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Abstract

In this paper we model the dynamic multivariate density of discrete bid and

ask quote changes and their associated depths. We account for the contempo-

raneous relationship between these trading marks by exploiting the concept

of copula functions. Thereby we show how to model truncations of the mul-

tivariate density in an easy way. A Metropolized-Independence Sampler is

applied to draw from the dynamic multivariate density. The samples drawn

serve to construct the dynamic density function of the quote slope liquidity

measure, which enables us to quantify time varying liquidity risk. We analyze

the influence of the decimalization at the NYSE on liquidity.

JEL classification: G10, F30, C30

Keywords: Liquidity, Copula Functions, Trading Process, Decimalization,

Metropolized-Independence Sampler



1 Introduction

This paper exploits the concept of copula functions to model a conditional truncated

multivariate density. We show how to model a conditional multivariate time series

density composed of count and continuous variables, and, how to impose certain

restrictions on those variables (truncations) in an easy way. Furthermore, we show

how to sample from a derived conditional density at every point in time using a

metropolized independence sampler (MIS).

We use this approach to derive the conditional density function of a liquidity sup-

ply measure for five stocks traded at the New York Stock Exchange (NYSE). The

conditional density function of our liquidity measure allows to extract information

on the progress of time varying liquidity risk on an intraday basis faced by market

participants. We also analyze the impact of the decimalization at the NYSE (29th

January 2001) on the shape of conditional density of our liquidity supply measure.

The term “liquidity” is used to describe several aspects of the trading process. Al-

though many people (in particular market participants) have an intuitive feeling

about what liquidity means, researchers face a major difficulty in defining the term

liquidity appropriately. The following citations should serve as examples:

• Black (1971) “Liquidity seems to have several meanings.”

• Kyle (1985): “Market liquidity is a slippery and elusive concept, (...)”

• Engle & Lange (2001): “Liquidity (...) has a variety of definitions and inter-

pretations.”

• Danielsson & Payne (2002): “Conceptually, the task of measuring liquidity is

challenging due to the fact that there is no generally accepted definition of a

’liquid market’.”

However, there is a kind of consensus in the literature that liquidity is the ability

to trade a large volume quickly at a low transaction cost and that a mispriced

price should quickly return to its fundamental value. But still, these four related

dimensions (depth, immediacy, tightness, resilience) are of different importance for

market participants and different market participants affect these dimensions in

different ways. Furthermore, the researcher needs to quantify and perhaps aggregate

these dimensions into a “liquidity measure” which is most suited for his research

interest.
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In this paper we consider the quote slope liquidity measure which has been intro-

duced by Hasbrouck & Seppi (2001). It is defined as the inside bid-ask spread

divided by the sum of the logarithmic bid and ask depths at the best bid and best

ask, respectively. Therefore, the quote slope mainly aggregates the depth and the

tightness dimension into one figure. Furthermore, the quote slope characterizes the

best positions in the limit order book of the stock, but it does not mirror the com-

plete bid and ask sides of the order book. The quote slope can be considered as a

liquidity supply measure, since it describes the state of the first (best) buy and sell

limit orders, which would be executed against incoming market orders. We consider

the quote slope as that liquidity supply measure which extracts maximum informa-

tion on the supply of liquidity in an easy way from databases such as the Quotes

Database of the NYSE. Our analysis is therefore meant to provide insights into the

progression of the liquidity supply on an intra day basis. We therefore aim to model

the complete density of our liquidity supply measure dynamically at every point in

time, since it incorporates all information on the liquidity supply at this particular

time. The usefulness of this approach is obvious, since we are then able, beyond

describing and making inference about the dynamics of the mean liquidity supply

(see e.g. Engle & Lange (2001) for an investigation with the VNET measure and

Gomber, Schweickert & Theissen (2005) for an study with the XETRA Liquidity

Measure (XLM)), to characterize the dynamics of liquidity (supply) risk, consider-

ing for example the change of a certain risk measure like the second moment or a

prespecified quantile of the liquidity density over time. This information is of utmost

importance for traders since it allows them to optimize their intraday trading and

optimal liquidation strategies (see e.g. Bertsimas & Lo (1998), Almgren & Chriss

(2000) and Subramanian & Jarrow (2001)). Furthermore, being able to characterize

how liquidity risk behaves over time may help to improve models where liquidity risk

is priced, such as the liquidity adjusted Capital Asset Pricing Models of Acharya

& Pedersen (2004) and Pastor & Stambaugh (2001). Moreover, our empirical ob-

servation of a time varying liquidity risk questions several prominent models where

liquidity shocks are assumed to have a constant mean and a constant variance (see

e.g. Karpoff (1986), Michaely & Vila (1996), Michaely, Vila & Wang (1996) and

Fernando (2003)).

From an econometric and computational point of view, constructing the time-varying

density of the quote slope liquidity measure is not trivial at all. We rely on the fol-

lowing strategy. First, we model the multivariate dynamic density of the variables

involved in the computation of the quote slope, where we especially take the con-
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temporaneous relationship between the variables into account. Second, we draw a

sample of length N from this multivariate density at every point in time. Third,

using our drawn samples, we compute the value of the quote slope liquidity measure

at every point in time N -times. Then, at each point in time, the empirical density

function of our N quote slope values is the conditional (on time and on the dynam-

ics of the explanatory variables used in the modelling of the multivariate density)

density function of the quote slope liquidity measure.

We model the multivariate density of the best bid and ask quotes’ changes and their

corresponding bid and ask depths. Thus, we consider a four dimensional density,

where we need to account for the fact that the bid and ask quote changes are dis-

crete multiples of the tick size. We model these two count variables with the Integer

Count Hurdle (ICH) Model of Liesenfeld, Nolte & Pohlmeier (2006), since it allows

us to construct a dynamic count data density with support Z. The bid and ask

depths are treated as continuous variables with support R
+, and their dynamic den-

sity is modelled with Burr-distributed Autoregressive Conditional Duration (ACD)

models of Engle & Russell (1998). The contemporaneous relationship between these

four variables is modelled with a copula function, which became popular with the

article of Sklar (1959). For the discrete variables, we thereby rely on the concept

of continuization of Stevens (1950) and Denuit & Lambert (2005). An important

characteristic that we need to account for in the modelling of the dynamic multi-

variate density is that the bid-ask spread, which is a function of the previous quotes

and their corresponding changes, always needs to be positive. This restriction needs

to be modelled by truncating the multivariate density correspondingly. We model

this truncation using a truncated copula density, which allows us to incorporate the

restrictions without imposing restrictions on the marginal processes.

Instead of modelling the density of the quote slope liquidity measure directly, we de-

cided to use the more complex and more complicated modelling approach described

above for two reasons. First, we can model the dynamics of each variable involved in

the computation of the quote slope separately. This gives a very detailed picture of

the reaction of these variables to shocks in the explanatory variables. Furthermore,

this allows us to infer how the variables react with each other. Second, we model the

discreteness of the bid-ask spread (or the bid and ask quote changes) directly. This

discreteness causes humps (several modi) in the density function of the quote slope,

which cannot easily be modelled within a parametric framework. In a nutshell, we

are able to model the dynamic features of our variables, and therefore of the quote

slope, much better than it could be done by considering the aggregated quote slope
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variable directly.

The paper is organized as follows. In Section 2 we describe the modelling framework

in detail. Section 3 contains the descriptive analysis and provides first results for

the quote slope liquidity measure. Section 4 presents the estimation results and the

analysis of the conditional quote slope desity. Section 7 discusses the results and

concludes.
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2 Modelling Liquidity

As already mentioned in the introduction, it is not completely clear what liquidity

precisely means and how it should be measured, but there is a kind of general

consensus that liquidity encompasses at least four properties:

• Depth: the ability to trade large volumes, with little influence on the best

quotes

• Immediacy: the ability to trade quickly at the current quotes

• Tightness: low cost of turning over a position at the same time

• Resiliency: the recovery speed of the price after an uninformative shock (large

trade)

Thereby it is often unclear how these four aspects should be measured exactly. Gen-

erally speaking, while accounting for the desired properties, a measure of liquidity

(liquidity function) at time t is a function of trading marks that characterize the

transaction process. Typical examples are transaction price, traded volume, bid &

ask quotes, bid & ask depths, number of transactions and number of quote updates

in a specified time period. The outcomes of these marks determine the liquidity of

a market or more specifically - the liquidity of a particular stock.

In order to investigate how liquidity evolves over time and how it is affected by

changing market conditions of utmost important it is to i) understand how the

trading marks interact with each other over time as well as contemporaneously and

ii) characterize the conditional density function of a liquidity measure. The latter

enables us to quantify liquidity risk in a very elaborate way.

For example, we are able to figure out how the 5% quantile of our liquidity measure

changes over time and how it is affected by actions of market participants (e.g.

market makers, traders). On the one hand, this is a very important information for

a trader, who wants to transact a large position and on the other hand - for a market

maker (of an illiquid stock) who usually has to provide liquidity up to a certain degree

to ensure smooth trading. Without understanding how the trading marks interact

with each other, which means to characterize the joint conditional density function of

these marks, it makes no sense to compute the conditional liquidity density function.
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2.1 General Model

To formalize the discussion, let Zt denote the k dimensional vector of trading marks

which characterize the transaction process at time t . Let FZt(z|Ft−1) be the condi-

tional on Ft−1 cumulative distribution function of Zt, where Ft−1 denotes the infor-

mation set at t − 1. Let

Lt(Zt|Ft−1)

be the conditional liquidity function based on Zt. Then, the conditional distribution

of Lt is given by

FLt(l|Ft−1) = P(Lt ≤ l|Ft−1) =

∫

Lt(Zt|Ft−1)≤l

dFZt(z|Ft−1). (1)

One can relate the joint distribution of Zt to its marginals using copula function C:

FZt = C(FZ1t , FZ2t , . . . , FZkt
). (2)

The corresponding joint density of Zt can be thus given by the product of the

marginals and the copula density:

fZt = fZ1t · fZ2t · · · fZkt
·
∂C(FZ1t , FZ2t , . . . , FZkt

)

∂FZ1t , ∂FZ2t , . . . , ∂FZkt

= fZ1t · fZ2t · · · fZkt
· c(FZ1t , FZ2t , . . . , FZkt

), (3)

where c denotes the density of the copula function. Using this representation the

appropriate models for the distribution (density) functions of the marginals and the

copula should be specified. Sklar (1959) proved the existence of the copula function

C : [0, 1]k → [0, 1] in equation (2) and he showed its uniqueness in the case where

Zit,∀i are continuous. Relying on this modelling approach we need to ensure that

the marginals and likewise the copula density are correctly specified.

The concept of copula functions is a very flexible tool for modelling the joint den-

sity of different variables. As shown in equation (3), it allows to decompose their

multivariate density into the marginal distributions of processes to be modelled and

the copula function that is responsible for the contemporaneous dependence among

them. What makes the copula concept very desirable in econometrics, is its ability

to build a true multivariate density when the marginal processes rely on different

distributions. It is also possible to apply a copula function to the marginal densities

with discrete and real support getting a valid joint distribution function which re-

flects the dependence between such variables. This special feature makes the concept

especially suitable in case of our study.
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2.2 Quote Slope

We now consider the quote slope liquidity measure introduced by Hasbrouck & Seppi

(2001) in detail. Let Qb
t ∈ N (Qa

t ∈ N) denote the bid (ask) quote as multiples of

the tick size with corresponding depth Db
t ∈ R

+ (Da
t ∈ R

+) at time t, summarized

in Zt. Although the depths are recorded in multiples of one hundred shares at the

NYSE, due to their large outcome space we consider them to be element of R
+. The

quote slope is then given by

Lt(Zt|Ft−1) ≡
Qa

t − Qb
t

ln(Da
t ) + ln(Db

t )
.

The numerator represents the inside bid-ask spread, whereas the denominator is the

sum of the logarithmic depths at the best bid and ask quotes. Thus, a smaller bid-

ask spread as well as larger bid and ask depths yield a higher liquidity. This ratio

can be seen as an ex ante measure of liquidity or a measure of liquidity supply since

it does not involve any information from an executed transaction. What directly

affect the quote slope are incoming market orders since the measure characterizes

the first stage of the bid and the ask side of the limit-order book as illustrated in

Figure 1.

Quote Slope Limit Order Book

Cumulated Bid Volume Cumulated Ask Volume

Quote

Bid-Ask-Spread

{

Bid Quote

Ask Quote

︸ ︷︷ ︸

Bid Depth

︸ ︷︷ ︸

Ask Depth

︸ ︷︷ ︸

Depth ln(Db
t ) ln(Da

t
)

Quotes

Qa
t

Qa
t

b

b

Figure 1: Illustration of the quote slope liquidity measure (first panel) and stylized state

of the limit order book at one period (second panel).

The quote slope can be expressed in terms of tick quote changes as

Lt(Zt|Ft−1) =
Qa

t − Qb
t

ln(Da
t ) + ln(Db

t )
=

Qa
t−1 − Qb

t−1 + Ca
t − Cb

t

ln(Da
t ) + ln(Db

t )
, (4)
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where Cb
t ∈ Z (Ca

t ∈ Z) is the change of the bid (ask) quote from t − 1 to t. The

conditional distribution function of Lt(Zt|Ft−1) is again given by equation (1) where

∫

Lt(Zt|Ft−1)≤l

dFZt(z|Ft−1) =

∫

Lt(Zt|Ft−1)≤l

fZt(z|Ft−1)dz. (5)

Since Qa
t−1 and Qb

t−1 are measurable with respect to Ft−1 it is sufficient to con-

sider the joint density of the transformed marks Z∗
t = (Cb

t , C
a
t , Db

t , D
a
t ) given by

fZ∗
t
(z|Ft−1). The great advantage of this representation is that we take into account

the discreteness of the quote price changes and therefore of the bid-ask spread. We

propose a parametric model for the conditional joint density fZ∗
t
(z|Ft−1) which can

be expressed as:

fZ∗
t

= fCb
t
· fCa

t
· fDb

t
· fDa

t
· c(FCb

t
, FCa

t
, FDb

t
, FDa

t
), (6)

Due to this representation of the multivariate density, econometric modelling should

involve identification of the marginal distributions as well as the appropriate copula

function. In the following we present the parametric models applied to the marginal

distributions of the joint density. We rely on the ICH model of Liesenfeld et al. (2006)

for the discrete variables (Cb
t , C

a
t ), on ACD models for the real positive variables

(Db
t , D

a
t ) and on the copula concept to model the contemporaneous relationships

between the marks.

Quote Changes

We start with the description of ICH model for quote changes Cb
t . (The exposition

is built for bid quote changes Ca
t , ask quote changes are modelled in an analogical

way). The ICH model is based on the concept of decomposing the bid-quote change

process into two components, a direction process and a size process given that there

is a change in the direction of variable movement. Let πb
jt, j ∈ {−1, 0, 1} denote the

conditional probability of a decreasing P(Cb
t < 0|Ft−1), unchanged P(Cb

t = 0|Ft−1)

or increasing bid-quote change P(Cb
t > 0|Ft−1) at time t. The conditional density of

a bid-quote change is then given by

fCb
t
(ct) = πb

−1t

1l
{Cb

t <0} · πb
0t

1l
{Cb

t =0} · πb
1t

1l
{Cb

t >0} · f|Cb
t |
(|ct| |C

b
t 6= 0,Ft−1)

(1−1l
{Cb

t =0}
)
,

where f|Cb
t |
(|ct| |C

b
t 6= 0,Ft−1) denotes the conditional density of an absolute bid-

quote change, with support N \ {0}. To get a parsimoniously specified model, we

adopt the simplification of Liesenfeld et al. (2006), that the conditional density of an

8



absolute bid-quote change stems from the same distribution irrespectively whether

it is an upward or downward bid-quote change.

In order to model the conditional probabilities of a quote direction process, we apply

the autoregressive conditional multinomial model (ACM) of Russell & Engle (2002)

with a logistic link function, given by

πb
jt =

exp(Λb
jt)

∑1
j=−1 exp(Λb

jt)

with normalizing constraint Λb
0t = 0, ∀t. The resulting vector of log-odds ratios

Λb
t ≡ (Λb

−1t, Λ
b
1t)

′ = (ln[πb
−1t/π

b
0t], ln[πb

1t/π
b
0t])

′ is specified as a multivariate ARMA

model:

Λb
t =

m∑

l=0

Gb
lZ

b
t−l + λb

t with λb
t = µb +

p
∑

l=1

Bb
l λ

b
t−l +

q
∑

l=1

Ab
l ξ

b
t−l. (7)

The vector Zb
t contains further explanatory variables, where Gb

l denotes the corre-

sponding coefficient matrix. µb denotes the vector of constants, Bb
l and Ab

l denote

2× 2 coefficient matrices. The innovation vector of the ARMA model is specified as

martingale differences given by

ξb
t ≡ (ξb

−1t, ξ
b
1t)

′, where ξb
jt ≡

xb
jt − πb

jt
√

πb
jt(1 − πb

jt)
, j ∈ {−1, 1}, (8)

and

xb
t ≡ (xb

−1t, x
b
1t)

′ =







(1, 0)′ if Cb
t < 0

(0, 0)′ if Cb
t = 0

(0, 1)′ if Cb
t > 0,

(9)

Therefore, ξb
t represents the standardized state vector xb

t .

