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Abstract

We develop a survival model for panel data based on an intensity approach.

The model is extended by a time varying latent factor, which captures the in-

fluence of unobserved time effects and allows for correlation across individuals.

The model extends the stochastic conditional intensity model of Bauwens &

Hautsch (2005) to panel duration data.

We show how to estimate the model by a simulated maximum likelihood

technique adopting the efficient importance sampling approach of Richard &

Zhang (2005).

The proposed approach can be used to characterize the trading behavior

of investors in multiple assets over time.

JEL classification: G10, F31, C32

Keywords: Panel Intensity Model, Latent Factor, Efficient Importance Sam-

pling
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1 Introduction

Trading behavior of investors are influenced by a broad set of decision variables.

If we were able to observe this complete information set, we could fully character-

ize the time varying correlation structure across individuals based on this observable

information. Individual investment opportunity sets as well as unobservable macroe-

conomic factors are just two examples of information which is not observed by the

econometrician. Time varying latent factors can be used to approximate this unob-

servable information and improve the characterization of the correlation structure

across individuals.

In this paper we introduce latent factors to panel intensity models, which are used

to investigate the stochastics of trading decisions of investors for multiple assets over

time. This framework allows for a rigorous exploration of financial decision making

theories such as rational expectations and behavioral finance theories.

The proposed model can be viewed on the one hand as an extension of the stochastic

conditional intensity (SCI) model of Bauwens & Hautsch (2005) to panel data and

on the other hand as an augmentation of the class of panel survival models by a

latent factor. The intensity based specification is chosen to allow for an intuitive

incorporation of time varying covariates. The latent factor is assumed to evolve on

an arrival process resulting from aggregation of individual arrival processes. We use

a simulated maximum likelihood (SML) technique to estimate the model. Due to

the complexity of the model we develop an adjustment of the efficient importance

sampling method of Richard & Zhang (2005).

The model should serve to analyze the trading behavior of retail investors in the

foreign exchange market with the help of an trading activity data-set of OANDA

FXTrade, which allows to trace every action of around 5000 investors in up to 30

currency pairs over the period from 1st October 2003 to 15th May 2004.

In this preliminary version of the paper we provide a theoretical description of the

model (Section 2) and detail the SML estimation procedure (Section 3). Section 4

concludes.
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2 Panel Intensity Model

Let t ∈ [0, T ] denote the physical calendar time, let n = 1, . . . , N denote the nth

investor and let k = 1, . . . , K denote the kth currency (ccy) pair in which an in-

vestor can trade. The ith action of the nth investor in the kth ccy pair is de-

noted by i = 1, . . . , Ik,n and the corresponding arrival time1 is denoted by tk,n
i .

For all n and all k the sequences {tk,n
i | 0 ≤ tk,n

i−1 ≤ tk,n
i ≤ T ; i = 1, . . . , Ik,n}

represent point processes with corresponding right-continuous counting processes

Nk,n(t) = Nk,n([0, t]) =
∑Ik,n

i=1 1l {tk,n
i ≤t} which count the number of actions in the

time interval [0, t]. The corresponding left-continuous counting process is denoted

by N̆k,n(t) = Nk,n([0, t)) =
∑Ik,n

i=1 1l {tk,n
i <t}. Let {Ω,F,Ft,P} denote the associated

joint probability space, where the filtrations of the individual processes are denoted

by F
k,n
t ⊂ Ft. We assume that each individual point process is orderly (simple), i.e.

P(Nk,n(t + δ) − Nk,n(t) > 0|Fk,n
t ) = o(δ), (1)

where o(·) denotes the little Landau symbol, which ensures that there are no simul-

taneous arrivals and it implies (almost surely) that tk,n
i−1 < tk,n

i for i = 1, . . . , Ik,n.

The inter-event duration between two consecutive actions is denoted by τ k,n
i =

tk,n
i − tk,n

i−1. By uk,n(t) = t − tk,n

N̆k,n(t)
we denote the corresponding backward re-

currence time at t. For each investor and for each ccy pair the arrival times

{tk,n
i | i = 1, . . . , Ik,n} constitute a pooled process, induced by S sub-processes.

The corresponding arrival times of the sth sub-process is denoted by ts,k,n
i with

i = 1, . . . , Is,k,n. Since the pooled process is orderly the sub-processes are orderly

as well. With N s,k,n(t) =
∑Is,k,n

i=1 1l {ts,k,n
i ≤t} being the corresponding counting func-

tions we get that Nk,n(t) =
∑S

s=1 N s,k,n(t). In our application we observe S = 2

sub-processes which are:

• s = 1: The process which is related to an increase in a given ccy pair exposure,

i.e. the process which characterizes whether a position is (further) opened;

• s = 2: The process which is related to a decrease in a given ccy pair exposure,

i.e. the process which characterizes whether a position is (partly) closed.

