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Abstract

This paper shows how to use realised kernels to carry out efficient feasible inference on the ex-
post variation of underlying equity prices in the presence of simple models of market frictions.
The issue is subtle with only estimators which have symmetric weights delivering consistent
estimators with mixed Gaussian limit theorems. The weights can be chosen to achieve the best
possible rate of convergence and to have an asymptotic variance which is close to that of the
maximum likelihood estimator in the parametric version of this problem. Realised kernels can
also be selected to (i) be analysed using endogenously spaced data such as that in databases
on transactions, (ii) allow for market frictions which are endogenous, (iii) allow for temporally
dependent noise. The finite sample performance of our estimators is studied using simulation,
while empirical work illustrates their use in practice.
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1 Introduction

In the last five years the harnessing of high frequency financial data has lead to substantial improve-

ments in our understanding of financial volatility. The idea behind this is to use quadratic variation

as a measure of the ex-post variation of asset prices. Estimators of increments of this quantity can

allow us, for example, to improve forecasts of future volatility and estimate parametric models of

time varying volatility. The most commonly used estimator of this type is the realised variance

(e.g. Andersen, Bollerslev, Diebold, and Labys (2001), Meddahi (2002) and Barndorff-Nielsen and

Shephard (2002)), which the recent econometric literature has shown has good properties when

applied to 10 to 30 minute return data for frequently traded assets.

A weakness with realised variance is that it can be unacceptably sensitive to market frictions

when applied to returns recorded over shorter time intervals such as 1 minute, or even more am-

bitiously, 1 second (e.g. Zhou (1996), Fang (1996) and Andersen, Bollerslev, Diebold, and Labys

(2000)). In this paper we study the class of realised kernel estimators of quadratic variation. We

show how to design these estimators to be robust to certain types of frictions and to be efficient.

The problem of estimating the quadratic variation is, in some ways, similar to the estimation of

the long-run variance in stationary time series. For example, the realized variance is analogous to the

sum-of-squares variance estimator. The moving average filter of Andersen, Bollerslev, Diebold, and

Ebens (2001) and Hansen, Large, and Lunde (2005) and the autoregressive filter of Bollen and Inder

(2002), are estimators that use pre-whitening techniques — see also Bandi and Russell (2005a). Aı̈t-

Sahalia, Mykland, and Zhang (2005) and Oomen (2005) propose parametric estimators. The two

scale estimator of Zhang, Mykland, and Aı̈t-Sahalia (2005) was the first consistent nonparametric

estimator for stochastic volatility plus noise processes. It is related to the earlier work of Zhou

(1996) on scaled Brownian motion plus noise. The multiscale estimator of Zhang (2006) is more

efficient than the two scale estimator. An alternative is due to Large (2005), whose alternation

estimator applies when prices move by a sequence of single ticks. Finally, Delattre and Jacod (1997)

studied the effect of rounding on realised variances.

More formally, our interest will be in inference for the ex-post variation of log-prices over some

arbitrary fixed time period, such as a day, using estimators of realised kernel type. In order to

focus on the core issue we represent this period as the single interval [0, t]. For a continuous time

log-price process X and time gap δ > 0 our flat-top realised kernels take on the following form

K̃(Xδ) = γ0(Xδ) +
H∑

h=1

k

(
h − 1

H

){
γh(Xδ) + γ−h(Xδ)

}
.

Here the non-stochastic k(x) for x ∈ [0, 1] is a weight function and the h-th realised autocovariance
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is

γh(Xδ) =
n∑

j=1

(
Xδj − Xδ(j−1)

) (
Xδ(j−h) − Xδ(j−h−1)

)
,

with h = −H, ...,−1, 0, 1, ...,H and n = ⌊t/δ⌋. We will think of δ as being small and so Xδj −
Xδ(j−1) represents the j-th high frequency return, while γ0(Xδ) is the realised variance of X. Here

K̃(Xδ) − γ0(Xδ) is the realised kernel correction to realised variance for market frictions.

We show that if k(0) = 1, k(1) = 0 and H = cn2/3 then the resulting estimator is asymptotically

mixed Gaussian, converging at rate n1/6. Here c is a estimable constant which can be optimally

chosen as a function of k, the variance of the noise and a function of the volatility path, to minimise

the asymptotic variance of the estimator. The special case of a so-called flat-top Bartlett kernel,

where k(x) = 1 − x, is particularly interesting as its asymptotic distribution is the same as that of

the two scale estimator.

When we additionally require that k′(0) = 0 and k′(1) = 0 then by taking H = cn1/2 the

resulting estimator is asymptotically mixed Gaussian, converging at rate n1/4, which we know is

the fastest possible rate. When k(x) = 1 − 3x2 + 2x2 this estimator has the same asymptotic

distribution as the multiscale estimator.

We use our novel realised kernel framework to make three innovations to the literature: (i) we

design a kernel to have an asymptotic variance which is smaller than the multiscale estimator, (ii)

we design K̃(Xδ) for data with endogenously spaced data, such as that in databases on transactions

(see Renault and Werker (2005) for the importance of this), (iii) we cover the case where the market

frictions are endogenous. All of these results are new and the last two of them are essential from a

practical perspective.

Clearly these realised kernels are related to so-called HAC estimators discussed by, for example,

Newey and West (1987) and Andrews (1991). The flat-top of the kernel, where a unit weight is

imposed on the first autocovariance, is related to the flat-top literature initiated by Politis and

Romano (1995) and Politis (2005). However, the realised kernels are not scaled by the sample size,

which has a great number of technical implications and makes their analysis subtle.