The conditional density of the absolute bid-quote change is modelled with an at-

zero-truncated Negative Binomial (Negbin) distribution, given by

f|Cb
t |
(|ct| |C

b
t 6= 0,Ft−1) ≡

Γ(κb + |ct|)

Γ(κb)Γ(|ct| + 1)

(
[κb + ωb

t

κb

]κb

− 1

)−1(

ωb
t

ωb
t + κb

)|ct|

,

where |ct| ∈ N\{0}, κb > 0 denotes the dispersion parameter and ωb
t is parameterized

using the exponential link function with a generalized autoregressive moving average
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model (GLARMA) in the following way:

ln ωb
t = δb′D̃t +

m∑

l=0

γb′

l Z̃b
t−l + λ̃b

t with λ̃b
t = µ̃b + Sb(ν, τ,K) +

p
∑

l=1

βb
l λ̃

b
t−l +

q
∑

l=1

αb
l ξ̃

b
t−l.

where Dt ∈ {−1, 1} indicates a decreasing or an increasing bid-quote change at

time t. The corresponding coefficient vector is denoted by δ. Z̃b
t , with coeffi-

cient vector γl, contains further explanatory variables. µ̃ denotes the constant term.

Sb(ν, τ,K) ≡ ν0τ +
∑K

k=1 ν2k−1 sin(2π(2k − 1)τ) + ν2k cos(2π(2k)τ) is a fourier flex-

ible form to capture intraday seasonality in the absolute bid-quote changes, where

τ is the intraday trading time standardized on [0, 1] and ν is a 2K + 1 dimensional

parameter vector. βl as well as αl denote coefficients and ξ̃b
t is the innovation term

that drives the GLARMA model in λb
t . ξ̃b

t is constructed as:

ξ̃b
t ≡

|Cb
t | − E(|Cb

t | |C
b
t 6= 0,Ft−1)

V(|Cb
t | |C

b
t 6= 0,Ft−1)1/2

,

where the conditional moments of the at-zero-truncated Negbin distribution are

given by

E(|Cb
t | |C

b
t 6= 0,Ft−1) =

ωb
t

1 − ϑb
t

,

V(|Cb
t | |C

b
t 6= 0,Ft−1) =

ωb
t

1 − ϑb
t

−

(
ωb

t

(1 − ϑb
t)

)2(

ϑb
t −

1 − ϑb
t

κb

)

,

where ϑb
t is given by ϑb

t = [κb/(κ + ωb
t )]

κb
.

Depths

In order to cover the dynamic pattern of the depth process we apply ACD models.

Our exposition covers only the bid-depth (Db
t ) case and the ask-depth (Da

t ) case

follows analogously. The conditional density of the bid-depth is denoted by

fDb
t
(dt|Ft−1).

Engle & Russell (1998) assume that the conditioning filtration Ft−1 enters the con-

ditional density only through the conditional mean function, which we denote by

ϕb
t ≡ ϕb

t(θ
b|Ft−1), where θb denotes the parameter vector. The ACD model incorpo-

rates the conditional mean function multiplicatively

Db
t = ϕb

t · εt,
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where the density fεt
(·) of εt is assumed to have unit mean, a positive support

and does not rely on further conditioning information. Applying the transformation

theorem, the conditional density of the bid-depth is given by

fDb
t
(dt|Ft−1) =

1

ϕb
t

fεt

(
dt

ϕb
t

)

.

We assume that fεt
(·) is the Burr density function which is given by

fεt
(x) =

κ̆b

λb

( x

λb

)κ̆b−1
[

1 + σ2,b
( x

λb

)κ̆b

]−(1−σ−2,b)

,

where λb > 0, κ̆b > 0 and σ2,b > 0. The Burr density is a very flexible specification,

since it allows for a non-monotonic shape of the associated hazard function. Fur-

thermore, the Burr density nests the log-logistic density for σ2,b = 1 and the Weibull

density for σ2,b = 0. The dynamics of the conditional mean function ϕb
t is modelled

in the traditional autoregressive way as

(1 − β̆b
p(L))(ϕb

t − γ̆b′Z̆b
t ) = µ̆b + ᾰb

q(L)Db
t , (10)

where µ̆b denotes the constant and β̆b
p(L) as well as ᾰb

q(L) denote lag-polynomials of

order p and q. Z̆b
t is the vector of further explanatory variables, with corresponding

coefficient vector γ̆b.

Copula

Using a copula concept in the context of our study has two main advantages. As

mentioned before it allows to model the joint density between the set of discrete

(quote changes) and the set of continuous (depths) variables, what enables us in the

next step to derive the density function for the liquidity measure. But what is of

ultimate importance is that the copula allows to model restrictions (truncations) on

the support of the joint density in an easy and elegant way. The restriction we need

to impose in our model is that the bid-ask spread must not become negative. In

terms of quote changes from t−1 to t we need to ensure that the following inequality

holds:

Ca
t − Cb

t > Qb
t−1 − Qa

t−1. (11)

We model the copula density c(·) given in equation (6) with a truncated 4-dimensional

Gaussian copula density. The non-truncated 4-dimensional Gaussian copula density
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is given by:

c̃(y1t, y2t, y3t, y4t; Σ̃) = det(Σ̃)−0.5 exp

(
1

2
q′t(I4 − Σ̃−1)qt

)

, (12)

where Σ̃ denotes the covariance matrix of q = (q1t, q2t, q3t, q4t)
′ with qit = Φ−1(yit), i =

1, . . . , 4. The truncated 4-dimensional Gaussian copula density, which accounts for

the restrictions stated in formula (11) is then given by

c(y1t, y2t, y3t, y4t; Σ|Ca
t − Cb

t > Qb
t−1 − Qa

t−1) =
c̃(y1t, y2t, y3t, y4t; Σ̃)

P(Ca
t − Cb

t > Qb
t−1 − Qa

t−1)
. (13)

Note, that c(·) is a conditional on Ft−1 copula function, since the probability of the

truncated region depends on the bid-ask spread at t − 1. Using this notation y1t =

FCb
t
, y2t = FCa

t
, y3t = FDb

t
and y4t = FDa

t
. Assuming that the marginal distributions

are correctly specified, for the continuous variables (Db
t , D

a
t ), y3t and y4t are uniformly

U(0, 1) distributed between zero and one (probability integral transformation). For

the discrete variables (Cb
t , C

a
t ) this results does not hold, since their cumulative

distribution function possesses jump points.

There exist two main approaches to modelling multivariate processes with discrete

state space of outcomes applying the concept of copula functions. The first approach

is advocated by Cameron, Li, Trivedi & Zimmer (2004) who use the Archimedean

copulas to model the bivariate distribution of count variables. They pointed out that

it is not possible to obtain the simple canonical representation of copula function

out of equation (3) by a differentiation method as the copula function for the count

variables is not continuous. In order to get the copula density they use a finite

difference approximation of the derivatives. The alternative approach that we follow

here relies on using the continuisation method suggested by Stevens (1950) and

Denuit & Lambert (2005). The continuisation concept rely on generating artificially

continuized variables Cb∗
t , Ca∗

t from the discrete count variables Cb
t , C

a
t by adding

independent uniformly U(0, 1) distributed random variables U b
t , U

a
t , i.e.

C
b/a∗
t = C

b/a
t + (U

b/a
t − 1). (14)

Their distribution functions are denoted by FCb∗
t

and FCa∗
t

. The probability integral

transformation is then computed on the basis of these continuized distributions, i.e.

y1t = FCb∗
t

, y2t = FCa∗
t

, where FCb∗
t

and FCa∗
t

can be computed as

F
C

b/a∗
t

(c
b/a∗
t ) = F

C
b/a
t

(c
b/a
t − 1) + U

b/a
t · f

C
b/a
t

(c
b/a
t ). (15)
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According to Denuit & Lambert (2005) the continuous extension of discrete variables

does not influence the concordance between them. Concordance is a measure of

dependance, in case of our variables it can be explained as: Cb
t and Ca

t are concordant

if high values of Cb
t are associated with the high values of Ca

t , i.e.: Ca
t > Cb

t ⇐⇒

Ca∗
t > Cb∗

t .

Estimation

The parameters of the joint model can be estimated with the Maximum Likelihood

(ML) method, where the conditional log likelihood function is given by:

lnL =
T∑

t=1

[ln(fCb
t
) + ln(fCa

t
) + ln(fDb

t
) + ln(fDa

t
) +

+ ln(c(FCb∗
t

, FCa∗
t

, FDb
t
, FDa

t
))], (16)

Due to the complexity of the model we apply a two step estimation procedure de-

scribed in Cherubini, Luciano & Vecchiato (2004). In the first step we estimate the

parameters of the marginal i.e. ICH and ACD models. Since there are no parameter

restrictions across parameter space of the marginal models, the maximization of the

first four components of the likelihood function can be performed separately. (For

the detailed form of the likelihood function for ICH model please refer to Liesenfeld

et al. (2006))

In the second step of the maximization we can obtain consistent estimates of param-

eters for the gaussian copula function without applying any optimization procedure.

The ML estimate of Σ, i.e. the variance-covariance matrix of the multivariate normal

distribution with a zero mean is given by:

Σ̂ =
1

T

T∑

t=1

q̂tq̂t
′, (17)

where q̂t = (Φ−1(F̂Cb∗
t

), Φ−1(F̂Cb∗
t

), Φ−1(F̂Db
t
), Φ−1(F̂Db

t )
)′. Since the unknown Σ is

estimated on our empirical data sample, it implicitly accounts for restriction given

by equation (11).
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3 Empirical Analysis

The empirical analysis is carried out for five stocks with medium and high market

capitalizations. The stocks with medium market capitalizations are Black & Decker

Corp. (BDK) $6.60 bn. and HJ Heinz Co. (HNZ) $ 11.24 bn. The ones with

high market capitalizations are Pfizer Inc. (PFE) $ 182.15 bn, Citigroup Inc. (C)

$ 231.14 bn and Exxon Mobil Corp. (XOM) $ 376.64 bn. All stocks are traded at

the NYSE and the corresponding data stems from the Trades and Quotes (TAQ)

Database. We consider two periods of investigation: The first one ranges from

the 2nd (Tuesday) to the 26th (Friday) January 2001, which are the four weeks

directly before decimalization was introduced. The second period ranges from the

30th (Tuesday) January 2001 to the 23rd (Friday) February 2001, which are the four

weeks thereafter. We omitted the 29th January 2001 since it was a Monday and we

wanted to compare periods with same daily structure. The data is aggregated to

equidistant 5 min data. Since market capitalization can be considered as a rough

proxy for liquidity one can consider the stocks chosen to be of medium and high

liquidity. Let us recall that the quote slope is given by

Lt(Z
∗
t |Ft−1) =

Qa
t−1 − Qb

t−1 + Ca
t − Cb

t

ln(Da
t ) + ln(Db

t )
,

where we need to model the following joint conditional density:

fZ∗
t

= fCb
t
· fCa

t
· fDb

t
· fDa

t
· c(FCb∗

t
, FCa∗

t
, FDb∗

t
, FDa∗

t
). (18)

The descriptive analysis provides a motivation why we model the conditional den-

sity functions in equation (18) as proposed in the previous section. Furthermore, the

descriptive analysis is meant to give first insights into the consequences of the deci-

malization at the NYSE. We will not show every result for all stocks but only BDK,

the corresponding tables for the other four stocks can be found in the Appendix.

Motivation

Figure 2 shows the histogram for BDK of the bid quote and the ask quote changes

(Cb
t and Ca

t ) in ticks in January 2001 before the decimalization and in February 2001

after the decimalization. We observe that the histograms have a fairly large support

between -10 and 10 ticks in January and an even larger support between -35 and 35

ticks in February. The discreteness of the quote changes combined with the large

number of non-zero states justifies the ICH-model approach of Liesenfeld et al. (2006)

14



for the quote changes, which enables us to construct a conditional discrete density

with an integer support. The alternative models to model discrete price changes

of Hausman, Lo & MacKinlay (1992) and Russell & Engle (2002) suffer from the

drawbacks that they are only capable to model a small finite number of discrete

states and that they cannot model states with no observations. Furthermore, the

proposed approach is more parsimonious than the decomposition model of Rydberg

& Shephard (2003) which also allows to model a conditional discrete density with

an integer support.

Table 1 contains the descriptive statistics of the absolute bid and ask quote changes

in $ and not in ticks. We observe that the values of the absolute quote changes at

all presented quantiles are, for both bid and ask quotes, smaller in February than

in January. This means in particular that, although the distribution of the quote

changes has a larger support in terms of ticks in February than in January, the

volatility of the quote changes in terms of $ decreased from January to February.

Figure 3 shows the multivariate autocorrelogram of the vector of the quote direction

change as defined in equation (9). There is a certain but no overwhelming dynamic

pattern which should be explained by the ACM part of the ICH model. Considering

the autocorrelogram of the absolute quote direction changes, which is indeed a proxy

for the volatility of the quote direction changes, shows that there is a moderate

degree of persistence which should be explained by the GLARMA part of the ICH

model. These findings are underpinned by the values of the (Multivariate) Ljung-Box

statistics presented in Table 1.

The depths are counted as multiples of 100 shares and range between 100 shares

and several 10.000 shares for BDK or even several 100.000 shares for the stocks

with a higher market capitalization as shown by the histograms in Figure 5 and by

figures in Table 1. The need for the autoregressive modelling structure is affirmed

by the autocorrelogram of the depths depicted in Figure 6 and by the values of the

Ljung-Box statistics presented in Table 1 .
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January

bid-side ask-side

abs. quote indicator depths abs. quote indicator depths

change neg. dir pos. dir change neg. dir pos. dir

mean 0.1418 0.27 0.34 2918.58 0.1468 0.31 0.29 4409.04

std. deviation 0.1238 0.44 0.47 4171.38 0.1246 0.46 0.45 5929.37

skewness 3.2220 0.98 0.64 4.15 2.7897 0.78 0.89 3.42

kurtosis 19.4011 1.96 1.41 25.31 14.5013 1.62 1.80 20.48

minimum 0.0625 0 0 100 0.0625 0 0 100

1% Quantile 0.0625 0 0 500 0.0625 0 0 500

5% Quantile 0.0625 0 0 500 0.0625 0 0 500

10% Quantile 0.0625 0 0 500 0.0625 0 0 500

25% Quantile 0.0625 0 0 1000 0.0625 0 0 1000

50% Quantile 0.1250 0 0 1500 0.1250 0 0 2000

75% Quantile 0.1875 1 1 3000 0.1875 1 1 5000

90% Quantile 0.2500 1 1 5500 0.3125 1 1 10000

95% Quantile 0.3750 1 1 10000 0.3750 1 1 15000

99% Quantile 0.6250 1 1 25000 0.6250 1 1 27496

maximum 1.1875 1 1 44400 1.0625 1 1 63000

LB(10) 83.90 110.96 399.03 56.66 161.31 302.30

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LB(20) 105.19 134.19 416.72 63.46 193.27 322.99

p-value 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000

LB(30) 113.20 177.12 421.82 74.57 230.44 341.36

p-value 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000

February

bid-side ask-side

abs. quote indicator depths abs. quote indicator depths

change neg. dir pos. dir change neg. dir pos. dir

mean 0.0857 0.32 0.41 1965.59 0.0844 0.43 0.32 2536.03

std. deviation 0.0998 0.46 0.49 4860.14 0.0999 0.49 0.47 4521.80

skewness 3.0160 0.76 0.33 6.42 3.2778 0.26 0.72 4.93

kurtosis 16.4627 1.58 1.11 51.77 20.6080 1.06 1.52 35.95

minimum 0.0100 0 0 100 0.0100 0 0 100

1% Quantile 0.0100 0 0 100 0.0100 0 0 100

5% Quantile 0.0100 0 0 100 0.0100 0 0 100

10% Quantile 0.0100 0 0 200 0.0100 0 0 200

25% Quantile 0.0200 0 0 500 0.0200 0 0 500

50% Quantile 0.0500 0 0 900 0.0500 0 0 1000

75% Quantile 0.1100 1 1 1500 0.1000 1 1 2500

90% Quantile 0.2000 1 1 3500 0.1900 1 1 5300

95% Quantile 0.2700 1 1 6860 0.2800 1 1 10000

99% Quantile 0.4700 1 1 30000 0.4900 1 1 25000

maximum 0.9000 1 1 50000 1.1000 1 1 50000

LB(10) 193.69 167.87 3950.98 219.02 141.63 355.19

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LB(20) 234.69 194.58 4402.90 252.01 181.78 418.77

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LB(30) 242.09 252.58 4409.94 254.37 222.77 460.43

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 1: Descriptive statistics of the quotes changes, the quote change direction indicator and

the corresponding depths for the bid and ask sides in January and February 2001 for BDK.
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Bid-Quote Changes in Ticks
January February

Ask-Quote Changes in Ticks
January February

Figure 2: Histograms of the bid-quote changes (upper panels) and ask-quote changes in

ticks (lower panels) in January (left panels) and February (right panels) for the BDK stock.

The tick size in January is $1/16 and $1/100 in February. The quote changes are computed

over equidistant 5 min data.