1By action we understand any event that changes the investor’s portfolio value. Thus it can be

initiated by the investor at that particular time or be a consequence of an earlier activity of the

investor, e.g. an executed limit order.
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The likelihood function of the complete model without a latent factor (assuming

independence across investors and currency pairs) is given by

L(W ; θ) =
N
∏

n=1

K
∏

k=1





Ik,n
∏

i=1

fk,n(τ k,n
i | F−

t
k,n
i

)





dk
n

, (2)

where fk,n(τ k,n
i | F−

t
k,n
i

) is the conditional duration density function. With F−

t
k,n
i

we

denote the filtration, which consists of all information up to but excluding time tk,n
i .

W denotes the generic symbol for all relevant data and θ is the generic symbol for

all relevant parameters used in the estimation. By dk
n we denote the dummy which

takes on the value of one if the nth investor is active in currency pair k at least once,

and zero otherwise.

We can write the conditional probability of the duration τ k,n
i between two arbitrary

consecutive actions as the conditional probability that no process has generated an

arrival over the period [tk,n
i−1, t

k,n
i ) times the instantaneous probability for arrival in

the next instant tk,n
i , which is formally given by

P
(

τ k,n
i

∣

∣

∣F
−

t
k,n
i

)

=
S

∏

s=1

F̄ s,k,n
(

tk,n
i−1, t

k,n
i

∣

∣

∣F
−

t
k,n
i

)(

θs,k,n
(

tk,n
i

∣

∣

∣F
−

t
k,n
i

))d
s,k,n
i

, (3)

where ds,k,n
i is a dummy, which takes on the value of one whenever the corresponding

duration ends with an arrival of type s, and zero otherwise. F̄ s,k,n is given by

F̄ s,k,n
(

tk,n
i−1, t

k,n
i

∣

∣

∣F
−

t
k,n
i

)

= P

(

ts,k,n

Ns,k,n(tk,n
i−1)+1

/∈ [tk,n
i−1, t

k,n
i ), ts,k,n

Ns,k,n(tk,n
i−1)+1

= tk,n
i

∣

∣

∣F
−

t
k,n
i

)

(4)

and denotes the “survivor” function of the s-type process and

θs,k,n
(

tk,n
i

∣

∣

∣
F−

t
k,n
i

)

=

lim
h→0

P

(

tk,n
i ≤ ts,k,n

Ns,k,n(tk,n
i−1)+1

< tk,n
i + h

∣

∣

∣t
s,k,n

Ns,k,n(tk,n
i−1)+1

/∈ [tk,n
i−1, t

k,n
i ),F−

t
k,n
i

)

h
(5)

denotes the corresponding intensity of type s. It follows that

F̄ s,k,n
(

tk,n
i−1, t

k,n
i

∣

∣

∣
F−

t
k,n
i

)

= exp









−
t
k,n
i

∫

t
k,n
i−1

θs,k,n(u | F−
u )du









= exp
(

−Θs,k,n(tk,n
i−1, t

k,n
i | F−

t
k,n
i

)
)

,
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where Θs,k,n(tk,n
i−1, t

k,n
i | F−

t
s,k,n
i

) denotes the s-type integrated intensity between tk,n
i−1

and tk,n
i . Therefore, the likelihood function of the model without a latent factor in

equation (2) can be rewritten as

L(W ; θ) =
N
∏

n=1

K
∏

k=1

Ik,n
∏

i=1

S
∏

s=1

F̄ s,k,n
(

tk,n
i−1, t

k,n
i

∣

∣

∣
F−

t
k,n
i

) (

θs,k,n
(

tk,n
i

∣

∣

∣
F−

t
k,n
i

))d
s,k,n
i

. (6)

Since we believe that investors’ behavior is influenced by unobservable factors, like

an unobservable time effect, we introduce a latent factor denoted by λi. To model a

dynamic behavior of the latent factor, we need to introduce a time scale over which

the latent factor evolves. Therefore, we define the ordered pooled point process as

the sequence of arrival times ti, i = 1, . . . , I for all actions of all investors in all

currency pairs, where simultaneous arrivals at the same time are treated as one

arrival only, i.e.

{ti|ti−1 < ti} =
⋃

n

{

⋃

k

{tk,n
i | tk,n

i−1 < tk,n
i } \

⋂

k

{tk,n
i | tk,n

i−1 < tk,n
i }

}

\

⋂

n

{

⋃

k

{tk,n
i | tk,n

i−1 < tk,n
i } \

⋂

k

{tk,n
i | tk,n

i−1 < tk,n
i }

}

.