The econometric literature on realised kernels was started by Zhou (1996) who proposed K̃(Xδ)

with H = 1. This suffices for unbiasedness under a simple model for frictions where the population

values of higher-order autocovariances of the market frictions are zero. However, the estimator

is inconsistent. Hansen and Lunde (2006) use realised kernel type estimators, with k(x) = 1 for

general H to characterize the second order properties of market microstructure noise. Again these

are inconsistent estimators. Some analysis of the finite sample performance of a type of inconsistent

realised kernel is provided by Bandi and Russell (2005b), who focus on the selection of H in the

case where k(x) = 1 − x, the Bartlett kernel.
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In Section 2 we detail our notation and assumptions about the efficient price process, market

frictions and realised kernels. In Section 3 we give a central limit theory for γh(Xδ). Section 4 then

looks at the corresponding properties of realised kernels. In Section 5 we study the effect irregularly

spaced data has on our theory and extend the analysis of realised kernels to the case where the

noise is temporally dependent and endogenous. Section 6 performs a Monte Carlo experiment to

assess the accuracy of our feasible central limit theory. In Section 7 we apply the theory to some

data taken from the New York stock exchange and in Section 8 we draw conclusions. A lengthy

Appendix details the proofs of the results given in the paper.

2 Notation, definitions and background

2.1 Semimartingales and quadratic variation

The fundamental theory of asset prices says that the log-price at time t, Yt, must, in a frictionless

arbitrage free market, obey a semimartingale process (written Y ∈ SM) on some filtered probability

space
(
Ω,F , (Ft)t≥T ∗ , P

)
, where T ∗ ≤ 0. Introductions to the economics and mathematics of

semimartingales are given in Back (1991) and Protter (2004). It is unusual to start the clock of a

semimartingale before time 0, but this raises no technical difficulty and eases the exposition. We

think of 0 as the start of an economic day and sometimes it is useful to use data from the previous

day. Alternatively we could define γh(Xδ) as using data from time 0 to t by changing the range of

the summation to j = H +1 and n−H and then scaling the resulting estimator. All the theoretical

properties we discuss in this paper would then follow in the same way as here.

Crucial to semimartingales, and to the economics of financial risk, is the quadratic variation

(QV) process of Y ∈ SM. This can be defined as

[Y ]t = p− lim
n→∞

tj≤t∑

j=1

(
Ytj − Ytj−1

)2
, (1)

(e.g. Protter (2004, p. 66–77) and Jacod and Shiryaev (2003, p. 51)) for any sequence of deter-

ministic partitions 0 = t0 < t1 < ... < tn = T with supj{tj+1 − tj} → 0 for n → ∞. Discussion of

the case of stochastic spacing {tj} will be given in Section 5.1.

The most familiar semimartingales are of Brownian semimartingale type (Y ∈ BSM)

Yt =

∫ t

0
audu +

∫ t

0
σudWu, (2)

where a is a predictable locally bounded drift, σ is a càdlàg volatility process and W is a Brownian

motion. For reviews of the econometrics of this type of process see, for example, Ghysels, Harvey,

and Renault (1996) and Shephard (2005). If Y ∈ BSM then

[Y ]t =

∫ t

0
σ2

udu.

4



In some of our asymptotic theory we also assume, for simplicity of exposition, that

σt = σ0 +

∫ t

0
a#

u du +

∫ t

0
σ#

u dWu +

∫ t

0
v#
u dVu, (3)

where a#, σ# and v# are adapted càdlàg processes, with a# also being predictable and locally

bounded and V is Brownian motion independent of W . Much of what we do here can be extended

to allow for jumps in σ, following the details discussed in Barndorff-Nielsen, Graversen, Jacod, and

Shephard (2006), but we will not address that here.

2.2 Assumptions about noise

We write the effects of market frictions as U , so that we observe the process

X = Y + U, (4)

and think of Y ∈ BSM as the efficient price. Our scientific interest will be in estimating [Y ]t. In

the main part of our work we will assume that Y ⊥⊥ U where, in general, A ⊥⊥B denotes that A and

B are independent. From a market microstructure theory viewpoint this is a strong assumption as

one may expect U to be correlated with increments in Y . However, the empirical work of Hansen

and Lunde (2006) suggests this independence assumption is not too damaging statistically when we

analyse data in thickly traded stocks recorded every minute. In Section 5.3 we will show realised

kernels are consistent when this assumption is relaxed.

Furthermore we mostly work under a white noise assumption about the U process (U ∈ WN )

which we assume has

E(Ut) = 0, Var(Ut) = ω2, Var(U2
t ) = λ2ω4, Ut ⊥⊥ Us

for any t, s, λ ∈R
+. This white noise assumption is unsatisfactory from a number of viewpoints (e.g.

Phillips and Yu (2006) and Kalnina and Linton (2006)) but is a useful starting point if we think

of the market frictions as operating in tick time (e.g. Bandi and Russell (2005c), Zhang, Mykland,

and Aı̈t-Sahalia (2005) and Hansen and Lunde (2006)). A feature of U ∈ WN is that [U ]t = ∞.