17



Bid-Quote Change Direction
January February

Ask-Quote Changes Direction
January February

Figure 3: Multivariate-Autocorrelogram of the bid-quote change direction (upper panels)

and ask-quote change direction (lower panels) in January (left panels) and February (right

panels) for the BDK stock. The dashed lines denote asymptotic 95% confidence bounds.
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Absolute Bid-Quote Changes in Ticks
January February

Absolute Ask-Quote Changes in Ticks
January February

Figure 4: Autocorrelogram of the absolute bid-quote changes (upper panels) and absolute

ask-quote changes in ticks (lower panels) in January (left panels) and February (right panels)

for the BDK stock. The tick size in January is 1/16$ and 1/100$ in February. The quote

changes are computed over equidistant 5 min data. The dashed lines denote asymptotic 95%

confidence bounds.
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Depth at the Best Bid
January February

Depth at the Best Ask
January February

Figure 5: Histograms of the depth at the best bid (upper panels) and depth at the best

ask (lower panels) in January (left panels) and February (right panels) for the BDK stock.
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Depth at the Best Bid
January February

Depth at the Best Ask
January February

Figure 6: Autocorrelogram of the depth at the best bid (upper panels) and depth at the

best ask (lower panels) in January (left panels) and February (right panels) for the BDK

stock. The dashed lines denote asymptotic 95% confidence bounds.
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Quote Slope

We focus on the descriptive analysis of the quote slope as a measure for liquid-

ity supply, since it aggregates the information contained in the inside stages of the

limit-order book. The higher the bid-ask spread and the lower the associated depths

the more illiquid is the trading and the higher is the quote slope. Therefore, the

(idealized) most liquid case, which is a zero bid-ask spread or infinite bid and ask

depths, corresponds to a quote slope of zero. In terms of the density function of

the quote slope this means the more mass is closer to zero the more liquid is the

trading process. Figure 7 shows the histograms of the quote slope liquidity mea-

sure for all five stocks in January and in February 2001. There are two striking

observations: i) In comparison to January, the histograms in February are shifted

towards zero for all stocks. ii) For February, the histograms do not longer show the

humps (several modi), which are visible in January. These humps, which are mainly

caused by the large tick size of the bid-ask spread of $ 1/16 in January, can be

interpreted as liquidity supply states. In February, we observe a gradually declining

shape of the histogram, where these states are smoothed out. The smooth shape of

the histogram in February again represents a mass shift from January to February

towards zero, i.e. towards more liquidity supply. These observations can be stressed

by considering the quantiles of the empirical quote slope distribution presented in

Table 2. The value of the quote slope at the 1% (25%) quantile is about six (two)

times higher in January than in February. This observation can be interpreted in

the following way: A trader, who would consume (by submitting market orders) 1%

(25%) of the liquidity supply would get (in terms of the quote slope) a six (two)

times better market condition in February than in January. Of course, this “x times

better market condition” needs to be evaluated under the preference function of the

trader. For BDK and HNZ, which are the two stocks with the smallest market cap-

italization, we get smaller values of the quote slope up to the 99% quantile. The

same holds for C up to the 75% quantile, for PFE up to the 90% quantile and for

XOM up to the 95% quantile. This means a potential trader, who would consume

for example 90% of the liquidity supply of C, would get worse market conditions in

February than in January. However, such a trader would attract the attention and

induce reactions of the other market participants with a higher probability than a

trader, who consumes only 1% of the liquidity, since he removes a big piece of the

liquidity supply cake.

The Ljung-Box statistics of the quote slope in Table 2 certifies that the quote slope

is subject to a high degree of autocorrelation. This dynamic structure is the moti-
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vation to model the conditional liquidity density function. The conditional liquidity

density function is of utmost importance to figure out how the liquidity changes in

certain market conditions and how liquidity reacts to shocks in the trading process.

Moreover, our analysis enables us to point out differences in the liquidity reaction

before and after the decimalization at the NYSE. Furthermore, it allows to shed

light on potential differences between stocks.

BDK C HNZ PFE XOM

Jan Feb Jan Feb Jan Feb Jan Feb Jan Feb

mean 0.0088 0.0060 0.0054 0.0044 0.0070 0.0044 0.0049 0.0035 0.0067 0.0043

std. deviation 0.0043 0.0045 0.0031 0.0041 0.0036 0.0043 0.0024 0.0035 0.0045 0.0054

skewness 0.7971 1.2929 4.9589 3.6648 1.5768 3.7528 3.0961 3.1665 6.5711 5.8062

kurtosis 3.3211 6.7019 53.674 32.525 7.7292 34.750 23.695 17.072 87.812 60.683

minimum 0.0032 0.0005 0.0028 0.0005 0.0030 0.0005 0.0027 0.0005 0.0030 0.0005

1% Quantile 0.0034 0.0006 0.0029 0.0005 0.0032 0.0006 0.0028 0.0005 0.0032 0.0006

5% Quantile 0.0037 0.0007 0.0031 0.0006 0.0034 0.0007 0.0030 0.0006 0.0033 0.0006

10% Quantile 0.0039 0.0009 0.0032 0.0010 0.0036 0.0007 0.0031 0.0007 0.0035 0.0007

25% Quantile 0.0045 0.0024 0.0034 0.0019 0.0040 0.0014 0.0033 0.0013 0.0038 0.0014

50% Quantile 0.0082 0.0052 0.0039 0.0032 0.0066 0.0032 0.0038 0.0026 0.0065 0.0028

75% Quantile 0.0118 0.0087 0.0066 0.0057 0.0087 0.0062 0.0063 0.0043 0.0078 0.0054

90% Quantile 0.0147 0.0120 0.0078 0.0088 0.0119 0.0096 0.0073 0.0070 0.0109 0.0089

95% Quantile 0.0174 0.0143 0.0100 0.0117 0.0141 0.0120 0.0089 0.0096 0.0134 0.0121

99% Quantile 0.0200 0.0193 0.0156 0.0196 0.0185 0.0175 0.0132 0.0198 0.0206 0.0254

maximum 0.0271 0.0394 0.0475 0.0582 0.0362 0.0574 0.0320 0.0288 0.0760 0.0793

LB(10) 171.91 513.46 128.25 302.40 277.85 73.83 226.00 139.88 139.01 45.25

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LB(20) 183.12 542.13 131.32 458.61 298.06 79.50 274.36 149.96 151.39 53.80

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

LB(30) 188.67 547.88 137.14 566.03 312.73 102.43 292.32 158.44 160.08 69.25

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

Table 2: Descriptive statistics of the quote slope liquidity measure for all five stocks.

Table 3 shows the descriptive statistics for the explanatory variables which are used

in the estimation of the different models. We use the over 5 minutes aggregated

buy and sell volumes as well as the number of buy and sell transactions within the 5

minute interval as explanatory variables. Table 3 shows the figures for BDK, whereas

the corresponding tables for the other stocks can be found in the Appendix. The

general descriptive result is that there is less trading activity in February than in

January for the stocks with a high market capitalization. Here the mean and median

trading volumes as well as the mean and median number of transactions decreased.

For the stocks with a medium market capitalization there is no obvious difference in

the trading activity from January to February.
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Liquidity Measure: Quote Slope

BDK C HNZ PFE XOM

January

February

Figure 7: Histograms (first rows) and autocorrelogram (second rows) of the quote slope in January (upper panels)

and February (lower panels) for all five stock. The dashed lines represent the asymptotical 95% confidence bounds.
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Buy Volume Sell Volume # Buys # Sells

Jan Feb Jan Feb Jan Feb Jan Feb

mean 6011.03 3826.49 4406.83 4533.47 3.24 3.46 2.47 2.79

std. deviation 11153.16 8829.25 12795.50 7950.57 3.16 3.18 2.73 3.02

skewness 4.99 5.56 13.91 4.47 1.76 1.61 1.72 1.71

kurtosis 44.65 46.76 315.41 35.97 8.65 6.60 6.83 6.82

minimum 0 0 0 0 0 0 0 0

1% Quantile 0 0 0 0 0 0 0 0

5% Quantile 0 0 0 0 0 0 0 0

10% Quantile 0 0 0 0 0 0 0 0

25% Quantile 300 100 0 500 1 1 0 1

50% Quantile 2200 1000 1100 1800 2 3 2 2

75% Quantile 6600 3600 3700 4800 5 5 4 4

90% Quantile 16720 9300 10900 12000 7 8 6 7

95% Quantile 26000 16480 20000 19080 10 10 8 9

99% Quantile 50296 49976 43696 36272 14 14 12 14

maximum 160400 122200 331300 109100 29 20 19 19

LB(10) 306.91 257.59 45.98 158.99 419.50 613.72 210.28 705.10

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LB(20) 347.25 317.95 100.16 229.76 466.49 688.77 217.81 935.39

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LB(30) 350.86 333.70 101.95 236.03 469.94 706.42 229.69 978.00

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 3: Descriptive statistics of the explanatory variables for BDK.
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4 Estimation Results

Estimation of the presented multivariate model for the supply liquidity measure was

performed by the two-step estimation procedure described in Section 2. Once the pa-

rameters of the marginal densities for bid and ask quote changes and market depths

are given, the copula parameters can be consistently estimated in the second step

without applying any optimization procedure (as the MM estimator). As suggested

in Liesenfeld et al. (2006) we optimize the likelihood of the ICH model by separately

maximizing its two components, i.e ACM and GLARMA likelihood function. Since

there are no parameter restrictions across those two components, such a proceeding

reduces the computational burden of the estimation phase considerably.

When modelling the four marginal processes that constitue the shape of the con-

ditional liquidity function we decided to use the simplest dynamic specification of

the presented models, i.e. ACM-ARMA(1,1), GLARMA(1,1) and ACD(1,1), since

these plain models already explained the autocorrelation structure of the modelled

processes quite well.

To analyze the influence of shocks in related market microstructure variables on the

marginal processes and on the quote slope, we use the following explanatory variables

which potentially influence the dynamics of the quote changes and the market depths:

cumulative volume and the number of sell and buy initiated transactions - aggregated

during time intervals of five minutes. On the one side, the choice of these variables

is restricted by the information provided by the TAQ database, on the other side

however, we made the quite intuitive assumption that the chosen variables influence

on the one hand the probability that the quote moves and on the other hand the

size of the quote movement as well as the depth at the best bid and ask quotes. The

chosen variables reflect the demand or the consumption of liquidity.

To perform a more comprehensive study of the quote direction processes (ACM

submodel) we decided not to put symmetry restrictions on the A1 matrix as well

as on the vectors of coefficients for the microstructure variables, which allows for

asymmetric influences of these variables on the probability of respectively upward

and downward movement of a quote.

The ML estimation results (based on the Berndt, Hall, Hall & Hausman (1974) al-

gortihm) extended by common diagnostic statistics for the ACM part of the ICH

model are summarized in Table 4 and in Tables 17 - 20 in the Appendix and for the

GLARMA part of the ICH model in Table 5 and in Tables 21 - 24 in the Appendix.

With regards to the estimation results of the quote direction process, the vector
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of parameters for the explanatory variables (respectively: cumulative volume of

buys, cumulative volume of sells, number of buys, number of sells) for an downward

movement of the quote is denoted as (gvb1, gvs1, gnb1, gns1), whereas for an upward

movement of a quote as (gvb2, gvs2, gnb2, gns2). It turned out that not all the explana-

tory variables are significant on the 5 percent level. Worth considering are always

significant and often high values of the persistency parameter b
(1)
1 . The result shows

that if the probability of bid or ask quote changes was high in the previous period,

it is also supposed to be considerable high in the next period. The obtained re-

lations a
(1)
11 < a

(1)
12 and a

(1)
21 > a

(1)
22 between the innovation coefficients suggest the

existence of some bounce pattern in the evolution of the bid and ask quote process,

although the estimates are not always significant especially for the less frequently

traded stocks. The dynamic properties of the quote direction processes are reflected

by the ACM-ARMA(1,1) models in a satisfactory way. The autocorrelation scheme

is considerably lowered when comparing the values of the bivariate Ljung-Box statis-

tic of the standardized residuals with those computed for the raw data series. Only

in a few rare cases we still can reject the null of no autocorrelation.

An interesting scheme is to be found in the way the microstructure variables influence

the probability of an upward and a downward movement of the quotes. Here, two

major observations should be stressed. First, in accordance with a quite intuitive

assumption, the volume and the number of buy initiated transactions turn out to

have significantly stronger impacts on the probability that ask quote moves up than

on the probability that the ask quote moves down. The statement follows from the

relations gvb1 < gvb2 and gnb1 < gnb2 that are always (except for BDK) fulfilled for

ask quotes. Respectively, the volume and the number of sell initiated trades turn

out to have stronger impact on the probability that the bid quote moves down than

on the probability that it moves up - here the relations gvs1 > gvs2 and gns1 > gns2

are fulfilled. Therefore, as can be foreseen, transactions initiated by buyers (with

market orders) tend to push ask quotes up, whereas those initiated by sellers (with

market orders) tend to push bid quotes down.

Secondly, the volume and the number of sells turn out to have significantly stronger

positive impact on the probability of the downward movement of the quote, than

the upward movement - relations: gvs1 > gvs2 and gns1 > gns2 are fulfilled. Such a

result can be explained by the fact that in addition to the observed sell transactions

(sell market orders) there are sell limit orders which improve on the best ask quote.

Analogically, for the bid quotes the opposite is true. In addition to the observed buy

transactions (buy market orders), the not observed buy limit orders may constitute
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a higher best bid quote. This can be see from relations gvb1 < gvb2 and gnt1 < gnt2

which show that the probability of an upward movement of the bid quote is higher

than the probability of its downward movement, once the number and the volume

of buy initiated transactions rises.

The effect of the decimalization is reflected by the following observation. The es-

timates for the intercepts µ1 and µ2 are significantly larger for February than for

January. Therefore we can conclude that after the decimalization, the probability

of a quote change has increased. This observation is in accordance with an intu-

itive assumption, since after the decimalization the transactions costs decreased and

traders could hit the better place in the limit order book by a lower cost (“tick rule”).

Regarding the estimation results for the GLARMA part of the ICH model, it could be

observed that the simple GLARMA(1,1) specification is quite successful in explaining

the dynamic properties of the process for the quote change sizes - the autocorrelation

pattern of the residuals of these models is considerably lower than for the raw series.

In all estimated models, the value of the dispersion parameter κ−0.5 is significantly

different from zero, allowing to reject the null hypothesis of an at-zero-truncated

Poisson distribution in favor of a Negative Binomial one. Jointly significant coeffi-

cients of the seasonal component S(ν, τ,K) for all models indicate, that there exists

pattern of diurnal seasonality for the absolute bid and ask quote changes. The di-

urnally seasonalities are depicted in Figure 8. Although either for the January or

the February the standard intraday seasonality pattern can be observed (high quote

volatility at the beginning of the trading session with a decline afterwards, an in-

crease at lunch time around 12.00 - 13.00 o’clock and a second decline before the

end of the trading session), the size of quote changes (measured in number of ticks)

heavily increased after the decimalization.

With regards to the impact of the explanatory variables, in the cases, where the

estimated coefficients are significant, the following scheme could be observed. First,

there is a positive impact of the quote change direction variable Di on the size of

the ask quote change and a negative impact of that variable on the size of the bid

quote change. The model forecasts that the upward movement of the ask quote is

larger than its downward movement, whereas for the bid quote the opposite is true.

Therefore the volatility of the ask quote rises if the ask quote change is positive and

the opposite holds for the bid quote change. Positive ask quote change can only

be caused by the execution of several market orders as well as cancellations of sell

pending limit orders during the five minute interval. During a buy market phase
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traders either submit buy market orders which consume depths on the ask side of

the market or submit buy limit orders extending the bid side depths - which causes

a higher bid quote. Therefore in buy market phases we face a decreasing supply on

the ask side and an increasing supply on the bid side, which is responsible for a more

volatile ask quote and a less volatile bid quote. The inverse explanation holds for

sell market phases.

Best Bid

January February

Best Ask

January February

Figure 8: Estimated diurnally seasonality function of the non-zero absolute bid quotes and

ask quotes in January and February for the BDK stock.

The observed positive impact of the number and the cumulative volume on the

expected size of the bid and ask quote change allows to conclude that the transaction

intensity has a positive impact on this potential measure of quote volatility.
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The estimation results for the ACD(1,1) models for market depths are summarized

in Table 6 and in Tables 25 - 28 in the Appendix. It should be noted, that the two

shape parameters κ̆ and σ2 are significant at the 5 percent level, which means that

neither the Weibull nor the Exponential distribution are a valid alternative to the

Burr distribution. The values and the significance of the estimates responsible for

the dynamic properties of the depths variables vary across estimated models. In

some cases the process is very persistent and nearly integrated (the sum of the ᾰ

and β̆ is close to one), which accounts for slowly decaying, hyperbolic-shape auto-

correlation function of the depth variable, whereas in some other cases the estimate

is insignificant.

We cannot find any systematic impact of the explanatory microstructure variables

on the depth of the buy and sell side of the market. Coefficients on number of

transactions are very often insignificant. Whereas the direction of the impact of sig-

nificant variables is quite ambiguous. However we can see that there are systematic

differences in depths between those two periods. In January the market is consider-

ably deeper which is illustrated in Figure 9, where we plotted the diurnal seasonality

for the mean function of the depths at the best quote.