The corresponding counting processes are denoted by N(t) =
∑I

i=1 1l {ti≤t} and

N̆(t) =
∑I

i=1 1l {ti<t}. Thus, at t ∈ {ti} we have N(t) = N̆(t)+1, whereas for t /∈ {ti}
it holds that N(t) = N̆(t). We introduce this pooled process since the dynamics of

the latent factor will be defined on it. In particular we assume that the duration

τ k,n

Nk,n(t)
depends on the latent factor, i.e. we assume that τ k,n

Nk,n(t)
= τ k,n

Nk,n(t)
(λN̆(t)+1) at

t ∈ ⋃

n

⋃

k{t
k,n
i } is a function of the latent factor. Note, that this definition ensures

that at every time t where an action occurs there is a corresponding value of the

latent factor. Since the latent factor is unobservable and stochastic the likelihood is

given by

L(W ; θ) =

∫

RI

N
∏

n=1

K
∏

k=1

Ik,n
∏

i=1

fk,n(τ k,n
i , λ

N̆(tk,n
i )+1 | F−

t
k,n
i

)dΛ, (7)

where Λ = (λ1, . . . , λI)
′ and the integral is taken over R

I , and where fk,n(τ k,n
i , λ

N̆(tk,n
i )+1 |

F−

t
k,n
i

) is the joint conditional density of the duration τ k,n
i and its corresponding latent
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factor λ
N̆(tk,n

i )+1. The likelihood can then be factorized as the product of the density

conditional on the latent factor times the conditional density of the latent factor as

L(W ; θ) =

∫

RI

N
∏

n=1

K
∏

k=1

Ik,n
∏

i=1

S
∏

s=1

F̄ s,k,n
(

tk,n
i−1, t

k,n
i

∣

∣

∣
F−

t
k,n
i

, λ
N̆(tk,n

i )+1

)

(

θs,k,n
(

tk,n
i

∣

∣

∣F
−

t
k,n
i

, λ
N̆(tk,n

i )+1

))d
s,k,n
i

ρ(λ
N̆(tk,n

i )+1|F−

t
k,n
i

)dΛ, (8)

where ρ(λ
N̆(tk,n

i )+1|F−

t
k,n
i

) is the conditional density of the latent factor and the exact

specification of the intensities and the corresponding integrated intensities is pre-

sented below. The model in (8) is formulated in terms of tk,n
i , which is the pooled

(orderly) point process of the nth investor in the kth currency pair. This is unfavor-

able for the simulated maximum likelihood (SML) estimation, which is based on the

efficient important sampling (EIS) algorithm of Richard & Zhang (2005). Therefore

we reformulate the model in terms of ti, the overall pooled process, on which the

latent factor is defined.

Since the pooled process may not be orderly there may be several pairs (k, n) asso-

ciated with the arrival time ti. We denote the set of such pairs by Ci = {(k, n)|ti =

tk,n

Nk,n(ti)
}. The likelihood in (8) can then be rewritten as

L(W ; θ) =

∫

RI

I
∏

i=1

∏

Ci

S
∏

s=1

F̄ s,k,n
(

tk,n

Nk,n(ti)−1
, tk,n

Nk,n(ti)

∣

∣

∣F
−
ti
, λi

)

(

θs,k,n
(

tk,n

Nk,n(ti)

∣

∣

∣
F−

ti
, λi

))d
s,k,n

Nk,n(ti) ρ(λi|F−
ti
)dΛ. (9)

As suggested by the model presentation above there are several ways to model the

likelihood function. One can either specify the likelihood function (7) for the du-

rations of the pooled process tk,n
i directly or one can specify the likelihood function

(8) based on the intensities of the s sub-processes ts,k,n
i which generate the pooled

process tk,n
i . Although in different ways, both approaches ultimately allow to make

inference about the durations τ k,n
i of the pooled process.

An attractive feature of the intensity based modelling is that it accounts for changes

in the values of time varying covariates during a duration spell in a very intuitive

way since it is set up in a continuous time. The duration based approach, which

is a discrete time model can also account for time varying covariates (e.g. Lunde

& Timmermann (2005)), but then the likelihood function has to be additionally

adjusted (effectively this again amounts to adjusting the intensity to reflect the

changes in the values of the covariates). Furthermore, the intensity based approach
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allows to characterize the dynamic behavior among the s sub-processes, which is a

source of additional information, whereas the duration approach considers the pooled

process solely. A strategy to model the duration based likelihood (7) is to adopt

the stochastic conditional duration (SCD) approach of Bauwens & Veredas (2004),

whereas likelihood (8) can be modelled by augmenting the stochastic conditional

intensity (SCI) model of Bauwens & Hautsch (2005). We rely on the latter strategy

and parameterize θs,k,n(t|F−
t , λN̆(t)+1) generally in the following way:

θs,k,n(t|F−
t , λN̆(t)+1) =

(

bs,k,n(t)Ss,k,n(t)Ψs,k,n(t|F−
t )(λN̆(t)+1)

δs,k,n
)

Ds,k,n(t). (10)

Thereby bs,k,n(t) denotes a (possibly investor, currency pair or state dependent)

baseline hazard rate, Ss,k,n(t) a deterministic seasonality function, Ψs,k,n(t|F−
t ) the

intensity component capturing the dynamic information processing and δs,k,n is a

parameter which controls for different influences of the latent component on the

corresponding intensities. In our application we need to take into account that

after an action which sets the exposure in a given ccy pair to zero, i.e. closes

the position completely, there is no possibility for a subsequent close. Hence, the

intensity θ2,k,n(t | F−
t , λN̆(t)+1) is zero in this case. We model this through the variable

Ds,k,n(t) =

{

1, if s = 1

1 − dk,n
cc (t), if s = 2,

(11)

where dk,n
cc (t) denotes the dummy which takes on the value one, if the previous arrival

time is associated with a complete close of the position in the given currency pair k

for investor n, and zero otherwise. In the following we will parameterize the different

components in a parsimonious way:

Baseline Hazard

We assume that there are different baseline hazard rates for the different states, but

that they are identical across currency pairs and investors, i.e. we assume that

bs,k,n(t) = bs(t) for k = 1, . . . , K and n = 1, . . . , N.

In our application we use a multivariate Weibull specification of the following form:

bs(t) = exp(ωs)
S

∏

r=1

ur,k,n(t)αs
r−1 for s = 1, . . . , S

6



Diurnal Seasonality

We assume that

Ss,k,n(t) = S(t) for k = 1, . . . , K and n = 1, . . . , N.

Let it ∈ [0, 24) denote the calendar time t projected onto time of day, where 24 corre-

sponds to 24 hours per day. We assume that the diurnal seasonality can be approxi-

mated well enough by an exponential linear spline function with hourly knots, which

is constructed in the following way. Let w = (w0, . . . , w23)
′ denote the coefficient

vector with a corresponding permutated coefficient vector w̃ = (w1, . . . , w23, w0)
′.

Furthermore, let ς = (0, . . . , 23)′ and ι = (1, . . . , 1)′ denote the counting and unit

vector of dimension 24×1, respectively. The vector of indicator functions is denoted

by Υ = (1l {it∈[0,1)}, . . . , 1l {it∈[22,23)}, 1l {it∈[23,0)})
′. S(t) is then given by

S(t) = exp
(

(Diag[w̃(it · ι − ς)′] + Diag[w(ι − (it · ι − ς))′])
′
Υ

)

,

where w0 is set to zero for identification purposes.

Dynamics and Explanatory Variables

The dynamic structure and the influence of the explanatory variables is modelled

with Ψs,k,n(t|F−
t ) in the same fashion as suggested by Russell (1999). Let zs,k,n

j denote

the vector of all (time-varying) possibly investor, currency pair and state dependent

covariates, where at least one covariate is updated at time t̃s,k,n
j with j = 1, . . . Js,k,n.

M̆ s,k,n(t) =
∑Js,k,n

j=1 1l {t̃s,k,n
j <t} is the corresponding left continuous counting function

of the update times t̃s,k,n
j . Furthermore, let {ťs,k,n

h } denote the pooled process of

the pooled action process {ti} and the covariate process {t̃s,k,n
j }, with Hs,k,n(t) =

∑Hs,k,n

h=1 1l {ťs,k,n

h
≤t} denoting the corresponding right continuous counting function. We

assume that

Ψs,k,n(t|F−
t ) = exp

(

Ψ̃s,k,n

N̆k,n(t)+1
+

(

zs,k,n

M̆s,k,n(t)

)′

γs,k,n

)

.

Note, that Ψ̃s,k,n
· is indexed by N̆k,n(t) + 1, which ensures that Ψ̃s,k,n

· is updated

with the value of Ψ̃s,k,n
i directly after but excluding tk,n

i−1 and stays constant until

and including tk,n
i . The coefficient vector is denoted by γs,k,n. The vector Ψ̃k,n

i =

(Ψ̃1,k,n
i , . . . , Ψ̃S,k,n

i )′ is parametrized multivariately as

Ψ̃k,n
i =

S
∑

s=1

(

As,k,nεk,n
i−1 + Bk,nΨ̃k,n

i−1

)

ds,k,n
i−1 ,

7



where As,k,n = {αs,k,n
j } is an S × 1 parameter vector and Bk,n = {βk,n

ij } is an S × S

parameter matrix. The innovation term εk,n
i is given by

εk,n
i =

S
∑

s=1

ds,k,n
i εs,k,n

i ,

where

εs,k,n
i = 1 − Θs,k,n

(

ts,k,n
i−1 , ts,k,n

i | F−

t
s,k,n
i

, λ
N̆(ts,k,n

i )+1

)