Thus U /∈ SM and so in a frictionless market would allow arbitrage opportunities. Hence it only

makes sense to add processes of this type when there are frictions to be modelled. In Section 5.2

we will show our kernel can be made to be consistent when the U ∈ WN assumption is dropped.

This type of property has been achieved earlier by the two scale estimator of Aı̈t-Sahalia, Mykland,

and Zhang (2006).
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2.3 Defining the realised autocovariation process

We measure returns over time spans of length δ. Define, for any processes X and Z,

γh(Zδ,Xδ)t =

n∑

j=1

(
Zjδ − Z(j−1)δ

) (
X(j−h)δ − X(j−h−1)δ

)
, h = −H, ...,−1, 0, 1, 2, ...,H.

We call γh(Xδ) = γh(Xδ ,Xδ) the realised autocovariation process, while noting that

γh(Xδ) = γh(Yδ) + γh(Uδ) + γ̃h(Yδ, Uδ), where γ̃h(Yδ, Uδ) = γh(Yδ, Uδ) + γ−h(Yδ, Uδ). (5)

The case of realised QV has a special notation [Xδ ] = γ0(Xδ). The daily increments of this

process are called realised variances, their square root the realised volatility. Realised volatility

has a very long history. It appears in, for example, Rosenberg (1972), Merton (1980) and French,

Schwert, and Stambaugh (1987), with Merton (1980) making the implicit connection with the case

where δ ↓ 0 in the pure scaled Brownian motion plus drift case. For more general processes a

closer connection between realised QV and QV, and its use for econometric purposes, was made in

Andersen, Bollerslev, Diebold, and Labys (2001), Comte and Renault (1998) and Barndorff-Nielsen

and Shephard (2002).

2.4 Defining the realised kernel

We study the realised kernel

K̃(Xδ) = γ0(Xδ) +

H∑

h=1

k

(
h − 1

H

)
γ̃h(Xδ), γ̃h(Xδ) = γh(Xδ) + γ−h(Xδ), (6)

when k(0) = 1 and k(1) = 0, noting that K̃(Xδ) = K̃(Yδ) + K̃(Uδ) + 2K̃(Yδ, Uδ). Throughout we

will write, using ⊺ to denote a transpose,

γ(Xδ) = {γ0(Xδ), 2γ1(Xδ), ..., 2γH(Xδ)}⊺ , γ̃(Xδ) = {γ0(Xδ), γ̃1(Xδ), ..., γ̃H(Xδ)}⊺ ,

γ̃(Yδ, Uδ) = (γ0(Yδ, Uδ), γ̃1(Yδ, Uδ), ..., γ̃H(Yδ, Uδ))
⊺ .

An implication of our analysis will be that the asymmetric kernel

K(Xδ) = γ0(Xδ) + 2

H∑

h=1

k

(
h − 1

H

)
γh(Xδ) (7)

is inconsistent and so should be avoided in high frequency financial econometrics.

2.5 Maximum likelihood estimator of QV

In order to put non-parametric results in context, it is helpful to have a parametric benchmark.

In this subsection we recall the behaviour of the maximum likelihood (ML) estimator of σ2 = [Y ]1

when Yt = σWt and where the noise is Gaussian. All the results we state here are already known.

6



Given Y ⊥⊥ U and taking t = 1 it follows that



X1/n − X0

X2/n − X1/n
...

X1 − X(n−1)/n


 ∼ N







0
0
...
0


 ,

σ2

n
I +




2ω2 • • •
−ω2 2ω2 • •

0 −ω2 2ω2 •
...

. . .
. . .

. . .





 .

Let σ̂2
ML and ω̂2

ML denote the ML estimators. Their asymptotic properties are given from classical

results about the MA(1) process. By adopting the expression given in Aı̈t-Sahalia, Mykland, and

Zhang (2005, Proposition 1) to our notation, we have that for ω2 > 0
{

n1/4
(
σ̂2

ML − σ2
)

n1/2
(
ω̂2

ML − ω2
)
}

L→ N

(
0,

(
8ωσ3 0

0 2ω4

))
. (8)

This shows that σ̂2
ML converges at quite a slow rate. This is a familiar result from the work of, for

example, Stein (1987) and Gloter and Jacod (2001a, 2001b).

The special case where there is no market microstructure noise, (i.e. the true value of ω2 = 0)

results in faster rates of convergence for σ̂2
ML, since

n1/2
(
σ̂2

ML − σ2
) L→ N

(
0, 6σ4

)
. (9)

When ω2 is also known a priori to be zero, and so is not estimated, then

n1/2
(
σ̂2

ML − σ2
) L→ N

(
0, 2σ4

)
. (10)

3 Central limit theory for γ(Xδ) and γ̃(Xδ)

3.1 Core result

Here we will study the large sample behaviour of the contributions to γ(Xδ). These results will be

used in the next Section to derive the properties of K̃w(Xδ) and so to select k to produce good

estimators of [Y ]. Throughout this paper
Ls→ will denote convergence in law stably, which will be

discussed in some detail in a moment.

Theorem 1 Suppose that Y ∈ BSM and (3) holds, then as δ ↓ 0 for the Y component alone

δ−1/2




[Yδ]t −
∫ t
0 σ2

udu
γ1(Yδ)

...
γH(Yδ)




Ls→ MN

(
0, A ×

∫ t

0
σ4

udu

)
, A =




2 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


 .

Here MN denotes a mixed normal distribution and γh(Yδ) − γ−h(Yδ) = Op(δ).