In Table 7 and Tables 29 - 32 in the Appendix we report the contemporaneous cor-

relation matrix of the quantile vector qt. We can observe strong positive correlation

between the quantiles of the conditional cumulative distribution of bid and ask quote

changes. The two quotes tend to move simultaneously in the same direction during

the five minute long intervals. Furthermore, this dependency measure has decreased

after the decimalization was introduced (except for BDK). It seems obvious, since

quotes started to fluctuate in wider ranges.
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Depth at the Best Bid
January February

Depth at the Best Ask
January February

Figure 9: Estimated diurnally seasonality function of the depth at the best bid (upper

panels) and depth at the best ask (lower panels) in January (left panels) and February (right

panels) for the BDK stock.
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JANUARY FEBRUARY

ASK BID ASK BID

par. estimate std. dev estimate std. dev estimate std. dev estimate std. dev

µ1 -0.3660 0.3115 -1.6220 0.3989 -0.0710 0.0439 -0.1111 0.0424

µ2 -0.4733 0.3879 -1.1188 0.2920 -0.2456 0.1004 -0.0282 0.0275

c
(1)
1 0.6974 0.2410 -0.0385 0.2333 0.7800 0.0861 0.8486 0.0435

a
(1)
11 0.1471 0.0678 0.2456 0.0876 0.2474 0.0784 0.2370 0.0530

a
(1)
12 0.2312 0.0981 0.1000 0.0891 0.3123 0.0820 0.2316 0.0551

a
(1)
21 0.1321 0.0733 0.3625 0.0825 0.2883 0.0816 0.2568 0.0571

a
(1)
22 0.1956 0.1205 0.1925 0.0685 0.3043 0.0706 0.2650 0.0496

gvb1 0.0024 0.0011 -0.0054 0.0015 0.0046 0.0022 0.0000 0.0019

gvs1 -0.0058 0.0017 0.0032 0.0018 0.0000 0.0010 0.0009 0.0011

gnb1 0.3256 0.0425 0.1045 0.0386 0.0775 0.0458 0.0328 0.0389

gns1 0.1259 0.0445 0.4188 0.0477 0.2660 0.0415 0.3083 0.0469

gvb2 -0.0004 0.0014 -0.0003 0.0007 0.0079 0.0021 0.0034 0.0013

gvs2 0.0013 0.0011 -0.0016 0.0022 -0.0012 0.0013 -0.0010 0.0013

gnb2 0.0674 0.0451 0.2707 0.0296 0.2880 0.0462 0.1658 0.0348

gns2 0.3218 0.0384 0.1064 0.0498 0.1366 0.0452 0.0368 0.0441

log-lik. -0.892033 -0.893002 -0.908939 -0.931320

SIC 0.930961 0.931930 0.947867 0.970248

Q(10) 55.332 (0.001) 38.144 (0.076) 62.389 (0.000) 33.047 (0.196)

Q(20) 88.988 (0.038) 93.569 (0.018) 108.809 (0.001) 70.942 (0.348)

Q(30) 124.722 (0.116) 133.821 (0.041) 137.590 (0.025) 116.439 (0.251)

res. mean (-0.020,-0.025) ( -0.032, 0.005) (-0.035, -0.054) ( -0.020, 0.002)

res. var.

 
0.975 0.244

0.244 1.389

!  
0.843 0.268

0.268 1.638

!  
1.614 1.476

1.476 3.160

!  
0.874 0.464

0.464 1.811

!
Table 4: ML estimates of the ACM-ARMA part of ICH model. ASK and BID Quote changes

in January and February for BDK.
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JANUARY FEBRUARY

ASK BID ASK BID

par. estimate std. dev estimate std. dev estimate std. dev estimate std. dev

κ0.5 0.6979 0.0710 0.8073 0.0770 0.9832 0.0411 0.9730 0.0408

µ̃ -0.1641 0.4140 -0.0792 0.0831 0.9407 0.3688 1.4989 1.1184

β1 -0.5825 0.5653 0.6203 0.2583 0.5153 0.2116 0.1303 0.7409

α1 0.0568 0.0337 0.0769 0.0254 0.1444 0.0296 0.0669 0.0914

ν0 -1.0421 0.3246 -0.2096 0.3070 -0.5835 0.2399 -0.8144 0.5334

ν1 0.0301 0.0906 0.0286 0.0343 0.0519 0.0315 0.0695 0.0660

ν2 0.1222 0.0972 0.0481 0.0280 0.0339 0.0277 0.0360 0.0463

ν3 -0.1986 0.1599 -0.0733 0.0959 -0.1116 0.0577 -0.1392 0.0826

ν4 0.0289 0.1538 0.0246 0.0360 -0.0698 0.0385 -0.1046 0.0775

δ 0.1295 0.0459 -0.1563 0.0467 0.1334 0.0368 -0.1532 0.0376

gvb 0.0008 0.0005 0.0015 0.0006 0.0012 0.0004 0.0014 0.0004

gvs -0.0001 0.0002 0.0003 0.0002 0.0009 0.0005 0.0011 0.0005

gnb 0.0725 0.0152 0.0866 0.0178 0.0529 0.0107 0.0851 0.0115

gns 0.1316 0.0152 0.0986 0.0146 0.0882 0.0137 0.0658 0.0151

log-lik. -0.873340 -0.868164 -2.189387 -2.130800

SIC 0.909673 0.904497 2.225720 2.167133

LB(10) 14.360 (0.001) 5.632 (0.060) 22.471 (0.000) 41.941 (0.000)

LB(20) 19.387 (0.080) 12.465 (0.409) 38.567 (0.000) 58.483 (0.000)

LB(30) 35.449 (0.035) 26.408 (0.235) 46.041 (0.002) 81.032 (0.000)

res. mean -0.009 -0.008 -0.001 -0.000

res. var. 0.878 0.873 0.957 0.963

Table 5:ML estimates for the GLARMA part of the ICH model (ASK and BID Quote changes

in January and February for BDK).
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JANUARY FEBRUARY

ASK BID ASK BID

par. estimate std. dev estimate std. dev estimate std. dev estimate std. dev

κ̆ 1.7144 0.0808 2.9995 1.1644 1.5273 0.0672 1.5564 0.0663

σ2 0.9751 0.1205 2.2415 1.5215 0.9401 0.1050 0.7223 0.0845

µ̆ 1494.7904 483.8095 1968.8966 1609.0915 1004.9979 377.9930 248.0862 133.2212

ᾰ 0.6080 0.0669 0.2369 0.2565 0.4362 0.0840 0.3852 0.0408

β̆ 0.0947 0.0532 0.1495 0.3075 0.1354 0.1214 0.2472 0.0526

ν0 1361.6287 818.6938 1257.8651 586.1333 412.7212 558.1108 494.3943 224.4132

ν1 246.7053 144.7659 -151.5233 154.9453 81.6532 91.8198 59.2648 40.9753

ν2 -17.9679 111.1106 -197.7178 175.0117 -37.8429 90.1107 56.4739 37.1030

ν3 346.6133 271.6948 205.4807 223.4757 -227.1569 205.5680 103.0868 76.4462

ν4 72.0118 154.2225 313.7018 147.9295 -90.8550 113.1423 53.0475 46.9871

gvb -1.3191 0.3931 0.3967 0.8852 -1.0552 1.2736 1.4277 0.8007

gvs -0.5518 0.8257 0.5201 0.8536 2.5681 1.4892 2.1415 0.8441

gvb -22.7808 31.1105 5.2014 34.4017 29.7907 27.0294 0.2101 14.5315

gvs -11.5943 37.2269 -8.9336 36.5855 22.9978 28.1511 1.4853 15.6220

log-lik. -9.101555 -8.631609 -8.502439 -8.061327

SIC 9.1374890 8.667543 8.538372 8.097260

LB(10) 16.974 (0.000) 65.051 (0.000) 21.913 (0.000) 28.299 (0.000)

LB(20) 26.667 (0.009) 79.439 (0.000) 33.848 (0.001) 44.607 (0.000)

LB(30) 29.722 (0.125) 83.934 (0.000) 59.594 (0.000) 61.485 (0.000)

res. mean 0.908 0.717 0.911 1.002

res. var. 1.373 0.890 2.644 2.481

Table 6: ML estimates for the ACD model (ASK and BID Depths in January and February

for BDK).

JANUARY FEBRUARY

Quote changes Depth Quote changes Depth

ASK BID ASK BID ASK BID ASK BID

Quote changes ASK 1.000 1.000

Quote changes BID 0.595 1.000 0.908 1.000

Depth ASK -0.025 -0.061 1.000 -0.051 -0.086 1.000

Depth BID 0.013 -0.059 0.084 1.000 0.019 -0.033 0.033 1.000

Table 7: Contemporaneous dependence of supply liquidity measure components for BDK.
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5 Simulation of the Conditional Liquidity

The estimated conditional multivariate density function of the components of the

quote slope allows us to derive the conditional density function of the liquidity

measure. Therefore, we are able to verify a hypothesis that not only the conditional

mean, but also other different characteristics of its statistical distribution, i.e. higher

moments and quantiles of the quote slope are suspect to move according to some

dynamic pattern with respect to the past filtration of the process. Moreover, the

influence of the microstructure variables on the distributions of our liquidity com-

ponents could help us to characterize the general impact of these variables not only

on the particular components of the quote slope but also on the quote slope itself.

We take advantage of Monte Carlo simulation techniques to receive the conditional

density of the quote slope measure. In the first step, we sample from the conditional

truncated multivariate (with the restriction given by equation (11)) density (fZ∗
t
)

of the four liquidity components, i.e. bid and ask quote changes and depths which

are summarized in Z∗
t . This complete density is conditional on the information set

from the past, as it contains the whole history of the marginal processes up to time

point t−1. Therefore we are able to sample N times from different, conditional with

respect to Ft−1 density functions for every time point t in our sample of data. On

the basis of a large number of simulated observations for every time point t of our

data sample, the N corresponding quote slopes can be obtained and their conditional

density can be estimated for example by applying nonparameteric density estimation

techniques.

From a statistical point of view it is not straightforward to sample from a multi-

variate distribution with restrictions across the outcomes of the marginal processes.

Therefore we can not use here the standard sampling methods proposed for ellip-

tical copula functions (such as gaussian copulas), presented in detail in Cherubini

et al. (2004). In order to sample from our truncated model, we apply a Metropolis-

Hastings algorithm, which can be used to obtain draws from any parametric density

function, from which it is difficult to draw using standard techniques involving in-

versions of the cumulative distribution functions. As before fZ∗
t

denotes the density

function, which we want to obtain, that is the target distribution for the vector of

marks Z∗
t = (Cb

t , C
a
t , Db

t , D
a
t ). We decided here to use an Metropolized Indepen-

dence Sampler (MIS) of Hastings (1970) as we implicitly assumed that a convenient

approximation of the target distribution exists. This approximation, the so called

proposed density is denoted by gZ∗
t
. The algorithm of the MIS is summarized in the
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following:

Given the current state of vector Z∗i
t :

1. Draw Z∗
t from the proposed density gZ∗

t
in the following way:

• compute Cholesky decomposition Â (4×4) of estimated variance-covariance

matrix Σ̂,

• simulate x = (x1, x2, x3, x4) from the 4-dimensional standard normal dis-

tribution,

• set y = Âx,

• set uk = Φ(yk), k = 1, ..., 4,, where Φ denotes the univariate standard

normal distribution function,

• set Z∗
t = (Z∗

t,1, ..., Z
∗
t,4) with Z∗

t,k = F−1
k (uk), k = 1, ..., 4 where Fk denotes

the marginal cumulative distribution function of the variable correspond-

ing to kth element of the vector Z∗
t .

2. Simulate u from the Uniform[0,1] and let

• set Z∗i+1
t = Z∗

t if u ≤ min(1,
w(Z∗

t )

w(Z∗i
t )

),

• set Z∗i+1
t = Z∗i

t otherwise

where w(Z∗
t ) =

fZ∗
t

gZ∗
t

is the usual importance sampling weight.

The MIS takes more draws in areas of a high target density and proportionally fewer

in areas of a low target probability, by deriving the acceptance probability which

is higher for the first and lower for the latter areas. The success of this algorithm

depends on how close the candidate density is to the target distribution. In the step

2 of the algorithm, draws Z∗ from the proposed density are obtained with a simple

sampling method for gaussian copula. We therefore proposed dependent draws from

a candidate density equal to the corresponding non-truncated multivariate density

whose marginals are given by Fk, k = 1, ..., 4 and gaussian copula function with a

variance-covariance matrix Σ̂. The target density fZ∗
t

however must account for the

truncations on the outcome space, which follow from nonnegative spread bid-ask. As

stated in equation (11) we have built in restrictions not into the marginal submodels

but into the formula for a copula function. That is the copula component of the

canonical representation given by (6) that is truncated. Therefore in the step 4 of the

MIS algorithm sketched above we proceed in the following way: for every Zt,i that
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does not fulfil the restriction (11) c(Zt,i) is equal to zero. In such a framework the

task of the MIS can be perceived as a way of to correcting the candidate generating

density proposed in the step 2 of the algorithm with respect to distortions resulting

from the truncations.

Note, that in case of our model the importance sampling weight w has the simple

advantageous form:

w(Z∗
t ) =

f
Cb

t
·fCa

t
·f

Db
t
·fDa

t
·c(F

Cb∗
t

,FCa∗
t

,F
Db∗

t
,FDa∗

t
)

f
Cb

t
·fCa

t
·f

Db
t
·fDa

t
·c̃(F

Cb∗
t

,FCa∗
t

,F
Db∗

t
,FDa∗

t
)

=
c(F

Cb∗
t

,FCa∗
t

,F
Db∗

t
,FDa∗

t
)

c̃(F
Cb∗

t
,FCa∗

t
,F

Db∗
t

,FDa∗
t

)

Before the final simulation we perform many trial samplings from the density using

different sample lengths and different tuning parameters used to scale the variance

of the proposed density. We deduced that the sample of 100 thousand observations

is large enough to get a stationary distribution for the target density function. We

repeated the algorithm several times coming to very similar values for the mean and

the covariance matrix of the simulated sample. According to Geweke & Tanizaki

(2003) the variance of the proposed density should be higher than the one for the

target one. To have a more dispersed candidate generating density we multiplied

the variance-covariance matrix Σ̂ by 10. We also performed the diagnostics for

monitoring the convergence of the simulation performed. The criteria based on

individual PSRF (potential scale reduction factor) and multivariate PSRF plots

introduced by Brooks & Gelman (1998) evidenced that after 100 thousand iterations

the convergence has been reached.

37



6 Empirical Findings

There is a large body of market microstructure literature studying the influence of

decimalization on different measures of market liquidity. We can meet two main

strands focusing on the effect of tick size reduction. On the one hand, according to

O’Connell (1997) and Ricker (1998), the liquidity of the market rises due to increased

competition between liquidity providers and narrower bid-ask spreads, which yield

lower transaction costs. As advocated by Harris (1997) and Harris (1999), the lower

tick size reduces the cost of stepping ahead in a limit order book (front running),

which enhances the competition between liquidity providers. On the other hand, the

studies of Grossman & Miller (1988), Harris (1994) and Harris (1997) suggest that

while liquidity demanders profit from a decreasing spread, the liquidity suppliers

face higher costs and are therefore discouraged from providing liquidity. In their

empirical study for NYSE stocks, Goldstein & Kavajecz (2000) show that after the

NYSE reduced the minimum quote variation in 1997, bid-ask spreads and the cu-

mulative depths decreased. Moreover, the lower level of liquidity displayed (smaller

depths) in specialist quotes as well as displayed in the limit order book, provided

less certainty to liquidity demanders. Chakravarty, Wood & Ness (2004) came to

the similar results studying the influence of the decimalization on the quoted and

effective bid-ask spreads as well as on depths at the best bid and ask prices. They

treat it as an ambiguous result for liquidity, since number of stocks that can be

traded at the best prices declined. Our analysis of the quote slope liquidity measure

directly addresses this ambiguous result.

As mentioned in the introduction, in opposite to the studies focusing on means of

selected one-dimensional liquidity metrics, we encompass the whole distribution of

a multidimensional liquidity measure such as the quote slope. In the simulation, we

intend to verify whether and how the shape of the conditional density of the quote

slope changes while reflecting the whole information on the history of the liquidity

process. We aim to compare the different statistics of the derived density for the

two periods: before and after the decimalization on the NYSE has been proceeded.

In Figures 10 - 14 we plot several time-varying characteristics of the conditional den-

sity function obtained with the IMS. Figure 10 and 11 present the line graph of the

conditional mean and the conditional standard deviation of the quote slope density

function. We concern here three main findings. Firstly, for all stocks under study,

the average values of the quote slope are significant lower in February then in Jan-

uary - the mean of the quote slope has declined due to the decimalization. Before

38



decimalization we can observe distinct negative shocks in the amount of liquidity

supplied- the plot of the conditional mean for January indicates much more upward

“picks”. If one focuses only on the conditional mean of this liquidity measure, the

main findings would be, that due to decrease in the tick size the market significantly

gained on the level of liquidity provided (the smaller the quote slope, the more liq-

uid is the market). Secondly, average liquidity supply was much more volatile before

the decimalization. Thirdly, for the conditional mean and the standard deviation

we can observe systematic fluctuations which suggest the existence of an intraday

seasonality pattern for these moments. The two first observations agree with the

results of descriptive statistics performed for the empirical data and presented in

Section 3. Indeed, we have seen there that the two first moments of the empirical

liquidity ratio were significantly higher for January than for February.