(12)

or

εs,k,n
i = −0.5772 − ln Θs,k,n

(

ts,k,n
i−1 , ts,k,n

i | F−

t
s,k,n
i

, λ
N̆(ts,k,n

i )+1

)

, (13)

where the integrated hazard rate is computed as

Θs,k,n
(

ts,k,n
i−1 , ts,k,n

i , | F−

t
s,k,n
i

λ
N̆(ts,k,n

i )+1

)

=

Hs,k,n(ts,k,n
i )−1

∑

h=Hs,k,n(ts,k,n
i−1 )

ť
s,k,n

h+1
∫

ť
s,k,n

h

θs,k,n
(

u
∣

∣

∣F
−
u , λN̆(u)+1

)

du. (14)

Note, that the hazard rate is integrated between ts,k,n
i−1 and ts,k,n

i piecewise, where the

pieces are determined either by an arrival time ti, which includes the arrival times

tk,n
i or by an arrival time of t̃s,k,n

j . The innovation term in equation (12) is defined in

that way, since Θs,k,n
(

ts,k,n
i−1 , ts,k,n

i | F−

t
s,k,n
i

, λ
N̆(ts,k,n

i )+1

)

∼ i.i.d. Exp(1) and hence its

mean value is 1. Equation (13) uses that ln Θs,k,n
(

ts,k,n
i−1 , ts,k,n

i | F−

t
s,k,n
i

, λ
N̆(ts,k,n

i )+1

)

follows an i.i.d. standard extreme value type I distribution with mean −0.5772.

The survivor function F̄ s,k,n
(

tk,n
i−1, t

k,n
i

∣

∣

∣F
−

t
k,n
i

, λ
N̆(tk,n

i )+1

)

in equation (8) is given by

F̄ s,k,n
(

tk,n
i−1, t

k,n
i

∣

∣

∣F
−

t
k,n
i

, λ
N̆(tk,n

i )+1

)

= exp
(

−Θs,k,n
(

tk,n
i−1, t

k,n
i | F−

t
k,n
i

, λ
N̆(tk,n

i )+1

))

,

where the integrated intensity is obtained piecewise according to equation (14).

Latent Factor

We assume that the dynamics of the latent factor are defined on the time scale ti.

This means the latent factor potentially changes whenever there is an action of some

investor in some currency pair. Since each hazard θs,k,n and each integrated hazard

8



Θs,k,n depends at every time t on the current (one discrete time step ahead) value of

the latent factor we induce at every time t a contemporaneous correlation between

all hazard rates θs,k,n through the latent factor. The amount of this possibly investor,

currency pair or state dependent correlation is steered through the parameters δs,k,n.

The latent factor therefore can be interpreted as an unobservable time effect which

affects the decisions (open, close) of all investors at every time t by influencing

the intensities of the corresponding processes. There are many explanations which

justify the existence of such an unobservable time effect in our model: i) (News) not

modelled effects of (macroeconomic) news announcements, due to data limitations,

ii) (Order Flow) buy or sell pressure from the interbank market, which we do not

observe directly since we consider an internet trading platform or iii) (Herding)

similar behavior of traders, due to similar interpretations of any kind of technical

chart patterns, which are not modelled.

In our model we assume that the latent factor follows conditional on F−
ti

a lognormal

distribution, i.e.

ln λi|F−
ti

i.i.d.∼ N(µi, 1)

where the dynamics is modelled through an AR(1) process

ln λi = a ln λi−1 + νi for i = 1, . . . , I,

with νi
i.i.d.∼ N(0, 1). Let li denote the log of latent factor at ti, i.e

li ≡ ln λi,

and let Li denote the history of the log latent factor up to and including ti, i.e.

Li = {lj}i
j=1.

With this specification, the (log) latent factor depends only on its own past, so we

denote its conditional distribution by p(li|Li−1). From Equation (10) it follows that

the influence of the log latent factor on the s type intensity is given by δs,k,n ln λi,

which we can denote by λs,k,n
i . Then we have that

λs,k,n
i = aλs,k,n

i−1 + δs,k,nνi for i = 1, . . . , I.

Therefore the variance of νi is set to unity, so that the conditional variance of λs,k,n
i

is equal to δs,k,n2
, which eases the interpretation of the parameter2.