If U ∈ WN and Y ⊥⊥ U then γ̃(Yδ, Uδ)
Ls→ MN

(
0, 2ω2[Y ]B

)
, where B is a (H + 1) × (H + 1)

symmetric matrix with block structure

B =

(
B11 B12

B21 B22

)
, B22 =




2 • • •
−1 2 • •
. . .

. . .
. . . •

· · · 0 −1 2


 , B11 =

(
1 •
−1 2

)
, B21 =




0 −1
0 0
...

...
0 0


 ,
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B12 = B⊺

21. Here B22 is a (H − 1) × (H − 1) symmetric matrix.

Finally, when U ∈ WN and writing n = ⌊t/δ⌋, for n ≥ H

E {γ(Uδ)} = E {γ̃(Uδ)} = 2ω2n (1,−1, 0, 0, ..., 0)⊺ ,

Cov {γ(Uδ)} = 4ω4 (nC + D) , Cov {γ̃(Uδ)} = 4ω4
(
nC + D̃

)
. (11)

Here the (H + 1) × (H + 1) symmetric matrices C, D and D̃ have block structure

C =

(
C11 C12

C21 C22

)
, D =

(
D11 D12

D21 D22

)
, D̃ =

(
D̃11 D̃12

D̃21 D̃22

)
,

where the (H − 1) × (H − 1) and (H − 1) × 2 dimensional matrices are

C22 =




6 • • • •
−4 6 • • •
1 −4 6 • •
0 1 −4 6 •
...

. . .
. . .

. . .
. . .




, C21 =




1 −4
0 1
0 0
...

...
0 0




, D22 =




−2 • • • •
2 −2 • • •
−1 2 −2 • •
0 −1 2 −2 •
...

. . .
. . .

. . .
. . .




,

D21 =




−1 2
0 −1
0 0
...

...
0 0




, D̃22 =




−7 • • • • •
6 −10 • • • •
−2 8 −13 • • •
0 −2.5 10 −16 • •
...

...
. . .

. . .
. . .

...

0 0 · · · −H
2 2H −3H − 1




, D̃21 =




−1 4
0 −3

2
0 0
...

...
0 0




,

where C12 = C⊺

21, D12 = D⊺

21 and D̃12 = D̃⊺

21. The 2 × 2 matrices C11, D11 and D̃11 are

C11 =

(
1 + λ2 −2 − λ2

−2 − λ2 5 + λ2

)
,D11 =

(
−λ2/2 1 + λ2/2

1 + λ2/2 −2

)
, D̃11 =

(
−λ2/2 λ2/2 + 1

λ2/2 + 1 −λ2/2 − 7/2

)
.

Lastly γh(Uδ)t − γ−h(Uδ)t = Op(1).

3.2 Comments

3.2.1 Stable convergence

The concept and role of stable convergence may be unfamiliar to some readers and we therefore

add some words of explanation. The concise mathematical definition is as follows. Let X#
n denote

a sequence of random variables defined on a probability space (Ω,F , P ). Then we say that X#
n

converges stably in law if there exists a probability measure µ on (Ω × R,F×B) (where B denotes

the Borel σ-algebra on R) such that for every bounded random variable V on (Ω,F , P ) and every

bounded and continuous function f on R we have that, for n → ∞,

E
(
V f
(
X#

n

))
→
∫

V (ω) f (x)µ (dω,dx) .
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If X#
n converges stably in law then, in particular, it converges in distribution (or in law or weak

convergence), the limiting law being µ (Ω, ·). Accordingly, one says that X#
n converges stably to

some random variable X# if there exists a probability measure µ, as above, such that X# has law

µ (Ω, ·). This concept and its extension to stable convergence of processes is discussed in Jacod

and Shiryaev (2003, pp. 512-518). For earlier discussions see, for example, Rényi (1963), Aldous

and Eagleson (1978), Hall and Heyde (1980, pp. 56-58) and Jacod (1997). An early use of this

concept in econometrics was Phillips and Ouliaris (1990). It is used extensively in, for example,

Barndorff-Nielsen, Graversen, Jacod, and Shephard (2006).

However, this formalisation does not reveal the key property of stable convergence which is that

X#
n

Ls→ X# stably implies that for any random variable Z, the pair (Z,X#
n ) converges in law to

(
Z,X#

)
. Consider the following simple example of the above result. Let

X#
n = δ−1/2

(
[Yδ]t −

∫ t

0
σ2

udu

)

and Z =
√∫ t

0 σ4
udu. Our focus is on X#

n /
√

Z and our convergence in law stably implies that

δ−1/2

(
[Yδ]t −

∫ t

0
σ2

udu

)
/

√∫ t

0
σ4

udu
L→ N(0, 2). (12)

Without the convergence in law stably, (12) could not be deduced. The following Lemma is helpful

in using this concept.

Lemma 1 Let Y #
n and Z#

n (n = 1, 2, ...) be sequences of random variables, defined on some proba-

bility space (Ω,F , P ), and suppose that Y #
n converges stably to a random variable Y # and that Z#

n

converges in probability to 0, i.e. we have Y #
n

Ls→ Y # and Z#
n

p→ 0 for n → ∞. (Here Y # may be

defined on an extension of (Ω,F , P ).) Then X#
n = Y #

n + Z#
n

Ls→ Y #.