In the Figures 10 and 11 we can observe the “L”-shape diurnal seasonality patterns

for the conditional mean and the standard deviation of the quote slope, obtained

with a nonparametric regression (Nadaraya-Watson estimator with the Gaussian

kernel and the optimal bandwidth). It is therefore evidenced, that in both periods

of our study the market is less liquid after the opening of the trading session. This

observation is quite interesting since it corresponds with such well-known market

microstructure findings as U-shape pattern for the transaction intensity. The main

result, however, is that the mean and standard deviation of the quote slope liquidity

function is indeed time-varying, which contradicts several theoretical models, where

actions of market participants rely on liquidity shocks with constant mean and vari-

ance(Karpoff (1986), Michaely & Vila (1996)).

Comparing presented in Figures 12 and 13 scatter plots of the 10, 25, 50 and 90

percent quantile of the dynamic quote slope density in January and February, we

come closer to the most interesting point of our study. As we have seen from the

descriptive analysis of the empirical data, due to the coarser grid for the potential

quote changes in January, the shape of the liquidity density function evidenced some

humps (several modi) - the probability mass of the distribution was concentrated

in several states. Those states can be perceived as “liquidity states” - as certain

amounts of liquidity supply are much more probable than the others. The analog-

ical finding can be observed in Figures 12 and 13 presenting the scatterplot of the

quantiles of the conditional quote slope distribution. Firstly, we can observe there

that not only the mean but the whole density of the quote slope is being shifted ac-

cording to shocks in liquidity supply - the values of the given quantiles fluctuate in

time. However, the more important result are the differences between the patterns
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according to which the 10, 25 and the 50 percent quantiles in the two subsequent

periods of our study fluctuate. In January the quantiles are subject to gravitate to

two or three outcome states, while in February those fluctuate more randomly. For

example, in January the 25 percent quantile of the conditional density function cor-

responds to a certain state of the liquidity supply. The amounts of liquidity supply

are therefore subject to some abrupt changes, they follow a kind of jump process.

According to the number of modi of the conditional density function of liquidity

supply, this effect exists at several quantiles. However, it gets smaller for higher

quantiles, as illustrated by the 90 percent quantile. In both periods these values

fluctuate rather randomly, which could be explained by absence of distinct liquidity

states corresponding to very high quote slope values.

The presence of the liquidity states for the medium quote slope values, that is for

the medium liquidity state of the limit order book, are supposed to have a distinct

impact on the market conditions of the trading process. Traders, who intend to trade

very large volumes, because of insider information are not affected by this kind of

liquidity supply. But those, who trade for speculative reasons ore who need to trade

a moderate volume of a stock are affected by the observed liquidity states. Such a

trader consumes a certain part of the liquidity supply, i.e. he consumes liquidity up

to a certain quantile (say 10, 50 percent). If this quantile is higher, the liquidity

he consumes is more costly. Since we observe jumps in the time-varying quantiles,

the trader either does not know the cost he is subject to (and he may be subject to

the cost of a high states) or he tries to optimise his trading or liquidation strategy

according to it, which creates additional search costs. In both cases the trader suffer

from the existence of liquidity states (see e.g. Bertsimas & Lo (1998), Almgren &

Chriss (2000) and Subramanian & Jarrow (2001)). After the decimalization, the

states do not appear in the conditional liquidity function.

In Figure 15 we present the autocorrelation function of the residuals (defined as

the difference between the computed quote slope and the mean of the quote slope

density function) and the histograms of integral probability transformations (IPT)

for the derived conditional density. We can see that, as there is negative first order

autocorrelation in residuals our model is not perfect in explaining the dynamics of

the quote slope. However our study should be treated as precursory one, since we

do not performed here any model selection procedure for the marginal processes.

The inclusion of higher order lags of the explanatory variables as well as absolute

innovation terms in the ICH and ACD models is potentially able to improve this

result. However, in comparison to the original time series of the quote slope, the
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autocorrelation pattern in the residuals is considerably lower, as shown in Table 8.

The non-uniform shape of the IPT also suggest that the shape of the conditional

density could be reflected in a more suitable way. Thus, for a January period of

our study we overestimate the low tail of the liquidity function, whereas we under-

estimate its upper tail. It means that according to the true data generating process

amounts of very high liquidity occur more seldom whereas these for very low liq-

uidity - more often. The opposite stands for the February period of our study -

we systematically underestimate the probability of a average liquidity level, as our

liquidity function is characterized by the too more probability mass on the tails.

BDK C HNZ PFE XOM

Jan Feb Jan Feb Jan Feb Jan Feb Jan Feb

mean 0.878 1.067 0.820 0.825 0.840 1.097 0.831 1.015 0.838 1.002

std. deviation 0.438 0.953 0.405 0.748 0.406 1.362 0.352 0.976 0.477 1.292

LB(10) 78.72 80.62 89.97 96.61 88.98 50.95 96.17 86.97 76.72 62.42

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LB(20) 86.10 92.06 96.58 104.84 96.39 53.95 103.13 98.59 91.38 76.23

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LB(30) 94.65 100.43 106.18 116.43 111.38 73.77 109.08 112.79 102.69 89.82

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 8: Summary statistics of the constructed residuals for the quote slope liquidity measure.
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BDK C HNZ PFE XOM

January

February

Figure 10: Line Graph of the mean of the conditional quote slope density (MIS Simulation with 100 thousand replications) with

corresponding estimated (Nardaraya-Watson with Gaussian Kernel) diurnal seasonality in January (upper panels) and February (lower

panels) for all five stock. The x-axis (t = 1, . . . , 1404) is measured in five minutes intervals and corresponds to the time period form the

2nd to the 26th in January 2001 (upper panels, first row) and from the 30th January 2001 to the 23rd February 2001 (lower panels, first

row).
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BDK C HNZ PFE XOM

January

February

Figure 11: Line Graph of the standard deviation of the conditional quote slope density (MIS Simulation with 100 thousand replications)

with corresponding estimated (Nardaraya-Watson with Gaussian Kernel) diurnal seasonality in January (upper panels) and February

(lower panels) for all five stock. The x-axis (t = 1, . . . , 1404) is measured in five minutes intervals and corresponds to the time period form

the 2nd to the 26th in January 2001 (upper panels, first row) and from the 30th January 2001 to the 23rd February 2001 (lower panels,

first row).
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Figure 12: Scatter Plot of the 10% quantile (first row) and the 25% quantile (second row) of the conditional quote slope distribution

function (MIS Simulation with 100 thousand replications) in January (upper panels) and February (lower panels) for all five stock. The

x-axis (t = 1, . . . , 1404) is measured in five minutes intervals and corresponds to the time period form the 2nd to the 26th in January 2001

(upper panels) and from the 30th January 2001 to the 23rd February 2001 (lower panels).
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Figure 13: Scatter Plot of the 50% quantile (first row) and the 90% quantile (second row) of the conditional quote slope distribution

function (MIS Simulation with 100 thousand replications) in January (upper panels) and February (lower panels) for all five stock. The

x-axis (t = 1, . . . , 1404) is measured in five minutes intervals and corresponds to the time period form the 2nd to the 26th in January 2001

(upper panels) and from the 30th January 2001 to the 23rd February 2001 (lower panels).
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Figure 14: Histograms of the mean quote slope (MIS Simulation with 100 thousand replications) in January (upper panels) and February

(lower panels) for all five stock.
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Figure 15: Autocorrelogram of the residuals of the quote slope (first row) and histogram of the values of the probability integral

transformation (second row) based on the quote slope distribution function (MIS Simulation with 100 thousand replications) in January

(upper panels) and February (lower panels) for all five stock. The dashed lines represent the asymptotic 95% confidence bounds.
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7 Conclusion

Exploiting the concept of copula functions we model the dynamic multivariate den-

sity of a set of discrete and continuous variables. We show that truncations on the

multivariate density can be modelled by imposing the truncations on the copula

function. We use this approach to model the dynamic joint density of bid and ask

quote changes and their corresponding depths under the restriction that the bid-ask

spread must not become zero or negative. Thereby bid and ask quote changes are

modelled as discrete variables since they are multiples of the tick size with the help

of ICH models of Liesenfeld et al. (2006). Due to the large support of the associated

depths, these variables are modelled as continuous variables using Burr distributed

ACD models of Engle & Russell (1998). The technique of continuization is applied

to model the corresponding copula function.

We construct the dynamic density of the quote slope liquidity measure of Hasbrouck

& Seppi (2001), based on samples of the dynamic multivariate density obtained with

the Metropolized Independence Sampler of Hastings (1970). This dynamic density

is used to analyze how liquidity supply behaves over time and to show the influence

of the decimalization at the New York Stock Exchange on the 29th January 2001.

We obtain three main results: (i) Mean liquidity supply as well as liquidity supply

risk (measured by the standard deviation and by quantiles) is indeed time varying.

This observation questions the assumption of liquidity shocks with constant mean

and constant variance, made in several theoretical models of investor behavior, e.g.

Karpoff (1986), Michaely & Vila (1996), Michaely et al. (1996) and Fernando (2003).

(ii) Mean liquidity supply as well as liquidity risk is subject to intraday seasonality.

Using information on the intraday seasonality pattern may improve models where

optimal trading and optimal liquidation strategies are derived, e.g. Bertsimas & Lo

(1998), Almgren & Chriss (2000) and Subramanian & Jarrow (2001). (iii) Before the

decimalization, density function of the conditional liquidity is shifted to the right,

which corresponds to a smaller liquidity supply, when compared with the liquidity

supply after the decimalization. This observation is in line with the findings of

Grossman & Miller (1988), Harris (1994) and Harris (1997), who also certify a higher

liquidity for liquidity demanders after the decimalization. Furthermore, density

function of the conditional liquidity possess several modi, which can be translated

into jumps of the conditional quantiles of the liquidity supply density. These modi

represent liquidity supply states, where a higher state ultimately relates to higher

transaction costs for liquidity demanders. After the decimalization these modi are
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smoothed out. This observation sheds light on a different aspect of a higher liquidity

supply for liquidity demanders as those aspects highlighted by Grossman & Miller

(1988), Harris (1994) and Harris (1997) grounding on shifts in mean functions. Our

observation states, that after the decimalization, the risk of being in or the cost of

to avoid being in an unfavorable liquidity state is diminished, for a specific group a

market participants.

49



References

Acharya, V. V. & L. H. Pedersen (2004): “Asset Pricing with Liquidity Risk,”

NBER Working Papers 10814, National Bureau of Economic Research, Inc.

Almgren, R. & N. Chriss (2000): “Optimal Execution of Portfolio Transactions,”

Journal of Risk, 3, 5–39.

Berndt, E. K., B. H. Hall, R. E. Hall, & J. A. Hausman (1974): “Estima-

tion and Inference in Nonlinear Structural Models,” Annals of Economic and

Social Measurement, 3/4, 653–665.

Bertsimas, D. & A. W. Lo (1998): “Optimal control of execution costs,” Journal

of Financial Markets, 1 (1), 1–50.

Black, F. (1971): “Toward a Fully Automated Stock Exchange, Part I,” Financial

Analysts Journal, 27, 29–44.

Brooks, S. P. & A. Gelman (1998): “General Methods for Monitoring Conver-

gence of Iterative Simulations,”Journal of Computational and Graphical Statis-

tics, 7, 434–455.

Cameron, C., T. Li, P. Trivedi, & D. Zimmer (2004): “Modelling the Differ-

ences in Counted Outcomes Using Bivariate Copula Models with Application

to Mismesured Counts,” Econometrics Journal, 7, 566–584.

Chakravarty, S., R. A. Wood, & R. A. V. Ness (2004): “Decimals and

Liquidity: A Study of the NYSE,” Journal of Financial Research, 27, 75–94.

Cherubini, U., E. Luciano, & W. Vecchiato (2004): Copula Methods in

Finance, Wiley, Chichester.

Danielsson, J. & R. Payne (2002): “Real trading patterns and prices in spot

foreign exchange markets,”Journal of International Money and Finance, 21 (2),

203–222.

Denuit, M. & P. Lambert (2005): “Constraints on Concordance Measures in

Bivariate Discrete Data,” Journal of Multivariate Analysis, 93, 40–57.

Engle, R. & J. Lange (2001): “Predicting VNET: A Model of the Dynamics of

Market Depth,” Journal of Financial Markets, 4 (2), 113–142.

50



Engle, R. F. & J. R. Russell (1998): “Autoregressive Conditional Duration: A

New Model for Irregularly Spaced Transaction Data,” Econometrica, 66, 1127–

1162.

Fernando, C. S. (2003): “Commonality in Liquidity: Transmission of Liquidity

Shocks across Investors and Securities,” Journal of Financial Intermediation,

12, 233–254.

Geweke, J. & H. Tanizaki (2003): “Note on Sampling Distribution for the

Metropolis-Hastings Algorithm,” Communications in Statistics, 32, 775–789.

Goldstein, M. A. & K. A. Kavajecz (2000): “Eighths, Sixteenths, and Market

Depth: Changes in Tick Size and Liquidity Provision on the NYSE,” Journal

of Financial Economics, 56, 12–149.

Gomber, P., U. Schweickert, & E. Theissen (2005): “Zooming in on Liquid-

ity,” Working paper, University of Frankfurt.

Grossman, S. J. & M. H. Miller (1988): “Liquidity and Market Structure,”

Journal of Finance, 43, 617–633.

Harris, L. E. (1994): “Minimum Price Variations, Discrete Bid-Ask Spreads, and

Quotation Sizes,” Review of Financial Studies, 7, 149–178.

—— (1997): “Decimalisation: A Review of the Arguments and Evidence,” Working

paper, Marshall School of Business, University of Southern California.

—— (1999): “Trading in Pennies: A Survey of the Issues,”Working paper, University

of Southern California.

Hasbrouck, J. & D. J. Seppi (2001): “Common Factors in Prices, Order flows

and Liquidity,” Journal of Financial Economics, 59 (3), 383–411.

Hastings, W. (1970): “Monte Carlo Sampling Methods Using Markov Chains and

Their Applications,” Biometrika, 57 (1), 97–109.

Hausman, J. A., A. W. Lo, & A. C. MacKinlay (1992): “An Ordered Probit

Analysis of Transaction Stock Prices,” Journal of Financial Economics, 31,

319–379.

Karpoff, J. M. (1986): “A Theory of Trading Volume,”Journal of Finance, 41 (5),

1069–87.

51



Kyle, A. (1985): “Continuous Auctions and Insider Trading,” Econometrica, 22,

477–498.

Liesenfeld, R., I. Nolte, & W. Pohlmeier (2006): “Modelling Financial

Transaction Price Movements: A Dynamic Integer Count Data Model,” Em-

pirical Economics, 30, 795–825.

Michaely, R. & J.-L. Vila (1996): “Trading Volume with Private Valuation:

Evidence from the Ex-dividend Day,” Review of Financial Studies, 9 (2), 471–

509.

Michaely, R., J.-L. Vila, & J. Wang (1996): “A Model of Trading Volume

with Tax-Induced Heterogeneous Valuation and Transaction Costs,” Journal of

Financial Intermediation, 5 (4), 340–371.

O’Connell, V. (1997): “Conversion to Decimal System in Stocks Could Prove a

Boom to Small Investors,” Wall Street Journal, friday, June 6. pC1.

Pastor, L. & R. F. Stambaugh (2001): “Liquidity Risk and Expected Stock

Returns,”NBER Working Papers 8462, National Bureau of Economic Research,

Inc.

Ricker, J. (1998): “Breaking the Eighth: Sixteens on the New York Stock Ex-

change,” Working paper.

Russell, J. R. & R. F. Engle (2002): “Econometric Analysis of Discrete-Valued

Irregularly-Spaced Financial Transactions Data,”Revised Version of Discussion

Paper 98-10, University of California, San Diego.