Figure 1 depicts the stylized representation of the structure of the panel intensity

model with a latent factor.
2Note that this does not preclude that δs,k,n could be negative.
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ť
1,k,n
17

ť
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ť
2,k,n
7

ť
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Figure 1: Stylized Model Structure. The figure represents for s=2 the time scales associated with the arrival

times of the processes (sub-pr.1 and sub-pr.2), the times of the covariate processes (cov.1 an cov.2) as well as

the pooled arrival processes ť
s,k,n
h and ti.
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3 Estimation of the Panel Intensity Model

We now consider the explicit form and the estimation of the parameters in the

likelihood function. Let W denote the set of data matrices W k,n for k = 1, . . . , K

and n = 1, . . . , N where the ith row of W k,n, wk,n
i consists of the following data:

wk,n
i = (tk,n

i , d1,k,n
i , . . . , dS,k,n

i ), with i = 1, . . . , Ik,n.

With W k,n
i we denote the history of wk,n

i up to and including tk,n
i , i.e.

W k,n
i = {wk,n

j }i
j=1.

Furthermore, let Z̆k,n
i for k = 1, . . . , K and n = 1, . . . , N denote the set which

consists of the following time-varying covariate data:

Z̆k,n
i =

{

{z1,k,n
j |j = 1, . . . , M̆1,k,n(tk,n

i )}, . . . , {zS,k,n
j |j = 1, . . . , M̆S,k,n(tk,n

i )}
}

.

Recall that the likelihood function of our model is given by

L(W ; θ) =

∫

RI

N
∏

n=1

K
∏

k=1

Ik,n
∏

i=1

S
∏

s=1

F̄ s,k,n
(

tk,n
i−1, t

k,n
i

∣

∣

∣F
−

t
k,n
i

, λ
N̆(tk,n

i )+1

)

(

θs,k,n
(

tk,n
i

∣

∣

∣
F−

t
k,n
i

, λ
N̆(tk,n

i )+1

))d
s,k,n
i

ρ(λ
N̆(tk,n

i )+1|F−

t
k,n
i

)dΛ

=

∫

R+I

N
∏

n=1

K
∏

k=1

Ik,n
∏

i=1

S
∏

s=1

F̄ s,k,n
(

tk,n
i−1, t

k,n
i

∣

∣

∣F
−

t
k,n
i

, exp(l
N(tk,n

i ))
)

(

θs,k,n
(

tk,n
i

∣

∣

∣
F−

t
k,n
i

, exp(l
N(tk,n

i ))
))d

s,k,n
i

p(l
N(tk,n

i )|LN(tk,n
i )−1)dL

=

∫

R+I

I
∏

i=1

∏

Ci

S
∏

s=1

F̄ s,k,n
(

tk,n

Nk,n(ti)−1
, tk,n

Nk,n(ti)

∣

∣

∣
F−

ti
, li

)

(

θs,k,n
(

tk,n

Nk,n(ti)

∣

∣

∣F
−
ti
, li

))d
s,k,n

Nk,n(ti)
1√
2π

exp

(

−(li − µi)
2

2

)

dL.

where L = ln Λ and the second equality follows from a change of the variable λ to l.

Using the data sets defined above the likelihood function can be rewritten as

L(W ; θ) =

∫

R+I

I
∏

i=1

∏

Ci

gk,n
(

wk,n

Nk,n(ti)
|W k,n

Nk,n(ti)−1
, Li, Z̆

k,n

Nk,n(ti)

)

p(li|Li−1)dL

=

∫

R+I

I
∏

i=1

∏

Ci

ϕk,n
(

wk,n

Nk,n(ti)
, li|W k,n

Nk,n(ti)−1
, Li−1, Z̆

k,n

Nk,n(ti)

)

dL, (15)
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where gk,n denotes the product of the survival and the intensity functions, p the

density of the conditional normal distribution and ϕk,n denotes the resulting corre-

sponding joint conditional density. Since this likelihood involves the computation of

an I-dimensional integral, we employ the Efficient Importance Sampling (EIS) tech-

nique of Liesenfeld & Richard (2003), which has been used for estimating stochastic

conditional intensity models by Bauwens & Hautsch (2005). The EIS technique is

based on simulation of the likelihood function (15) which can be rewritten as

L(W ; θ) =

∫

R+I

I
∏

i=1

∏

Ci

ϕk,n
(

wk,n

Nk,n(ti)
, li|W k,n

Nk,n(ti)−1
, Li−1, Z̆

k,n

Nk,n(ti)

)

m(li|Li−1, φi)

I
∏

i=1

∏

Ci

m(li|Li−1, φi)dL,

where m(li|Li−1, φi) is a sequence of auxiliary importance samplers which are used to

draw a path of the latent factor, given some additional parameters φi of the sampler.