3.2.2 Related results

The asymptotic distribution

δ−1/2 ([Yδ]t − [Y ]t)
Ls→ MN

(
0, 2

∫ t

0
σ4

udu

)
(13)

appears in Jacod (1994), Jacod and Protter (1998) and Barndorff-Nielsen and Shephard (2002).

This estimator has the efficiency of the ML estimator (10) in the pure Brownian motion case.

The extension of the limiting results to deal with more general realised autocovariances is new.

We do this here in terms of the γ̃h = γh + γ−h as they will be key later

δ−1/2




[Yδ]t −
∫ t
0 σ2

udu
γ̃1(Yδ)

...
γ̃H(Yδ)




Ls→ MN


0,




2 0 · · · 0
0 4 · · · 0
...

...
. . .

...
0 0 · · · 4


×

∫ t

0
σ4

udu


 .
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We now turn our attention to some simple kernels. The most interesting special case is

δ−1/2 ([Yδ]t + γ̃1(Yδ) − [Y ]t)
Ls→ MN

(
0, 6

∫ t

0
σ4

udu

)
, (14)

which achieves the bound (9).

The main impact of the noise is through the γ̃(Uδ) term. The mean and variance of [Uδ] = γ0(Uδ)

was studied by, for example, Fang (1996), Bandi and Russell (2005c) and Zhang, Mykland, and

Aı̈t-Sahalia (2005). Note that both the mean and variance of [Uδ] explode as n → ∞. Of course

these features are passed onto [Xδ] making it inconsistent, thus motivating this literature. The bias

of [Uδ] is exactly balanced by that of γ̃1(Uδ), so producing the unbiased but inconsistent estimator

[Xδ]+ γ̃1(Xδ) with (e.g. Zhou (1996)) E([Uδ ]+ γ̃1(Uδ)) = 0 and Var([Uδ]+ γ̃1(Uδ)) = 4ω4 (2n − 1.5).

4 Behaviour of kernels

4.1 Core result

In this Section we derive the asymptotic behaviour of arbitrary realised kernels. In Section 4.3 we

derive a way of choosing the number of terms to use in the kernel, which is indexed by ω2 and
∫ t
0 σ4

udu. Subsequently we provide estimators of these quantities, implying the feasible asymptotic

distribution of the realised kernel can be applied in practice to form confidence intervals for [Y ].

The asymptotic behaviour of the realised kernel is determined by the asymptotic behaviour of

quadratic forms in the A, B, C and D or D̃ matrices.

Theorem 2 Write

w =

(
1, 1, k

(
1

H

)
, ..., k

(
H − 1

H

))
⊺

.

Assume that the kernel weight function k(x) is four times continuously differentiable and write, as

usual, derivatives using primes. As H increases, so the flat-top kernels have

w⊺Aw = Hk0,0
• + O(1),

w⊺Bw = −H−1
{
k′(0) + k0,2

•

}
+ O(H−2),

w⊺Cw = H−2
{
k′(0)2 + k′(1)2

}
+ H−3

{
k′′′(0) + k0,4

•

}
+ O(H−4),

w⊺Dw = λ2/2 − 2H−1
{
k′(0) + k0,2

•

}
+ O(H−2),

w⊺D̃w = −H−1

{
k′(0) +

1

2
k′(0)2 + k0,2

•

}
+ O(H−2),

where

k0,0
• =

∫ 1

0
k(x)2dx, k0,2

• =

∫ 1

0
k(x)k′′(x)dx, k0,4

• =

∫ 1

0
k(x)k

′′′′

(x)dx.

10



The λ2 term in w⊺Dw cannot be forced to zero either as H → ∞ or n → ∞. This means that

the asymmetric realised kernels (7) are always inconsistent unless λ = 0. From now on we entirely

focus on K̃(Xδ).

The large n and large H asymptotic distribution of

K̃(Xδ) −
∫ t

0
σ2

udu

is mixed normal with a zero mean and variance of

4Hn−1k0,0
• t

∫ t

0
σ4

udu − 4H−1
{
k′(0) + k0,2

•

}{
2ω2

∫ t

0
σ2

udu + ω4

}
(15)

+4ω4n
[
H−2

{
k′(0)2 + k′(1)2

}
+ H−3

{
k′′′(0) + k0,4

•

}]
− 4ω4H−1 1

2
k′(0)2.

If we now relate H to n there is an important special case. When

k′(0) = 0 and k′(1) = 0, (16)

then setting H = cn1/2 we produce the result

n1/4

{
K̃(Xδ) −

∫ t

0
σ2

udu

}

Ls→ MN

[
0, 4ck0,0

• t

∫ t

0
σ4

udu − 8c−1k0,2
• ω2

(∫ t

0
σ2

udu +
ω2

2

)
+ 4ω4c−3

{
k′′′(0) + k0,4

•

}]
.(17)

We saw in (8) that this is the best rate of convergence that can be achieved for this problem.

Whether or not (16) holds, when we set H = cn2/3 we have

n1/6

{
K̃(Xδ) −

∫ t

0
σ2

udu

}
Ls→ MN

[
0, 4ck0,0

• t

∫ t

0
σ4

udu + 4ω4c−2
{
k′(0)2 + k′(1)2

}]
. (18)

If (16) does hold then we get the very simple result that

n1/6

{
K̃(Xδ) −

∫ t

0
σ2

udu

}
Ls→ MN

(
0, 4ck0,0

• t

∫ t

0
σ4

udu

)
. (19)

4.2 Special cases with n1/6

When H = cn2/3 we have the asymptotic distribution given in (18). For this class of kernels the

value of c which minimises the asymptotic variance in (18) is

c = d
ω4/3

(
t
∫ t
0 σ4

udu
)1/3

, where d =

[
2
{
k′(0)2 + k′(1)2

}

k0,0
•

]1/3

.