Rydberg, T. & N. Shephard (2003): “Dynamics of Trade-by-Trade Price Move-

ments: Decomposition and Models,” Journal of Financial Econometrics, 1, 2–

25.
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Appendix

January

bid-side ask-side

abs. quote indicator depths abs. quote indicator depths

change neg. dir pos. dir change neg. dir pos. dir

mean 0.1123 0.26 0.28 4396.94 0.1111 0.30 0.26 6969.52

std. deviation 0.0980 0.44 0.45 7758.76 0.1037 0.46 0.44 11653.15

skewness 6.8331 1.07 0.97 5.09 8.3124 0.89 1.08 4.83

kurtosis 82.1151 2.14 1.94 40.32 115.295 1.79 2.17 37.72

minimum 0.0625 0 0 100 0.0625 0 0 100

1% Quantile 0.0625 0 0 200 0.0625 0 0 100

5% Quantile 0.0625 0 0 300 0.0625 0 0 300

10% Quantile 0.0625 0 0 500 0.0625 0 0 500

25% Quantile 0.0625 0 0 900 0.0625 0 0 1000

50% Quantile 0.0625 0 0 2000 0.0625 0 0 2900

75% Quantile 0.1250 1 1 5000 0.1250 1 1 8100

90% Quantile 0.1875 1 1 10000 0.1875 1 1 19400

95% Quantile 0.2500 1 1 16380 0.2500 1 1 25240

99% Quantile 0.3750 1 1 42516 0.3750 1 1 50000

maximum 1.4375 1 1 104400 1.7500 1 1 140700

LB(10) 114.56 75.90 900.74 109.88 95.52 644.18

p-value 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000

LB(20) 120.20 121.69 1032.78 117.30 132.55 757.03

p-value 0.0000 0.0018 0.0000 0.0000 0.0002 0.0000

LB(30) 129.62 171.33 1402.22 125.74 161.64 785.56

p-value 0.0000 0.0015 0.0000 0.0000 0.00068 0.0000

February

bid-side ask-side

abs. quote indicator depths abs. quote indicator depths

change neg. dir pos. dir change neg. dir pos. dir

mean 0.0590 0.31 0.44 1685.33 0.0624 0.43 0.33 3428.99

std. deviation 0.0605 0.46 0.50 2834.31 0.0713 0.50 0.47 6720.39

skewness 2.1240 0.82 0.23 5.77 3.8046 0.29 0.70 5.90

kurtosis 9.6310 1.67 1.05 53.08 27.2740 1.08 1.48 64.69

minimum 0.0100 0 0 100 0.0100 0 0 100

1% Quantile 0.0100 0 0 100 0.0100 0 0 100

5% Quantile 0.0100 0 0 100 0.0100 0 0 100

10% Quantile 0.0100 0 0 100 0.0100 0 0 200

25% Quantile 0.0200 0 0 400 0.0200 0 0 500

50% Quantile 0.0400 0 0 900 0.0400 0 0 1000

75% Quantile 0.0800 1 1 1800 0.0900 1 1 3200

90% Quantile 0.1400 1 1 4260 0.1400 1 1 9060

95% Quantile 0.1800 1 1 5500 0.1800 1 1 15000

99% Quantile 0.2644 1 1 12676 0.3528 1 1 27676

maximum 0.5000 1 1 34300 0.7600 1 1 112800

LB(10) 121.29 48.20 273.79 91.78 68.00 176.92

p-value 0.0000 0.1752 0.0000 0.0000 0.0038 0.0000

LB(20) 138.79 88.93 275.82 112.21 114.16 224.04

p-value 0.0000 0.2315 0.0000 0.0000 0.0073 0.0000

LB(30) 162.82 106.49 283.98 120.66 150.34 246.16

p-value 0.0000 0.8061 0.0000 0.0000 0.0317 0.0000

Table 9: Descriptive statistics of the quotes changes, the quote change direction indicator and

the corresponding depths for the bid and ask sides in January and February 2001 for HNZ.
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January

bid-side ask-side

abs. quote indicator depths abs. quote indicator depths

change neg. dir pos. dir change neg. dir pos. dir

mean 0.1440 0.39 0.39 16856.20 0.1423 0.41 0.38 20585.40

std. deviation 0.1411 0.49 0.49 22931.07 0.1448 0.49 0.49 23705.32

skewness 9.0114 0.45 0.46 8.18 11.1279 0.38 0.50 2.7650

kurtosis 159.9699 1.20 1.21 146.37 229.1586 1.14 1.25 15.48

minimum 0.0625 0 0 300 0.0625 0 0 100

1% Quantile 0.0625 0 0 1000 0.0625 0 0 1000

5% Quantile 0.0625 0 0 1000 0.0625 0 0 1500

10% Quantile 0.0625 0 0 2000 0.0625 0 0 2500

25% Quantile 0.0625 0 0 5000 0.0625 0 0 5500

50% Quantile 0.1250 0 0 10000 0.1250 0 0 11800

75% Quantile 0.1875 1 1 20000 0.1875 1 1 25000

90% Quantile 0.2500 1 1 40000 0.2500 1 1 50000

95% Quantile 0.3125 1 1 50000 0.3125 1 1 67500

99% Quantile 0.6250 1 1 100000 0.6231 1 1 100000

maximum 3.0000 1 1 500000 3.3750 1 1 250000

LB(10) 107.0946 46.17 117.77 130.80 44.88 140.27

p-value 0.0000 0.2323 0.0000 0.0000 0.2746 0.0000

LB(20) 114.4044 80.81 160.73 136.94 70.21 195.03

p-value 0.0000 0.45 0.0000 0.0000 0.7749 0.0000

LB(30) 121.8002 122.78 211.21 150.67 107.96 237.86

p-value 0.0000 0.4126 0.0000 0.0000 0.7768 0.0000

February

bid-side ask-side

abs. quote indicator depths abs. quote indicator depths

change neg. dir pos. dir change neg. dir pos. dir

mean 0.1091 0.46 0.45 8028.92 0.1085 0.49 0.42 9496.15

std. deviation 0.1138 0.50 0.50 13173.02 0.1048 0.50 0.49 17325.66

skewness 3.6289 0.14 0.20 4.92 2.4367 0.05 0.31 7.41

kurtosis 31.6766 1.02 1.04 45.95 11.9358 1.00 1.09 95.75

minimum 0.0100 0 0 100 0.0100 0 0 100

1% Quantile 0.0100 0 0 100 0.0100 0 0 100

5% Quantile 0.0100 0 0 400 0.0100 0 0 400

10% Quantile 0.0200 0 0 700 0.0200 0 0 640

25% Quantile 0.0400 0 0 1100 0.0400 0 0 1300

50% Quantile 0.0800 0 0 3500 0.0800 0 0 4500

75% Quantile 0.1400 1 1 10000 0.1500 1 1 10000

90% Quantile 0.2400 1 1 20000 0.2400 1 1 22160

95% Quantile 0.3175 1 1 30000 0.3000 1 1 30000

99% Quantile 0.5415 1 1 56844 0.5000 1 1 70000

maximum 1.6200 1 1 200000 0.8700 1 1 302200

LB(10) 430.7741 38.42 32.41 400.03 28.46 92.84

p-value 0.0000 0.5414 0.0003 0.0000 0.9137 0.0000

LB(20) 578.9171 74.37 54.64 584.52 65.65 103.06

p-value 0.0000 0.6566 0.0000 0.0000 0.8764 0.0000

LB(30) 658.5780 107.59 68.04 663.11 98.70 106.88

p-value 0.0000 0.7844 0.0001 0.0000 0.9226 0.0000

Table 10: Descriptive statistics of the quotes changes, the quote change direction indicator and

the corresponding depths for the bid and ask sides in January and February 2001 for C.
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January

bid-side ask-side

abs. quote indicator depths abs. quote indicator depths

change neg. dir pos. dir change neg. dir pos. dir

mean 0.1123 0.33 0.33 20404.20 0.1122 0.34 0.33 24943.95

std. deviation 0.0888 0.47 0.47 24684.82 0.0917 0.47 0.47 32447.45

skewness 2.9406 0.73 0.74 3.14 3.2318 0.69 0.72 4.20

kurtosis 15.2992 1.54 1.55 18.48 17.7688 1.48 1.51 35.18

minimum 0.0625 0 0 100 0.0625 0 0 100

1% Quantile 0.0625 0 0 300 0.0625 0 0 300

5% Quantile 0.0625 0 0 1000 0.0625 0 0 1000

10% Quantile 0.0625 0 0 1800 0.0625 0 0 2000

25% Quantile 0.0625 0 0 5000 0.0625 0 0 5800

50% Quantile 0.0625 0 0 12800 0.0625 0 0 14500

75% Quantile 0.1250 1 1 25700 0.1250 1 1 31600

90% Quantile 0.1875 1 1 50000 0.1875 1 1 50000

95% Quantile 0.2500 1 1 61280 0.2500 1 1 99960

99% Quantile 0.4894 1 1 115188 0.5000 1 1 139584

maximum 0.8750 1 1 255400 0.9375 1 1 436500

LB(10) 369.25 127.26 484.77 343.55 126.16 369.00

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LB(20) 387.87 172.81 551.03 368.83 169.64 422.47

p-value 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000

LB(30) 457.66 209.46 554.43 401.99 205.18 436.24

p-value 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000

February

bid-side ask-side

abs. quote indicator depths abs. quote indicator depths

change neg. dir pos. dir change neg. dir pos. dir

mean 0.0695 0.43 0.48 5180.06 0.0695 0.47 0.44 6314.25

std. deviation 0.0744 0.49 0.50 9939.57 0.0752 0.50 0.50 14237.65

skewness 3.0109 0.30 0.10 5.52 2.9593 0.12 0.24 7.69

kurtosis 18.1709 1.09 1.01 44.32 16.8701 1.01 1.06 86.28

minimum 0.0100 0 0 100 0.0100 0 0 100

1% Quantile 0.0100 0 0 100 0.0100 0 0 100

5% Quantile 0.0100 0 0 200 0.0100 0 0 200

10% Quantile 0.0100 0 0 300 0.0100 0 0 400

25% Quantile 0.0200 0 0 900 0.0200 0 0 1000

50% Quantile 0.0400 0 0 2000 0.0500 0 0 2200

75% Quantile 0.0900 1 1 5400 0.0900 1 1 6100

90% Quantile 0.1500 1 1 10560 0.1600 1 1 14700

95% Quantile 0.2100 1 1 20000 0.2100 1 1 23380

99% Quantile 0.3300 1 1 50000 0.3600 1 1 58852

maximum 0.7300 1 1 100000 0.7300 1 1 200000

LB(10) 213.74 38.20 47.14 188.51 51.95 81.32

p-value 0.0000 0.5516 0.0000 0.0000 0.0975 0.0000

LB(20) 220.16 90.69 61.43 201.43 83.33 110.84

p-value 0.0000 0.1942 0.0000 0.0000 0.3775 0.0000

LB(30) 236.99 117.95 70.63 238.06 132.31 127.14

p-value 0.0000 0.54 0.0000 0.0000 0.2085 0.0000

Table 11: Descriptive statistics of the quotes changes, the quote change direction indicator and

the corresponding depths for the bid and ask sides in January and February 2001 for PFE.
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January

bid-side ask-side

abs. quote indicator depths abs. quote indicator depths

change neg. dir pos. dir change neg. dir pos. dir

mean 0.1429 0.39 0.37 7176.28 0.1405 0.41 0.35 7791.88

std. deviation 0.1129 0.49 0.48 9293.25 0.1084 0.49 0.48 9992.88

skewness 2.9843 0.45 0.52 3.76 2.4226 0.37 0.61 3.09

kurtosis 19.6754 1.20 1.27 26.79 13.5139 1.14 1.37 17.17

minimum 0.0625 0 0 100 0.0625 0 0 100

1% Quantile 0.0625 0 0 300 0.0625 0 0 500

5% Quantile 0.0625 0 0 1000 0.0625 0 0 1000

10% Quantile 0.0625 0 0 1000 0.0625 0 0 1000

25% Quantile 0.0625 0 0 1500 0.0625 0 0 1500

50% Quantile 0.1250 0 0 4300 0.1250 0 0 4700

75% Quantile 0.1875 1 1 9300 0.1875 1 1 10000

90% Quantile 0.2500 1 1 17920 0.2500 1 1 19060

95% Quantile 0.3750 1 1 24080 0.3750 1 1 29100

99% Quantile 0.5169 1 1 48580 0.5000 1 1 50000

maximum 1.2500 1 1 114900 1.1250 1 1 100000

LB(10) 228.48 104.44 79.21 113.79 56.87 180.78

p-value 0.0000 0.0000 0.0000 0.0000 0.0406 0.0000

LB(20) 237.14 155.34 90.31 139.95 110.47 231.67

p-value 0.0000 0.0000 0.0000 0.0000 0.0136 0.0000

LB(30) 255.13 184.34 101.37 153.82 145.29 238.00

p-value 0.0000 0.0001 0.0000 0.0000 0.0579 0.0000

February

bid-side ask-side

abs. quote indicator depths abs. quote indicator depths

change neg. dir pos. dir change neg. dir pos. dir

mean 0.0936 0.41 0.49 2864.96 0.09 0.49 0.44 3496.37

std. deviation 0.1076 0.49 0.50 4445.82 0.11 0.50 0.50 6047.77

skewness 3.6830 0.36 0.05 4.10 3.99 0.06 0.25 3.98

kurtosis 25.6795 1.13 1.00 28.74 27.01 1.00 1.06 23.31

minimum 0.0100 0 0 100 0.0100 0 0 100

1% Quantile 0.0100 0 0 100 0.0100 0 0 100

5% Quantile 0.0100 0 0 100 0.0100 0 0 100

10% Quantile 0.0100 0 0 200 0.0100 0 0 200

25% Quantile 0.0300 0 0 500 0.0300 0 0 500

50% Quantile 0.0600 0 0 1100 0.0600 0 0 1300

75% Quantile 0.1200 1 1 3200 0.1200 1 1 4000

90% Quantile 0.2100 1 1 7200 0.2000 1 1 8260

95% Quantile 0.2800 1 1 10680 0.2730 1 1 14200

99% Quantile 0.5137 1 1 20480 0.5912 1 1 30000

maximum 1.2100 1 1 49200 1.1000 1 1 54500

LB(10) 216.32 43.38 38.07 182.43 60.07 58.05

p-value 0.0000 0.33 1 0.0000 0.0000 0.02 0.0000

LB(20) 222.79 69.21 46.79 187.73 99.26 59.10

p-value 0.0000 0.80 0.0006 0.0000 0.07 0.0000

LB(30) 229.26 106.31 49.24 193.02 151.27 73.45

p-value 0.0000 0.81 0.01 0.0000 0.03 0.0000

Table 12: Descriptive statistics of the quotes changes, the quote change direction indicator and

the corresponding depths for the bid and ask sides in January and February 2001 for XOM.
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Buy Volume Sell Volume # Buys # Sells

Jan Feb Jan Feb Jan Feb Jan Feb

mean 6451.00 5754.13 4542.81 4819.87 3.89 4.13 3.43 3.69

std. deviation 11478.48 11194.89 8178.12 8322.69 3.42 3.14 2.92 2.90

skewness 4.48 6.34 4.88 4.45 1.91 1.15 1.31 0.97

kurtosis 30.86 61.51 38.57 30.39 11.02 4.77 5.43 3.92

minimum 0 0 0 0 0 0 0 0

1% Quantile 0 0 0 0 0 0 0 0

5% Quantile 0 0 0 0 0 0 0 0

10% Quantile 0 100 0 0 0 1 0 0

25% Quantile 700 800 400 600 1 2 1 1

50% Quantile 2600 2700 1900 2200 3 4 3 3

75% Quantile 7100 5900 5100 5500 5 6 5 5

90% Quantile 15300 13160 11360 11300 8 8 7 8

95% Quantile 25680 21080 17460 17380 10 10 9 9

99% Quantile 52456 51000 39044 46748 15 14 13 12

maximum 115700 156200 106300 91300 36 22 21 16

LB(10) 114.76 55.33 181.37 84.73 415.29 279.37 216.62 252.51

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LB(20) 182.06 62.26 197.32 96.99 566.87 371.32 270.84 289.13

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LB(30) 224.52 68.65 202.37 108.81 600.17 396.69 298.97 300.09

p-value 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 13: Descriptive statistics of the explanatory variables for HNZ.

Buy Volume Sell Volume # Buys # Sells

Jan Feb Jan Feb Jan Feb Jan Feb

mean 93537.25 64457.41 76352.28 62904.77 19.75 16.04 16.68 13.55

std. deviation 133638.83 63598.75 99200.57 71115.52 7.94 7.44 7.53 6.64

skewness 5.80 2.78 8.11 4.96 0.45 0.35 0.49 0.66

kurtosis 53.63 14.43 124.94 53.74 3.15 2.85 2.99 3.52

minimum 200 0 0 0 1 0 0 0

1% Quantile 3224 1904 1508 1916 4 1 2 2

5% Quantile 10100 8500 7640 7120 8 5 6 4

10% Quantile 15640 12920 12540 11300 10 7 8 6

25% Quantile 29900 25700 25500 21800 14 11 11 9

50% Quantile 56900 46200 52200 42600 19 16 16 13

75% Quantile 108500 81300 93900 81300 25 21 21 18

90% Quantile 186520 131600 159660 130040 30 26 27 22

95% Quantile 283080 193120 207460 179060 34 29 30.80 26

99% Quantile 666072 326976 384972 336720 40.96 35 36 31

maximum 1778600 574400 2012100 1169700 50 42 45 41

LB(10) 1422.85 827.72 326.00 513.96 234.49 252.74 217.9916 176.37

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LB(20) 1853.40 1093.76 373.72 744.51 291.42 334.95 248.5169 206.44

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LB(30) 2147.56 1110.19 397.05 765.78 354.37 342.48 291.5115 224.63

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 14: Descriptive statistics of the explanatory variables for C.
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Buy Volume Sell Volume # Buys # Sells

Jan Feb Jan Feb Jan Feb Jan Feb

mean 94166.74 70707.55 81068.95 57984.97 21.68 16.60 17.96 13.93

std. deviation 117974.26 96243.99 105833.06 71120.45 9.01 7.10 8.20 6.44

skewness 5.42 7.82 6.34 4.20 0.60 0.27 0.73 0.42

kurtosis 53.68 113.69 85.92 28.32 4.11 3.05 3.86 3.20

minimum 0 0 0 0 0 0 0 0

1% Quantile 2104 904 1604 0 1 1 2 0

5% Quantile 11320 6420 7560 5600 9 5 7 4

10% Quantile 17100 12600 13040 9780 11 8 9 6

25% Quantile 33400 22700 24700 20200 15 12 12 9

50% Quantile 60500 46800 52300 38200 21 16 17 13

75% Quantile 113400 84900 100600 69400 27 21 23 18

90% Quantile 197360 150320 167280 120380 33 26 29 23

95% Quantile 276500 202060 250320 168200 38 29 33 25

99% Quantile 560004 381108 494876 401508 46 34 41 31

maximum 1804800 1880200 1992600 732400 71 45 52 40

LB(10) 356.79 305.81 323.21 286.77 909.80 572.93 370.65 287.41

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LB(20) 392.71 325.88 424.43 336.78 1132.64 776.73 416.31 341.42

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LB(30) 396.39 333.53 516.36 356.11 1164.64 789.78 450.44 346.47

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 15: Descriptive statistics of the explanatory variables for PFE.