The estimation then proceeds by generating R trajectories of the latent factor and

averaging over the draws

LR(W ; θ) =
1

R

R
∑

r=1

∏I

i=1

∏

Ci
ϕk,n

(

wk,n

Nk,n(ti)
, l

(r)
i |W k,n

Nk,n(ti)−1
, L

(r)
i−1, Z̆

k,n

Nk,n(ti)

)

∏I

i=1

∏

Ci
m(l

(r)
i |L(r)

i−1, φi)
, (16)

where the bracketed superscript r indicates the values of the corresponding variable

or set for the r-th repetition. The idea of the EIS approach is to find the values

of the parameters φi for i = 1, . . . , I such that the sampling variance of LR(W ; θ)

is minimized. For ease of illustration denote the numerator in equation (16) by

ϕ(W,L(r)|θ) = g(W |L(r), θ)p(L(r)), where the generic parameter vector θ appears

now, and the denominator by m(L(r)|φ). A more elaborate presentation can be

found in Richard & Zhang (2005). The sampling variance of LR(W ; θ) is given by

V (LR(W ; θ)) =
L(W ; θ)

R

1

L(W ; θ)
V

(

ϕ(W,L(r)|θ)
m(L(r)|φ)

)

=
L(W ; θ)

R

1

L(W ; θ)

∫

R+I

(

ϕ(W,L|θ)
m(L|φ)

− L(W ; θ)

)2

m(L|φ)dL(17)

If we are able to choose φ such that m(L|φ) = ϕ(W,L|θ)
L(W ;θ)

the sampling variance would

be zero. Since this case is very unrealistic the aim is to find φ such that m(L|φ) is

very close to ϕ(W,L|θ) under the restriction that m(L|φ) is analytically integrable.

12



Furthermore m(L|φ) can be decomposed into

m(L|φ) =
k(L, φ)

χ(φ)
(18)

where k(L, φ) and χ(φ) =
∫

R+I k(L, φ)dL can either be interpreted as joint and

marginal density or as kernel and integration constant. Defining d(L; ϕ, θ) as

d(L; φ, θ) = ln

(

ϕ(W,L|θ)
L(W ; θ)m(L|φ)

)

(19)

= ln(ϕ(W,L|θ)) − ln(L(W ; θ)) − ln(m(L, φ)) (20)

= ln(ϕ(W,L|θ)) − ln(L(W ; θ)) + ln(χ(φ)) − ln(k(L, φ)) (21)

and defining h(x) as

h(x) = exp(
√

x) + exp(−
√

x) − 2 (22)

allows to rewrite equation (17) as

V (LR(W ; θ)) =
L(W ; θ)

R

∫

R+I

h
(

d(L; φ, θ)2
)

ϕ(W,L|θ)dL. (23)

This equation defines a nonlinear Generalized Least Squares problem in φ, since h

is monotone and convex on R
+. The power series representation of h is given by

h(x) =
∞

∑

i=1

xi

(2i)!
. (24)

Using the series expansion of order one for h, which is h(x) = x equation (23)

simplifies to

V (LR(W ; θ)) =
L(W ; θ)

R

∫

R+I

d(L; φ, θ)2ϕ(W,L|θ)dL, (25)

and the minimization problem becomes

φ̂(θ) = argmin
φ

∫

R+I

d(L; φ, θ)2ϕ(W,L|θ)dL

= argmin
φ

∫

R+I

d(L; φ, θ)2g(W |L, θ)p(L)dL (26)

The integral in equation (26) is computed by its Monte Carlo proxy given by

1

R

R
∑

r=1

d(L(r); φ, θ)2g(W |L(r), θ)

13



where L(r) denote trajectories of length I sampled from the initial sampler p and

φ̂(θ) is determined based on this approximation. Since the L(r) generate a high

variance of g Richard & Zhang (2005) propose to drop the weight function g from

the equation and compute φ̂(θ) on the basis of the unweighted problem. Therefore

the minimization problem is given by

φ̂(θ) = argmin
φ

R
∑

r=1

d(L(r); φ, θ)2. (27)

Writing d(L(r); φ, θ) explicitly yields

d(L(r); φ, θ)

= ln





∏I

i=1

∏

Ci
ϕk,n

(

wk,n

Nk,n(ti)
, l

(r)
i |W k,n

Nk,n(ti)−1
, L

(r)
i−1, Z̆

k,n

Nk,n(ti)

)

∏I

i=1

∏

Ci
m(l

(r)
i |L(r)

i−1, φi)



 − ln (L(W ; θ))

(28)

Substituting

m(l
(r)
i |L(r)

i−1, φi) =
k(L

(r)
i , φi)

χ(φi, L
(r)
i−1)

