. disp. 1.068 0.285 0.992 0.320 1.333 0.182 1.318 0.187 0.436 0.662
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Table 4: Maximum likelihood estimates of bivariate GLMACI models. Based on trade
durations (k = 1) and price durations (k = 2) of the IBM stock traded at the New York
Stock Exchange. The price durations are computed as the time between cumulative
absolute midquote changes of the size $0.059. Sample period: 02/01/01 until 31/01/01,
79, 818 observations. The spline functions are based on 6 equally spaced nodes between
9:45 a.m. and 4:00 p.m. Standard errors are based on the outer product of gradients.

A B C D E
Est. p-v. Est. p-v. Est. p-v. Est. p-v. Est. p-v.

Baseline intensity parameters

ω1 -1.617 0.000 -1.598 0.000 -1.606 0.000 -1.819 0.000 -1.351 0.000
ω2 1.112 0.000 1.074 0.000 1.207 0.000 1.688 0.000 1.757 0.000
p1
1 2.059 0.000 2.057 0.000 2.549 0.000 2.890 0.000 2.826 0.000

p1
2 0.802 0.000 0.795 0.000 0.795 0.000 0.798 0.000 0.801 0.000

p2
1 0.958 0.000 0.956 0.000 0.953 0.000 0.952 0.000 0.951 0.000

p2
2 1.222 0.000 1.218 0.000 1.308 0.000 1.376 0.000 1.358 0.000

κ1 0.904 0.000 0.893 0.000 0.676 0.004 1.629 0.042 1.652 0.106
κ2 0.059 0.000 0.046 0.000 0.043 0.000 0.041 0.000 0.057 0.000
p1
1,s 0.562 0.000 0.495 0.000 0.510 0.000

p1
2,s 0.087 0.000 0.097 0.000 0.095 0.000

p2
1,s 0.108 0.001 0.188 0.000 0.146 0.000

p2
2,s 0.032 0.112 -0.043 0.476 0.038 0.293

p1
1,c 0.048 0.637 0.294 0.015 0.304 0.040

p1
2,c -0.028 0.060 0.007 0.623 -0.007 0.706

p2
1,c 0.004 0.850 -0.060 0.138 -0.019 0.433

p2
2,c -0.171 0.000 -0.175 0.000 -0.167 0.000

Acceleration parameters

δ1
1,Φ -0.087 0.011 0.043 0.363

δ2
2,Φ 1.065 0.000 0.846 0.000

δ1
1,s -0.087 -0.711 0.005

δ2
2,s 1.065 0.305 0.622

δ1
1,Ψ -0.087 -0.195 0.536

δ2
2,Ψ 1.065 0.483 0.005

δ1
2,Φ -0.022 0.399 -0.106 0.001

δ2
1,Φ -0.542 0.000 -0.515 0.000

δ1
2,s -0.022 0.871 0.056

δ2
1,s -0.542 -0.100 0.765

δ1
2,Ψ -0.022 0.477 0.000

δ2
1,Ψ -0.542 0.171 0.674

Short-term dynamics

α1
1 0.023 0.000 0.028 0.000 0.028 0.000 0.031 0.000 0.027 0.000

α2
1 0.003 0.175 0.007 0.095 0.008 0.061 -0.001 0.755 0.002 0.517

α1
2 -0.003 0.390 -0.001 0.690 -0.000 0.786 0.005 0.058 0.004 0.142

α2
2 0.095 0.000 0.175 0.000 0.173 0.000 0.151 0.000 0.177 0.000

β1
1 0.995 0.000 0.694 0.000 0.685 0.000 0.640 0.000 0.701 0.000

β2
1 1.007 0.000 0.365 0.000 0.365 0.001 0.411 0.000 0.270 0.013

β1
2 0.979 0.000 0.493 0.000 0.492 0.000 0.374 0.000 0.523 0.000

β2
2 0.944 0.000 0.383 0.025 0.387 0.025 0.340 0.032 0.363 0.023
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Table 4 continued:
A B C D E

Est. p-v. Est. p-v. Est. p-v. Est. p-v. Est. p-v.

Long-term dynamics

d1 0.574 0.000 0.578 0.000 0.585 0.000 0.558 0.000
d2 0.543 0.000 0.546 0.000 0.582 0.000 0.589 0.000
a11 0.024 0.679 0.041 0.490 0.047 0.446 0.077 0.088
a12 0.029 0.355 0.027 0.396 0.026 0.377 0.028 0.171
a21 -0.022 0.816 -0.015 0.873 0.018 0.847 -0.240 0.001
a22 0.113 0.010 0.114 0.010 0.126 0.012 0.121 0.000
b11 0.139 0.907 0.142 0.876 0.838 0.433 0.675 0.000
b12 0.160 0.638 0.178 0.532 0.077 0.859 -0.032 0.638
b21 0.545 0.793 0.548 0.733 0.393 0.842 0.295 0.251
b22 0.813 0.126 0.815 0.066 0.896 0.265 0.879 0.000