Then the lower bound for the asymptotic variance is

4dω4/3

(
t

∫ t

0
σ4

udu

)2/3 [
k0,0
• + d−3

{
k′(0)2 + k′(1)2

}]
= 6dk0,0

• ω4/3

(
t

∫ t

0
σ4

udu

)2/3

. (20)
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Hence dk0,0
• controls the asymptotic efficiency of estimators in this class.

Three flat-top cases of this setup are analysed in Table 11. The flat-top Bartlett kernel puts

k(x) = 1 − x, Epanechnikov kernel puts k(x) = 1 − x2, while the second order kernel has k(x) =

1 − 2x + x2. The Bartlett kernel has the same asymptotic distribution as the two scale estimator.

It is more efficient than the Epanechnikov kernel but less good than the second order kernel.

k(x) k(0) k(1) k′(0) k′(1) k0,0
• d dk0,0

•

Bartlett 1 − x 1 0 -1 -1 1
3 2.28 0.763

2nd order 1 − 2x + x2 1 0 -2 0 1
5 3.42 0.683

Epanechnikov 1 − x2 1 0 0 -2 8
15 2.46 1.31

Table 1: Properties of some n1/6 flat-top realised kernels. Bartlett kernel has the same asymptotic
distribution as the two scale estimator. dk2

• measures the relative asymptotic efficiency of the
realised kernels in this class.

4.3 Special cases with n1/4

When H = cn1/2 the asymptotic distribution is given in (17). Given preliminary estimates of ω2,
∫ t
0 σ2

udu and
∫ t
0 σ4

udu it is a simple matter to numerically find a value of c which minimises the

asymptotic variance. To gain some understanding think of Y = σW and t = 1, while we will ignore

the ω2/2 as it will have a small impact. Then the task simplifies to minimising

4σ4
(
ck0,0

• − 2c−1k0,2
• ξ + ξ2c−3f

)
,

where ξ = ω2/σ2 and f = k′′′(0)+k0,4
• . Writing x = c2 the first order condition is k0,0

• x2+2k0,2
• ξx−

3ξ2f = 0. Taking the square root of the positive root yields

ĉ =
ω

σ
d, d =

√√√√ 1

k0,0
•

{
−k0,2

• +

√(
k0,2
•

)2
+ 3k0,0

• f

}
.

At this optimal point the asymptotic variance is

4
(
dk0,0

• − 2d−1k0,2
• + d−3f

)
σ3ω = gσ3ω.

From (8) we should expect that g ≥ 8.

Eight flat-top cases of this setup are analysed in Table 2. The first is derived by thinking of

a cubic kernel k(x) = 1 + ax + bx2 + dx3, where a, b, d are constants. We can choose a, b, d by

imposing the conditions (16) and that k(0) = 1 and k(1) = 0. The resulting cubic kernel has

k(x) = 1 − 3x2 + 2x3, which has some of the features of cardinal cubic splines (e.g. Park and

Schowengerdt (1983)) and quadratic mother kernels (e.g. Phillips, Sun, and Jin (2003)). It is also

1The results on specific k functions in this Section were calculated using the computer algebra package Maple.
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k(x) k0,0
• k0,2

• f d g

Cubic kernel 1 − 3x2 + 2x3 0.371 −1.2 12 3.68 9.04

5-th order kernel 1 − 10x3 + 15x4 − 6x5 0.391 −1.42 17.1 3.70 10.2

6-th order kernel 1 − 15x4 + 24x5 − 10x6 0.471 −1.55 22.8 3.97 12.1

7-th order kernel 1 − 21x5 + 35x6 − 15x7 0.533 −1.71 31.8 4.11 13.9

8-th order kernel 1 − 28x6 + 48x7 − 21x8 0.582 −1.87 43.8 4.31 15.7

Parzen
{

1 − 6x2 + 6x3 0 ≤ x ≤ 1/2

2(1 − x)3 1/2 ≤ x ≤ 1

0.269 −1.5 24 4.77 8.54

Tukey-Hanning {1 + cos(πx)} /2 0.375 −1.23 12.1 3.70 9.18

Mod. Tukey-Hanning {1 − cos π (1 − x)2}/2 0.218 −1.71 41.7 5.74 8.29

Table 2: Properties of some n1/4 flat-top realised kernels, where f = k′′′(0)+k0,4
• . The cubic kernel

has the same asymptotic distribution as the multiscale estimator. g measures the relative asymptotic
efficiency of the realised kernels in this class — 8 being the parametric efficiency bound.

noteworthy as it has the same asymptotic distribution as the multiscale estimator. The flat-top

Tukey-Hanning kernel puts k(x) = {1 + cos(πx)} /2. Another interesting estimator is the flat-top

Parzen kernel2, which places

k(x) =

{
1 − 6x2 + 6x3 0 ≤ x ≤ 1/2
2(1 − x)3 1/2 ≤ x ≤ 1.