(29)

yields

d(L(r); φ, θ) = ln

(

I
∏

i=1

∏

Ci

ϕk,n
(

wk,n

Nk,n(ti)
, l

(r)
i |W k,n

Nk,n(ti)−1
, L

(r)
i−1, Z̆

k,n

Nk,n(ti)

)

χ
(

φi, L
(r)
i−1

)

)

− ln

(

I
∏

i=1

∏

Ci

k(L
(r)
i , φi)

)

− ln (L(W ; θ))

= ln

(

I
∏

i=1

∏

Ci

ϕk,n
(

wk,n

Nk,n(ti)
, l

(r)
i |W k,n

Nk,n(ti)−1
, L

(r)
i−1, Z̆

k,n

Nk,n(ti)

)

χ
(

φi+1, L
(r)
i

)

)

− ln

(

I
∏

i=1

∏

Ci

k(L
(r)
i , φi)

)

− ln (L(W ; θ)) + ln
(

χ
(

φ1, L
(r)
0

))

where χ
(

φI+1, L
(r)
I

)

≡ 1. The thereto related minimization problem (27) can now

be solved sequentially using a backward recursion from I → 1 which yields φ =

{φi|i = I, . . . , 1}. The sequential problem consists then at each i = 1, . . . , I of

approximating

ln

(

∏

Ci

ϕk,n
(

wk,n

Nk,n(ti)
, l

(r)
i |W k,n

Nk,n(ti)−1
, L

(r)
i−1, Z̆

k,n

Nk,n(ti)

)

χ
(

φi+1, L
(r)
i

)

)
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by

ln
(

k
(

L
(r)
i , φi

))

.

Thus φ̂i(θ) is obtained through

φ̂i(θ) = argmin
φi

R
∑

r=1

(

ln

(

∏

Ci

ϕk,n
(

wk,n

Nk,n(ti)
, l

(r)
i |W k,n

Nk,n(ti)−1
, L

(r)
i−1, Z̆

k,n

Nk,n(ti)

)

χ
(

φi+1, L
(r)
i

)

)

− φ0,i − ln
(

k
(

L
(r)
i , φi

))

)2

(30)

The additional coefficients φ0,i are scalars which capture corresponding components

of ln (L(W ; θ)), which are still unobservable. As Liesenfeld & Richard (2003) note,

a sensible choice for the class of kernels for the auxiliary samplers m is a parametric

extension to the direct samplers p given by

k (Li, φi) = p(li|Li−1)ζ (li, φi) ,

where ζ is itself a Gaussian density kernel given by

ζ (li, φi) = exp
(

φ1,ili + φ2,il
2
i

)

.

Since a product of normal kernels is a normal kernel as well, we obtain for k (Li, φi)

k(Li, φi) ∝ exp

(

(φ1,i + µi)li +

(

φ2,i −
1

2

)

l2i −
1

2
µ2

i

)

= exp

(

− 1

2π2
i

(li − κi)
2

)

exp

(

κ2
i

2π2
i

− 1

2
µ2

i

)

,

where

π2
i = (1 − 2φ2,i)

−1, and (31)

κi = (φ1,i + µi)π
2
i . (32)

It follows that

χ(φi, Li−1, ) = exp

(

κ2
i

2π2
i

− µ2
i

2

)

. (33)

Under this choice of kernels class, p(li|Li−1) cancels out in the minimization problem

(30), which can then be rewritten as

φ̂i(θ) = argmin
φi

R
∑

r=1

(

ln

(

∏

Ci

gk,n
(

wk,n

Nk,n(ti)
|W k,n

Nk,n(ti)−1
, L

(r)
i , Z̆k,n

Nk,n(ti)

)

χ
(

φi+1, L
(r)
i

)

)

− φ0,i − ln
(

ζ
(

l
(r)
i , φi

))

)2

. (34)
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The implementation of the sequential ML-EIS approach involves then the following

steps:

Step 1. Draw R trajectories {l(r)i }I
i=1 from {N(µi, 1)}I

i=1.

Step 2. For each i with i : I → 1 solve the R-dimensional OLS problem in (34).

Step 3. Calculate the sequences {π2
i }I

i=1 and {κi}I
i=1 from equations (31) and (32)

and draw R trajectories of {l(r)i }I
i=1 from {N(κi, π

2
i )}I

i=1 to compute the likelihood

function given in (16).
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4 Conclusion

In this preliminary version of the paper we provide a theoretical treatment of a panel

intensity model augmented by a latent factor. The latent factor allows for a refined

characterization of the time-varying correlation structure across individuals. The

choice of the intensity specification enables us to capture the impact of time-varying

covariates. We show how to adjust the efficient importance sampling algorithm of

Richard & Zhang (2005) in order to estimate the model.
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