Seasonality parameters

ν1
1 -0.143 0.589 -0.214 0.090 -0.216 0.085 -0.147 0.241 -0.160 0.184

ν1
2 -0.241 0.546 -0.250 0.251 -0.265 0.216 -0.399 0.063 -0.434 0.036

ν1
3 -0.148 0.575 0.043 0.812 0.041 0.815 0.118 0.494 0.191 0.252

ν1
4 1.091 0.000 0.877 0.000 0.900 0.000 0.884 0.000 0.883 0.000

ν1
5 -0.239 0.375 -0.120 0.513 -0.107 0.537 -0.051 0.766 0.008 0.958

ν1
6 0.483 0.141 0.455 0.043 0.456 0.039 0.367 0.092 0.279 0.185

ν2
1 -0.603 0.104 -0.479 0.013 -0.481 0.013 -0.331 0.120 -0.227 0.098

ν2
2 0.154 0.796 0.122 0.711 0.123 0.710 0.080 0.826 0.074 0.758

ν2
3 0.128 0.760 0.072 0.790 0.075 0.780 -0.173 0.585 -0.403 0.105

ν2
4 0.635 0.088 0.751 0.004 0.755 0.004 1.137 0.000 1.131 0.000

ν2
5 -0.431 0.275 -0.339 0.233 -0.338 0.236 -0.601 0.090 -0.502 0.048

ν2
6 0.003 0.993 -0.006 0.984 -0.006 0.984 0.022 0.955 0.147 0.494

LL -93906 -93799 -93012 -92967 -92903
BIC -94085 -94011 -93268 -93246 -93227

Diagnostics of integrated intensities, trade durations

Mean of e1
i,1 1.000 0.999 0.999 1.002 0.998

S.D. of e1
i,1 0.968 0.967 0.994 0.997 0.997

LB(20) of e1
i,1 53.137 0.000 17.248 0.636 16.343 0.695 18.626 0.546 17.939 0.591

Exc. disp. 5.358 0.000 5.405 0.000 16.120 0.709 16.552 0.681 0.372 0.709

Diagnostics of integrated intensities, price durations

Mean of e2
i,1 1.000 1.003 1.002 1.018 1.020

S.D. of e2
i,1 1.000 0.998 0.996 0.996 1.001

LB(20) of e2
i,1 29.848 0.072 16.304 0.697 16.120 0.709 16.552 0.681 16.184 0.705

Exc. disp. 0.017 0.986 0.127 0.898 0.292 0.769 0.292 0.769 0.120 0.904

Diagnostics of GLMACI residuals

Mean of ei,2 1.000 1.000 0.999 1.005 1.002
S.D. of ei,2 0.973 0.973 0.994 0.997 0.998
LB(20) of ei,2 82.737 0.000 21.387 0.374 20.045 0.455 16.853 0.662 21.863 0.348
Exc. disp. 4.857 0.000 4.960 0.000 1.039 0.298 0.516 0.605 0.282 0.777

Diagnostics of GLMACI residuals based on pooled process

Mean of ei,3 1.000 1.000 1.000 1.005 1.003
S.D. of ei,3 1.015 1.015 1.015 1.038 1.038
LB(20) of ei,3 79.154 0.000 69.362 0.000 79.154 0.000 64.011 0.000 57.039 0.000
Exc. disp. 2.917 0.003 2.883 0.003 2.917 0.003 7.355 0.000 7.357 0.000
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Appendix B: Figures

Figure 1: Quantile-quantile plot of the estimated integrated intensities (left) and estimated

baseline intensity function (right) based on specification C in Table 2.

Figure 2: Quantile-quantile plot of the estimated integrated intensities (left) and estimated

baseline intensity function (right) based on specification D in Table 2.

Figure 3: Quantile-quantile plot of the estimated integrated intensities (left) and estimated

baseline intensity function (right) based on specification E in Table 2. The baseline intensity

function is computed for δΦ = δs = δΨ = 0.
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Figure 4: Quantile-quantile plot of the estimated integrated intensities (left) and estimated

baseline intensity function (right) based on specification C in Table 3.

Figure 5: Quantile-quantile plot of the estimated integrated intensities (left) and estimated

baseline intensity function (right) based on specification D in Table 3.

Figure 6: Quantile-quantile plot of the estimated integrated intensities (left) and estimated

baseline intensity function (right) based on specification E in Table 3. The baseline intensity

function is computed for δΦ = δs = δΨ = 0.
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Figure 7: Estimated intraday seasonalities for trade durations (left) and price durations (right).

Figure 8: Estimated quantile-quantile plots of the integrated intensities for trade durations, e1
i,2, (left) and price

durations, e2
i,2, (middle) and of the integrated intensities of the pooled process ei,3 (right) based on specification

B in Table 4.

Figure 9: Estimated quantile-quantile plots of the integrated intensities for trade durations, e1
i,2, (left) and price

durations, e2
i,2, (middle) and of the integrated intensities of the pooled process ei,3 (right) based on specification

C in Table 4.
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Figure 10: Estimated quantile-quantile plots of the integrated intensities for trade durations, e1
i,2, (left) and

price durations, e2
i,2, (middle) and of the integrated intensities of the pooled process ei,3 (right) based on

specification D in Table 4.

Figure 11: Estimated quantile-quantile plots of the integrated intensities for trade durations, e1
i,2, (left) and

price durations, e2
i,2, (middle) and of the integrated intensities of the pooled process ei,3 (right) based on

specification E in Table 4.
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