We call our final k the modified Tukey-Hanning kernel

k(x) =
{

1 − cos π (1 − x)2
}

/2. (21)

Table 2 shows that the performance of the Tukey-Hanning kernel is almost identical to that of the

cubic kernel. The Parzen kernel outperforms the cubic kernel, but is not as good as (21). Both

kernels fail to reach the parametric efficiency bound, but are very close and tend to select more

lags than the cubic kernel.

It is important to ask whether the approximation suggested by Theorem 2 and our special cases

thereof provides a useful guide to finite sample behaviour? Table 3 gives Var
{

n1/4K̃(Xδ)
}

/ω listed

against n in the Brownian motion plus noise case for a variety of values of ω2 when σ = 1. The

most empirically realistic value for ω2 is around 0.001 for the types of data we study later in this

paper. The Table also includes results for an optimal selection of k, computed numerically. This

indicates that there does exist a realised kernel which can achieve the ML efficiency bound of 8

in this case. More generally the Table shows that the asymptotics provides a good approximation

to the finite sample case, especially when n is over 1, 000 and when ω2 is moderate to large. The

2The Parzen kernel is not everywhere differentiable and so the above formulas do not immediately apply. However,
we can simply split the integrals into (0, 1/2) and (1/2, 1) and carry out the integrals over those regions. Using this
argument delivers the results we give here.
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ω2 = 0.1 ω2 = 0.01

n Opt Mod Par 3-rd Bart Opt Mod Par 3-rd Bart

256 8.52 9.11 9.39 9.60 10.7 9.63 10.6 10.8 10.7 10.6
1, 024 8.30 8.76 9.03 9.37 11.9 8.73 9.43 9.73 9.81 10.3
4, 096 8.19 8.58 8.85 9.26 13.9 8.34 8.86 9.13 9.40 10.9
16, 384 8.14 8.49 8.76 9.21 16.8 8.17 8.58 8.84 9.22 12.5
65, 536 8.12 8.45 8.71 9.19 20.6 8.08 8.44 8.70 9.13 14.8
1, 048, 576 8.10 8.41 8.68 9.17 31.9 8.02 8.33 8.59 9.07 22.2
∞ 8.29 8.54 9.04 ∞ 8.29 8.54 9.04 ∞

ω2 = 0.001 ω2 = 0.0001
n Opt Mod Par 3-rd Bart Opt Mod Par 3-rd Bart

256 15.1 15.4 16.2 16.1 16.9 38.7 38.8 38.8 38.8 38.8
1, 024 10.8 11.8 12.1 12.1 11.7 21.0 21.1 21.2 23.2 21.5
4, 096 9.22 10.0 10.3 10.4 10.5 13.2 14.0 15.0 14.9 14.0
16, 384 8.55 9.19 9.47 9.61 10.4 10.1 11.1 11.6 11.3 11.0
65, 536 8.26 8.73 9.00 9.31 11.3 8.93 9.69 10.0 10.0 10.2
1, 048, 576 8.06 8.40 8.66 9.10 15.8 8.20 8.64 8.90 9.25 11.9
∞ 8.29 8.54 9.04 ∞ 8.29 8.54 9.04 ∞

Table 3: Flat-top realised kernels. V ar
{

n1/4K̃(Xδ)
}

/ω listed against n. Asymptotic lower bound

is 8. ‘Opt’ refers to k selected numerically to minimise the finite sample variance of an unbiased
realised kernel. ‘3-rd’ refers to 1 − 3x2 + 2x3. ‘Mod’ denotes modified Tukey-Hanning (21).

Table also shows that even though the Bartlett kernel converges at the slow n1/6 rate, it is only

mildly inefficient even when n is 4, 000. When ω2 is small the asymptotic variance provides a poor

approximation in all cases unless n is 4, 000 or so. Of course, in that case the realised kernels are

quite precise as the asymptotic variance is proportional to ωσ3.

4.4 Non-flat-top kernels

The flat-top constraint is imposed on these kernels to make them unbiased. If we remove the

flat-top constraint then the realised kernel becomes

K(Xδ) = γ0(Xδ) +

H∑

h=1

k

(
h

H

){
γh(Xδ) + γ−h(Xδ)

}
,

where we assume k(0) = 1 and k(1) = 0. Now the bias in the Bartlett case k(x) = 1 − x is

O(n/H) = O(n1/3). In the cubic case it is O(n/H2) = O(1), which is better but not satisfactory.

To remove the flat-top condition we need a kernel which is a higher polynomial near zero and is

symmetric, so the bias becomes negligible. For this we add the additional constraint that k′′(0) =

k′′(1) = 0. Simple polynomials of this type

k(x) = 1 + axj + bxj+1 + cxj+2, j = 3, 4, ...