Buy Volume Sell Volume # Buys # Sells

Jan Feb Jan Feb Jan Feb Jan Feb

mean 41077.35 28558.69 36442.31 24135.61 11.08 9.87 11.11 9.12

std. deviation 46427.43 35139.22 45764.77 24750.02 6.07 5.16 5.92 4.78

skewness 2.85 6.76 9.83 3.13 0.61 0.60 0.57 0.57

kurtosis 16.55 82.51 206.65 19.55 3.35 3.29 3.28 3.51

minimum 0 0 0 0 0 0 0 0

1% Quantile 0 0 0 0 0 0 0 0

5% Quantile 1700 2820 2300 1720 2 2 2 2

10% Quantile 4240 5100 5000 4000 4 4 4 3

25% Quantile 11800 10700 11900 8400 7 6 7 6

50% Quantile 25300 19900 24100 17200 10 9 10 8

75% Quantile 53900 34700 47300 31800 15 13 15 12

90% Quantile 95060 57020 80920 51060 19 17 19 16

95% Quantile 130560 77220 107080 65660 22 19 22 18

99% Quantile 210532 152884 171384 133532 28 23 27 21.96

maximum 484700 565500 1093800 272500 35 33 33 35

LB(10) 471.45 189.40 232.39 138.04 198.00 226.90 140.08 181.49

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LB(20) 563.51 198.26 296.47 168.51 224.48 267.37 178.00 215.22

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LB(30) 577.58 212.97 341.56 177.74 243.97 283.21 187.24 219.48

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 16: Descriptive statistics of the explanatory variables for XOM.
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JANUARY FEBRUARY

ASK BID ASK BID

par. estimate std. dev estimate std. dev estimate std. dev estimate std. dev

µ1 -0.1800 0.2325 -0.0246 0.0478 0.5109 0.2291 0.2140 0.2073

µ2 -0.3678 0.2358 -0.0287 0.0463 0.3600 0.1709 0.1763 0.1696

c
(1)
1 0.2095 0.1925 0.8641 0.1427 0.7069 0.1253 0.7945 0.1778

a
(1)
11 -0.0560 0.0960 0.0176 0.0510 -0.0842 0.1611 0.0550 0.1865

a
(1)
12 -0.0475 0.0967 0.1010 0.0501 -0.0771 0.1614 0.0948 0.2212

a
(1)
21 0.1032 0.0927 0.0742 0.0569 -0.0380 0.1525 0.0556 0.1762

a
(1)
22 -0.1742 0.0861 0.0635 0.0458 -0.1448 0.1669 0.0380 0.1906

gvb1 0.0002 0.0002 0.0001 0.0001 -0.0004 0.0002 -0.0006 0.0002

gvs1 0.0003 0.0002 0.0003 0.0002 0.0004 0.0002 0.0005 0.0003

gnb1 -0.0559 0.0125 -0.0530 0.0120 -0.0299 0.0168 0.0120 0.0173

gns1 0.0872 0.0133 0.0799 0.0132 0.0325 0.0166 0.0310 0.0188

gvb2 0.0003 0.0001 0.0004 0.0001 0.0003 0.0002 0.0004 0.0002

gvs2 0.0001 0.0002 -0.0001 0.0002 -0.0001 0.0002 -0.0001 0.0003

gnb2 0.0527 0.0112 0.0493 0.0106 0.0227 0.0165 0.0582 0.0162

gns2 -0.0317 0.0139 -0.0386 0.0141 -0.0114 0.0166 -0.0304 0.0191

log-lik. -0.884695 -0.881441 -0.834186 -0.813897

SIC 0.923623 0.920369 0.873114 0.852825

Q(10) 54.205 (0.001) 30.547 (0.290) 21.630 (0.756) 41.296 (0.039)

Q(20) 81.92 (0.104) 68.614 (0.422) 53.860 (0.877) 64.423 (0.567)

Q(30) 123.834 (0.127) 106.965 (0.483) 94.400 (0.803) 114.410 (0.294)

res. mean (-0.013, -0.021) (0.003, -0.009) (-0.003, 0.013) (-0.000, 0.022)

res. var.

 
0.963 0.592

0.592 2.128

!  
0.756 0.206

0.206 1.565

!  
0.724 1.119

1.119 3.433

!  
0.818 1.284

1.284 3.925

!
Table 17: ML estimates of the ACM-ARMA part of ICH model. ASK and BID Quote changes

in January and February for C.
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JANUARY FEBRUARY

ASK BID ASK BID

par. estimate std. dev estimate std. dev estimate std. dev estimate std. dev

µ1 -0.5500 0.2942 -0.2123 0.0733 -0.0168 0.0932 -0.3882 0.1584

µ2 -0.7316 0.3684 -0.1704 0.0587 -0.4724 0.2081 -0.0131 0.1230

c
(1)
1 0.5868 0.2123 0.8509 0.0487 0.4711 0.1971 0.2849 0.1621

a
(1)
11 0.1902 0.0750 0.0588 0.0436 0.2390 0.0788 0.0985 0.0869

a
(1)
12 0.3008 0.1009 0.0891 0.0404 0.2589 0.0792 0.1606 0.0847

a
(1)
21 0.1605 0.0788 0.0853 0.0502 0.2344 0.0995 0.2239 0.0862

a
(1)
22 0.2835 0.0688 0.1082 0.0367 0.2242 0.1013 0.1483 0.0814

gvb1 0.0001 0.0013 0.0008 0.0010 -0.0015 0.0013 -0.0001 0.0014

gvs1 0.0029 0.0009 0.0046 0.0013 0.0012 0.0012 0.0042 0.0016

gnb1 -0.0177 0.0349 -0.0539 0.0311 0.0449 0.0334 0.0157 0.0329

gns1 0.2292 0.0280 0.2004 0.0302 0.1373 0.0316 0.1315 0.0317

gvb2 0.0040 0.0010 0.0030 0.0008 0.0021 0.0010 0.0018 0.0010

gvs2 -0.0002 0.0014 -0.0026 0.0021 0.0004 0.0014 0.0003 0.0018

gnb2 0.2055 0.0305 0.1334 0.0237 0.1821 0.0306 0.0961 0.0275

gns2 0.0267 0.0354 -0.0135 0.0351 0.0948 0.0345 0.0258 0.0337

log-lik. -0.903721 -0.9260685 -0.984456 -0.992658

SIC 0.942650 0.9649967 1.023384 1.031596

Q(10) 43.891 (0.021) 36.591 (0.103) 33.448 (0.183) 37.436 (0.087)

Q(20) 91.458 (0.025) 89.369 (0.035) 68.640 (0.421) 70.946 (0.348)

Q(30) 132.239 (0.049) 139.606 (0.019) 108.483 (0.442) 90.471 (0.874)

res. mean (-0.009, -0.021) (-0.015, 0.004) (-0.004, -0.009) ( -0.007, 0.000)

res. var.

 
0.908 0.110

0.110 1.225

!  
0.873 0.063

0.063 1.205

!  
0.713 0.268

0.268 1.023

!  
0.713 0.310

0.310 1.621

!
Table 18: ML estimates of the ACM-ARMA part of ICH model. ASK and BID Quote changes

in January and February for HNZ.
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JANUARY FEBRUARY

ASK BID ASK BID

par. estimate std. dev estimate std. dev estimate std. dev estimate std. dev

µ1 -0.4935 0.2463 -0.5511 0.2259 1.7459 0.6286 0.1886 0.0842

µ2 -0.5536 0.2685 -0.5447 0.2239 1.0525 0.5991 0.1782 0.0843

c
(1)
1 0.5862 0.1639 0.6540 0.1258 -0.5182 0.2179 0.8476 0.0576

a
(1)
11 0.1454 0.0673 0.0977 0.0636 0.4077 0.1281 0.1102 0.0913

a
(1)
12 0.2973 0.0783 0.1219 0.0690 0.4181 0.1274 0.1718 0.0781

a
(1)
21 0.1816 0.0785 0.2783 0.0684 0.5147 0.1431 0.1649 0.0868

a
(1)
22 0.1943 0.0662 0.1153 0.0618 0.5003 0.1435 0.1790 0.0772

gvb1 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 -0.0003 0.0002

gvs1 0.0004 0.0001 0.0004 0.0001 0.0007 0.0002 0.0001 0.0002

gnb1 -0.0101 0.0102 -0.0018 0.0102 -0.0254 0.0157 -0.0223 0.0170

gns1 0.0551 0.0104 0.0609 0.0103 0.0298 0.0180 0.0413 0.0187

gvb2 0.0004 0.0001 0.0004 0.0001 0.0004 0.0002 0.0000 0.0001

gvs2 0.0000 0.0001 0.0002 0.0001 0.0002 0.0003 -0.0004 0.0002

gnb2 0.0466 0.0111 0.0539 0.0103 0.0646 0.0159 0.0743 0.0155

gns2 -0.0084 0.0117 -0.0088 0.0116 -0.0392 0.0192 -0.0509 0.0197

log-lik. -0.961045 -0.960572 -0.812708 -0.813106

SIC 0.999973 0.999501 0.851637 0.852034

Q(10) 68.006 (0.000) 33.589 (0.178) 37.693 (0.083) 35.949 (0.116)

Q(20) 97.082 (0.010) 73.581 (0.272) 78.656 (0.156) 86.128 (0.058)

Q(30) 138.612 (0.022) 107.832 (0.460) 120.818 (0.171) 117.157 (0.236)

res. mean (-0.015, -0.029) (-0.015, -0.016) (0.001, 0.004) ( 0.001, 0.008)

res. var.

 
0.958 0.504

0.504 2.289

!  
0.867 0.265

0.265 1.551

!  
1.215 1.747

1.747 3.937

!  
0.715 0.854

0.854 2.702

!
Table 19: ML estimates of the ACM-ARMA part of ICH model. ASK and BID Quote changes

in January and February for PFE.
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JANUARY FEBRUARY

ASK BID ASK BID

par. estimate std. dev estimate std. dev estimate std. dev estimate std. dev

µ1 -0.0880 0.1704 -0.4507 0.1828 0.1259 0.0956 0.0366 0.0186

µ2 -0.3341 0.1969 -0.6421 0.2027 0.0758 0.0627 0.0755 0.0235

c
(1)
1 0.3189 0.1330 0.3221 0.1027 0.8839 0.0824 0.9414 0.0173

a
(1)
11 0.0674 0.0996 0.0311 0.0864 0.0799 0.1629 -0.1036 0.0613

a
(1)
12 0.1576 0.1009 0.1138 0.0800 -0.0591 0.1235 -0.1556 0.0585

a
(1)
21 0.2268 0.0783 0.3109 0.0867 0.0649 0.1494 -0.1194 0.0628

a
(1)
22 -0.0999 0.0885 -0.0222 0.0869 -0.0193 0.1112 -0.1044 0.0634

gvb1 0.0000 0.0003 -0.0001 0.0003 -0.0003 0.0007 -0.0009 0.0005

gvs1 0.0005 0.0006 0.0014 0.0003 0.0001 0.0005 0.0005 0.0005

gnb1 -0.0500 0.0202 -0.0218 0.0176 -0.0122 0.0279 0.0168 0.0241

gns1 0.0776 0.0217 0.0741 0.0164 0.0969 0.0288 0.0729 0.0241

gvb2 0.0008 0.0002 0.0008 0.0002 0.0009 0.0006 0.0000 0.0003

gvs2 -0.0009 0.0005 0.0008 0.0004 -0.0011 0.0006 -0.0007 0.0005

gnb2 0.0886 0.0163 0.1106 0.0162 0.1117 0.0271 0.1066 0.0220

gns2 -0.0364 0.0200 -0.0522 0.0184 -0.0074 0.0304 -0.0708 0.0251

log-lik. -0.880110 -0.875897 -0.774573 -0.819780

SIC 0.919038 0.914826 0.813502 0.858709

Q(10) 44.521 (0.018) 27.297 (0.999) 44.120 (0.020) 27.412 (0.442)

Q(20) 99.441 (0.006) 56.020 (0.001) 93.870 (0.017) 61.937 (0.652)

Q(30) 139.109 (0.020) 92.268 (0.027) 121.646 (0.158) 99.856 (0.675)

res. mean (-0.004, -0.009) (0.888, 0.893) (-0.001, -0.009 ) ( 0.003, 0.000)

res. var.

 
0.870 0.135

0.135 1.407

!  
0.867 0.265

0.265 1.551

!  
0.941 1.406

1.406 3.515

!  
0.752 0.925

0.925 2.714

!
Table 20: ML estimates of the ACM-ARMA part of ICH model. ASK and BID Quote changes

in January and February for XOM.
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JANUARY FEBRUARY

ASK BID ASK BID

par. estimate std. dev estimate std. dev estimate std. dev estimate std. dev

κ0.5 0.6634 0.0650 0.7201 0.0922 0.7604 0.0229 0.7888 0.0245

µ̃ 0.2741 0.1702 0.3590 0.1694 0.4700 0.2508 0.5397 0.3264

β1 0.6180 0.1798 0.5293 0.2067 0.8335 0.1010 0.8108 0.1231

α1 0.1399 0.0356 0.0612 0.0343 0.0931 0.0229 0.1106 0.0256

ν0 -0.2204 0.2298 -0.4777 0.2416 -0.1869 0.0865 -0.2037 0.1230

ν1 0.0915 0.0448 0.1265 0.0616 0.0282 0.0145 0.0341 0.0191

ν2 0.0599 0.0252 0.0387 0.0243 0.0019 0.0099 0.0070 0.0119

ν3 -0.0229 0.0545 -0.0944 0.0562 -0.0504 0.0239 -0.0525 0.0318

ν4 0.0289 0.0321 0.0017 0.0354 -0.0228 0.0156 -0.0271 0.0191

δ 0.0654 0.0386 0.0046 0.0391 -0.0009 0.0254 -0.0450 0.0269

gvb 0.0002 0.0000 0.0002 0.0001 0.0003 0.0001 0.0003 0.0001

gvs 0.0001 0.0000 0.0002 0.0001 0.0003 0.0001 0.0003 0.0001

gnb -0.0137 0.0054 -0.0105 0.0059 -0.0124 0.0039 -0.0117 0.0040

gns -0.0011 0.0059 -0.0016 0.0062 -0.0109 0.0039 -0.0136 0.0043

log-lik. -1.113860 -1.125412 -2.872239 -2.879031

SIC 1.150193 1.161746 2.908572 2.915364

LB(10) 5.067 (0.080) 14.745 (0.001) 7.701 (0.021) 14.982 (0.001)

LB(20) 36.390 (0.028) 38.339 (0.017) 41.922 (0.006) 49.720 (0.001)

LB(30) 64.060 (0.016) 57.948 (0.052) 77.248 (0.001) 69.603 (0.005)

res. mean -0.003 -0.005 0.000 0.001

res. var. 0.863 0.881 0.945 1.005

Table 21:ML estimates for the GLARMA part of the ICH model (ASK and BID Quote changes

in January and February for C).
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JANUARY FEBRUARY

ASK BID ASK BID

par. estimate std. dev estimate std. dev estimate std. dev estimate std. dev

κ0.5 0.8462 0.2133 0.7878 0.1672 1.1119 0.0640 1.1153 0.0589

µ̃ -0.1514 0.3445 0.1229 0.2576 1.5419 0.3303 1.4167 0.2360

β1 -0.5124 0.1358 -0.2362 0.1697 0.0737 0.1678 0.2703 0.1124

α1 0.0868 0.0279 0.1174 0.0407 0.1957 0.0313 0.1988 0.0297

ν0 -2.4062 0.6617 -2.0558 0.6741 -0.9053 0.3524 -1.1010 0.2895

ν1 0.3678 0.1471 0.1921 0.1117 0.2030 0.0680 0.1327 0.0486

ν2 0.0691 0.1336 0.1351 0.1024 0.0949 0.0581 0.0377 0.0437

ν3 -0.5425 0.2291 -0.4808 0.2032 -0.2587 0.1243 -0.2927 0.0974

ν4 -0.0339 0.1428 -0.0668 0.1184 0.0037 0.0661 -0.0617 0.0587

δ 0.0244 0.0614 -0.1946 0.0636 0.1638 0.0409 -0.2494 0.0376

gvb 0.0009 0.0003 0.0006 0.0003 0.0007 0.0003 0.0009 0.0003

gvs 0.0008 0.0004 0.0005 0.0005 0.0020 0.0005 0.0008 0.0004

gnb 0.0218 0.0145 0.0422 0.0147 0.0159 0.0129 0.0485 0.0127

gns 0.0786 0.0171 0.0573 0.0183 0.0387 0.0154 0.0057 0.0135

log-lik. -0.601566 -0.597102 -1.980110 -1.904143

SIC 0.637899 0.633435 2.016443 1.940476

LB(10) 14.755 (0.001) 24.096 (0.000) 9.888 (0.007) 5.664 (0.059)

LB(20) 23.356 (0.025) 31.048 (0.002) 36.587 (0.000) 12.397 (0.414)

LB(30) 29.814 (0.123) 38.130 (0.018) 47.471 (0.001) 23.207 (0.390)

res. mean -0.003 -0.002 -0.000 -0.000

res. var. 1.101 0.999 1.004 0.927

Table 22:ML estimates for the GLARMA part of the ICH model (ASK and BID Quote changes

in January and February for HNZ).
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JANUARY FEBRUARY

ASK BID ASK BID

par. estimate std. dev estimate std. dev estimate std. dev estimate std. dev

κ0.5 0.8245 0.1282 0.8107 0.1243 0.9392 0.0367 0.9556 0.0407

µ̃ -0.1349 0.0635 -0.1421 0.0775 0.5363 0.2681 0.9471 0.3636

β1 0.9065 0.0433 0.8993 0.1245 0.7039 0.1179 0.5181 0.1621

α1 0.0861 0.0315 0.0752 0.0715 0.1319 0.0241 0.1452 0.0195

ν0 0.1639 0.1294 0.1299 0.1684 -0.0679 0.1691 -0.2888 0.2136

ν1 0.0232 0.0195 0.0127 0.0226 0.1340 0.0515 0.1797 0.0682

ν2 0.0380 0.0154 0.0260 0.0174 0.0072 0.0189 0.0217 0.0309

ν3 0.0224 0.0401 0.0200 0.0494 -0.0001 0.0402 -0.0367 0.0566

ν4 0.0520 0.0242 0.0485 0.0249 0.0047 0.0284 -0.0401 0.0410

δ 0.0005 0.0657 -0.0324 0.0576 0.0830 0.0342 -0.0449 0.0356

gvb 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000

gvs 0.0002 0.0001 0.0002 0.0001 0.0002 0.0000 0.0002 0.0000

gnb 0.0070 0.0103 0.0143 0.0094 -0.0032 0.0052 -0.0021 0.0058

gns 0.0125 0.0083 0.0089 0.0086 -0.0075 0.0054 -0.0054 0.0060

log-lik. -0.715621 -0.710645 -2.464914 -2.454040

SIC 0.751954 0.746978 2.501247 2.490373

LB(10) 3.828 (0.147) 11.741 (0.003) 7.517 (0.023) 5.737 (0.057)

LB(20) 10.079 (0.609) 30.198 (0.003) 16.272 (0.179) 14.957 (0.244)

LB(30) 24.628 (0.315) 41.560 (0.007) 26.643 (0.225) 26.322 (0.238)

res. mean -0.005 -0.005 -0.000 -0.000

res. var. 1.065 1.046 1.023 1.135

Table 23: ML estimates for the GLARMA part of the ICH model (ASK and BID Quote

changes in January and February for PFE).
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JANUARY FEBRUARY

ASK BID ASK BID

par. estimate std. dev estimate std. dev estimate std. dev estimate std. dev

κ0.5 0.6799 0.0852 0.6527 0.0788 0.9946 0.0359 0.9549 0.0339

µ̃ -0.0335 0.0725 -0.0104 0.0800 2.6594 0.5888 1.9423 0.6842

β1 0.7088 0.1429 0.7254 0.0595 -0.0993 0.2339 0.2386 0.2495

α1 0.0920 0.0261 0.1326 0.0248 0.1184 0.0327 0.1450 0.0262

ν0 -0.0757 0.1391 -0.0272 0.1314 -1.2662 0.4113 -1.0322 0.4816

ν1 0.0553 0.0332 0.0620 0.0257 0.3397 0.0891 0.2327 0.0866

ν2 0.0232 0.0197 0.0041 0.0197 0.0338 0.0491 0.0120 0.0382

ν3 0.0135 0.0370 0.0243 0.0438 -0.2654 0.1191 -0.2342 0.1247

ν4 0.0130 0.0267 0.0257 0.0282 -0.1690 0.0756 -0.1251 0.0724

δ 0.0907 0.0439 -0.0739 0.0404 0.0762 0.0374 -0.1083 0.0376

gvb 0.0003 0.0001 0.0004 0.0001 0.0005 0.0001 0.0004 0.0001

gvs 0.0007 0.0001 0.0003 0.0002 0.0004 0.0002 0.0003 0.0001

gnb 0.0114 0.0070 0.0105 0.0071 -0.0085 0.0070 0.0009 0.0069

gns 0.0113 0.0077 0.0121 0.0093 0.0051 0.0071 0.0003 0.0079

log-lik. -1.085382 -1.094481 -2.783337 -2.717013

SIC 1.121715 1.130814 2.819670 2.753346

LB(10) 4.631 (0.099) 3.475 (0.176) 29.780 (0.000) 16.892 (0.000)

LB(20) 23.591 (0.023) 12.684 (0.392) 43.900 (0.000) 28.760 (0.004)

LB(30) 35.246 (0.037) 17.861 (0.714) 56.944 (0.000) 42.964 (0.005)

res. mean -0.003 -0.005 -0.000 -0.000

res. var. 1.021 0.970 0.994 1.046

Table 24: ML estimates for the GLARMA part of the ICH model (ASK and BID Quote

changes in January and February for XOM).
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JANUARY FEBRUARY

ASK BID ASK BID

par. estimate std. dev estimate std. dev estimate std. dev estimate std. dev

κ̆ 1.2477 0.0456 1.3542 0.0484 1.0630 0.0411 1.2216 0.0551

σ2 0.3410 0.0643 0.4699 0.0708 0.5149 0.0799 0.7600 0.1020

µ̆ 3637.5866 3694.8427 149.2934 602.0510 164.1058 745.0565 1378.5237 2061.8022

ᾰ 0.1353 0.0665 0.0427 0.0110 0.0185 0.0115 0.0486 0.0371

β̆ 0.7455 0.1739 0.9387 0.0164 0.9101 0.0490 0.8000 0.2199

ν0 2645.9912 1485.9435 506.0574 1092.3704 1162.3150 934.4337 1140.9233 1010.1143

ν1 537.2453 419.4764 98.0804 80.2768 123.9548 87.0491 182.7950 168.6599

ν2 155.3532 212.6854 32.6720 110.0792 105.0660 77.4693 -155.0393 157.4397

ν3 795.6364 526.9868 52.6806 348.5421 275.3065 284.3753 458.1371 465.3607

ν4 577.3692 372.0621 -142.0897 194.1498 210.0334 147.6229 169.7849 167.5052

gvb 2.0105 0.9319 0.8960 1.2411 2.0036 1.1212 1.7227 0.8899

gvs -0.9846 0.1553 1.0081 1.2067 3.9981 1.1246 2.0794 1.0227

gvb -423.9547 62.6804 -126.2017 68.1230 -60.0886 41.1922 -230.9233 45.4289

gvs -137.3289 78.4262 -15.5874 78.1084 -224.3407 44.8365 -62.7379 49.0736

log-lik. -10.728111 -10.524168 -9.867765 -9.718491

SIC 10.764045 10.560101 9.903699 9.754425

LB(10) 12.733 (0.002) 26.182 (0.000) 12.441 (0.002) 7.586 (0.023)

LB(20) 26.307 (0.010) 34.503 (0.001) 15.618 (0.209) 35.677 (0.000)

LB(30) 40.061 (0.011) 43.296 (0.004) 20.083 (0.578) 49.692 (0.001)

res. mean 0.990 0.989 0.930 1.003

res. var. 1.094 1.366 1.957 2.482

Table 25: ML estimates for the ACD model (ASK and BID Depths in January and February

for C).
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JANUARY FEBRUARY

ASK BID ASK BID

par. estimate std. dev estimate std. dev estimate std. dev estimate std. dev

κ̆ 1.0729 0.0353 1.3570 0.0518 1.1472 0.0573 1.2784 0.0403

σ2 0.3096 0.0642 0.6087 0.0807 0.7524 0.1220 0.5425 0.0711

µ̆ -107.2918 392.9346 261.3919 354.1579 782.2287 848.5605 32.1001 183.2524

ᾰ 0.3855 0.0682 0.4048 0.0663 0.3226 0.1002 0.3788 0.0538

β̆ 0.4997 0.0967 0.3145 0.1003 0.4160 0.2172 0.2354 0.0719

ν0 2283.4169 844.0336 2071.9178 619.9100 1153.1301 734.6020 1132.7040 363.1264

ν1 155.6545 129.6259 122.6115 102.2161 74.1934 129.4176 93.8579 64.2014

ν2 -98.2901 117.2480 -160.3546 96.6188 99.1996 129.7212 122.5115 52.5749

ν3 582.5895 284.7249 608.6763 220.4283 264.6824 252.1419 288.3833 110.7908

ν4 309.8987 143.1080 163.4427 129.1001 119.5453 147.5954 10.0660 64.1947

gvb -0.6287 0.8494 3.7599 1.7752 0.6970 1.2636 0.2167 0.5468

gvs 2.8158 6.7184 -0.9620 0.6093 -0.8596 1.2488 -0.3035 0.5677

gvb -9.2654 55.8232 -10.5535 30.1159 46.2116 45.9437 5.1742 14.6962

gvs -61.0474 87.0347 -39.8773 33.2257 -62.3278 44.6463 30.7505 17.6156

log-lik. -9.489292 -9.031831 -8.770981 -8.153588

SIC 9.525226 9.067765 8.806915 8.189522

LB(10) 22.653 (0.000) 27.308 (0.000) 4.956 (0.084) 47.906 (0.000)

LB(20) 33.239 (0.001) 40.384 (0.000) 16.786 (0.158) 50.674 (0.000)

LB(30) 39.162 (0.014) 51.912 (0.000) 19.930 (0.587) 55.291 (0.000)

res. mean 1.005 0.983 0.832 0.990

res. var. 2.318 2.166 2.919 2.488

Table 26: ML estimates for the ACD model (ASK and BID Depths in January and February

for HNZ).
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JANUARY FEBRUARY

ASK BID ASK BID

par. estimate std. dev estimate std. dev estimate std. dev estimate std. dev

κ̆ 1.0574 0.0359 1.0265 0.0329 1.1769 0.0497 1.1314 0.0915

σ2 0.1735 0.0522 0.0486 0.0437 0.8381 0.0962 0.7553 0.2405

µ̆ 2216.0872 4022.0374 1635.4147 1395.3030 -446.8148 861.8693 1858.4472 20361.8093

ᾰ 0.1364 0.0660 0.1657 0.0327 0.0572 0.0385 0.0721 0.3889

β̆ 0.7696 0.1560 0.7076 0.0721 0.8306 0.0935 0.5774 2.6565

ν0 3765.4461 1939.5303 4458.8249 1802.5804 3273.0463 940.5614 1260.7069 4673.7475

ν1 278.9140 560.5521 211.6184 234.6752 174.5126 135.9883 291.1113 2583.7655

ν2 290.0288 360.0921 3.8856 21.2341 -115.9292 84.2106 -48.9159 370.1939

ν3 826.3892 675.9825 1420.5952 608.8783 1017.7633 295.7756 146.2285 2989.7504

ν4 329.3113 364.6858 413.8309 325.4268 463.2363 174.4009 136.8474 1047.8481

gvb -0.8645 0.1755 0.0365 0.3315 -0.5575 0.1260 -0.3457 0.3437

gvs -1.4889 0.2464 0.8939 0.6934 -0.3969 0.5845 -0.1256 0.5205

gvb -123.5881 74.4629 -196.3755 40.8454 -4.9949 61.5674 9.4202 48.8479

gvs -175.8359 64.6271 -64.0922 69.9103 -41.3834 51.4765 -20.9788 133.1431

log-lik. -10.889348 -10.704276 -9.391248 -9.252525

SIC 10.925282 10.740210 9.427182 9.288457

LB(10) 18.035 (0.000) 9.174 (0.010) 36.794 (0.000) 12.938 (0.002)

LB(30) 20.754 (0.054) 14.534 (0.268) 63.827 (0.000) 21.512 (0.043)

LB(50) 30.528 (0.106) 18.044 (0.703) 78.097 (0.000) 31.894 (0.079)

res. mean 1.003 1.001 0.775 0.802

res. var. 1.465 1.050 2.524 2.130

Table 27: ML estimates for the ACD model (ASK and BID Depths in January and February

for PFE).
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JANUARY FEBRUARY

ASK BID ASK BID

par. estimate std. dev estimate std. dev estimate std. dev estimate std. dev

κ̆ 1.2873 0.0515 1.3930 0.0617 1.2031 0.0575 1.2825 0.0600

σ2 0.5149 0.0956 0.6840 0.1048 0.8510 0.1097 0.8105 0.0990

µ̆ 1132.9629 838.1219 1534.3231 655.6646 4291.1001 1366.7403 473.5758 342.5075

ᾰ 0.1779 0.0408 0.0935 0.0387 0.1822 0.0662 0.0956 0.0306

β̆ 0.5068 0.1144 0.7607 0.1182 -0.0227 0.1608 0.6667 0.1087

ν0 2853.2287 1388.9896 -832.6357 736.2792 89.4258 1186.5859 685.0321 529.9506

ν1 78.7482 201.8501 -162.7360 143.5914 200.0361 276.7518 36.7594 60.7676

ν2 193.2589 179.3204 -263.5289 95.7324 357.6511 248.4492 96.2155 67.5272

ν3 425.5000 413.8853 -326.1001 243.2906 -483.2380 471.0564 240.0031 174.6285

ν4 315.4891 245.0953 -327.2422 165.9222 64.9887 308.7760 41.3028 92.9858

gvb 0.2190 0.5921 -0.3662 0.2970 -0.9028 0.1950 -0.1994 0.2496

gvs -0.9620 0.1847 -0.3848 0.7603 0.3954 0.9175 0.2193 0.4274

gvb -26.5274 39.8423 -1.0112 84.0902 24.0475 34.3836 -5.4484 22.5859

gvs 50.3050 44.2292 48.4942 48.3563 -33.0378 37.6274 19.8489 26.6354

log-lik. -9.756858 -9.682785 -8.876363 -8.736100

SIC 9.792792 9.718719 8.912297 8.772033

LB(10) 16.281 (0.000) 7.768 (0.021) 7.436 (0.024) 3.423 (0.181)

LB(20) 41.099 (0.000) 14.081 (0.296) 9.311 (0.676) 15.239 (0.229)

LB(30) 51.549 (0.000) 28.369 (0.173) 21.690 (0.479) 18.710 (0.663)

res. mean 0.963 0.935 0.752 0.840

res. var. 1.239 1.413 1.603 1.662

Table 28: ML estimates for the ACD model (ASK and BID Depths in January and February

for XOM).

JANUARY FEBRUARY

Quote changes Depth Quote changes Depth

ASK BID ASK BID ASK BID ASK BID

Quote changes ASK 1.000 1.000

Quote changes BID 0.823 1.000 0.681 1.000

Depth ASK 0.004 -0.051 1.000 -0.059 -0.085 1.000

Depth BID 0.021 -0.079 0.123 1.000 0.018 0.003 0.124 1.000

Table 29: Contemporaneous dependence of supply liquidity measure components for C.

JANUARY FEBRUARY

Quote changes Depth Quote changes Depth

ASK BID ASK BID ASK BID ASK BID

Quote changes ASK 1.000 1.000

Quote changes BID 0.554 1.000 0.274 1.000

Depth ASK 0.106 -0.009 1.000 -0.101 -0.036 1.000

Depth BID 0.033 -0.080 0.092 1.000 0.059 -0.023 0.053 1.000

Table 30: Contemporaneous dependence of supply liquidity measure components for HNZ.
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JANUARY FEBRUARY

Quote changes Depth Quote changes Depth

ASK BID ASK BID ASK BID ASK BID

Quote changes ASK 1.000 1.000

Quote changes BID 0.778 1.000 0.731 1.000

Depth ASK 0.094 0.015 1.000 0.014 -0.008 1.000

Depth BID -0.048 -0.134 0.142 1.000 0.031 0.011 0.036 1.000

Table 31: Contemporaneous dependence of supply liquidity measure components for PFE.

JANUARY FEBRUARY

Quote changes Depth Quote changes Depth

ASK BID ASK BID ASK BID ASK BID

Quote changes ASK 1.000 1.000 0.693

Quote changes BID 0.763 1.000 0.693 1.000

Depth ASK 0.025 0.006 1.000 0.030 0.060 1.000

Depth BID -0.014 -0.015 0.156 1.000 0.007 0.031 0.035 1.000

Table 32: Contemporaneous dependence of supply liquidity measure components for XOM.
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