14



ω2 = 0.01 ω2 = 0.001 ω2 = 0.0001 ω2 = 0.01 ω2 = 0.001 ω2 = 0.0001

n Var Bias2 Var Bias2 Var Bias2 Var Bias2 Var Bias2 Var Bias2

5-th order kernel 6-th order kernel

256 9.97 5.28 8.34 33.1 13.8 4.19 11.9 0.10 13.1 1.33 13.8 4.19
1, 024 10.1 3.47 9.74 45.4 10.7 33.5 12.0 0.02 12.3 1.22 13.1 15.8
4, 096 10.2 1.97 10.0 34.9 9.90 189 12.0 0.00 12.0 0.48 11.5 43.0
16, 384 10.2 1.05 10.1 31.0 9.88 461 12.1 0.00 12.0 0.11 12.1 10.4
65, 536 10.2 0.57 10.2 17.2 10.1 322 12.1 0.00 12.0 0.02 12.0 3.41
262, 144 10.2 0.29 10.2 9.07 10.2 254 12.1 0.00 12.0 0.00 12.0 0.71
1, 048, 576 10.2 0.15 10.2 4.65 10.2 138 12.1 0.00 12.0 0.00 12.0 0.11
∞ 10.2 0.00 10.2 0.00 10.2 0.00 12.1 0.00 12.1 0.00 12.1 0.00

7-th order kernel 8-th order kernel

256 13.6 0.00 14.7 0.27 13.8 4.19 15.0 0.00 15.9 0.05 13.8 4.19
1, 024 13.8 0.00 13.8 0.09 15.5 6.88 15.5 0.00 15.1 0.00 17.4 2.80
4, 096 13.9 0.00 13.7 0.01 12.7 8.80 15.6 0.00 15.3 0.00 13.8 1.66
16, 384 13.9 0.00 13.8 0.00 13.7 0.55 15.7 0.00 15.6 0.00 15.1 0.02
65, 536 13.9 0.00 13.9 0.00 13.7 0.05 15.7 0.00 15.6 0.00 15.6 0.00
262, 144 13.9 0.00 13.9 0.00 13.9 0.00 15.7 0.00 15.7 0.00 15.6 0.00
1, 048, 576 13.9 0.00 13.9 0.00 13.9 0.00 15.7 0.00 15.7 0.00 15.7 0.00
∞ 13.9 0.00 13.9 0.00 13.9 0.00 15.7 0.00 15.7 0.00 15.7 0.00

Table 4: Finite sample value of V ar{n1/4K̃(Xδ)}/ω listed against n and scaled squared bias for
various order cases. In the n=256 case, when ω2 is very small H is selected to be zero and so the
realised kernel becomes the RV.

yield c = −
(
j + j2

)
/2, b = 2j + j2, a = −1 − 3j/2 − j2/2. Examples of this include

k(x) =





1 − 10x3 + 15x4 − 6x5, j = 3
1 − 15x4 + 24x5 − 10x6, j = 4
1 − 21x5 + 35x6 − 15x7, j = 5
1 − 28x6 + 48x7 − 21x8, j = 6.

(22)

The bias of these estimators is O(n/Hj) = O(n−(j−2)/2) which has no impact on its asymptotic

distribution when j ≥ 3 and should become more robust in finite samples as j increases. We call the

j-th case the j + 2-th order kernel. Table 2 shows that these estimators are less efficient than (21)

realised kernel. Table 4 shows the corresponding finite sample behaviour for this realised kernel.

In addition to the scaled variance, we also report the scaled squared bias

{
n1/4

(
EK̃(Xδ) − 1

)}2
/ω = 4n5/2ω3

[
2

{
1 − k

(
1

cn1/2

)}]2

.

The Table shows the bias is small when ω2 is large and so does not create a distortion for the

inference procedure for this realised kernel. However, for small ω2 the bias dramatically swamps

the variance and so inference would be significantly affected.
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4.5 Estimation of
∫ t

0
σ4

udu and ω2

Some of our limit theories depend upon integrated quarticity
∫ t
0 σ4

udu and the noise’s variance ω2.

We now discuss estimators of these quantities.

To estimate ω2 Oomen (2005) suggested using the unbiased ω̃2 = −γ̃1(Xδ)/2n, while, for

example, Bandi and Russell (2005a) suggest ω̂2 = [Xδ ]/2n which has a bias of
∫ t
0 σ2

udu/2n. Using

Theorem 1 we have that

Var
{

n1/2
(
ω̃2 − ω2

)}
= ω4

(
5 + λ2

)
, Var

{
n1/2

(
ω̂2 − ω2

)}
= ω4

(
1 + λ2

)
.

In the Gaussian case λ2 = 2, and so ω̃2 and ω̂2 have variances which are around 3.5 and 1.5 times

that of the ML estimator in the parametric case given in (8). Although it is possible to derive

a kernel style estimator to estimate ω2 efficiently, we resist the temptation to do so here as the

statistical gains are minor.

Estimating integrated quarticity reasonably efficiently is a tougher problem than estimating QV.

We do not know of any existing research which has solved this problem. Define the subsampled

squared returns, for some δ# > 0,

x2
j,. =

1

S

S−1∑

s=0

(
Xδ#(j+ s

S ) − Xδ#(j−1+ s
S )

)2
,

j = 1, 2, ..., n. This allows us to define a bipower variation estimator of integrated quarticity

{
Xδ# , ω2;S

}[2,2]
=
(
δ#
)−1

⌊t/δ#⌋∑

j=1

(
x2

j,. − 2ω2
) (

x2
j−2,. − 2ω2

)
, n =

⌊
t/δ#

⌋
.

The no noise case of this statistic was introduced by Barndorff-Nielsen and Shephard (2004) and

Barndorff-Nielsen and Shephard (2006) and studied in depth by Barndorff-Nielsen, Graversen,

Jacod, and Shephard (2006). See also Mykland (2006).

Detailed calculations show that when δ# is small and S is large then the conditional variance

of
{
Xδ# , ω2;S

}[2,2]
is approximately 72ω8n3/S2, which needs n3/2/S → 0 for consistency3. An

interesting research problem is how to make this type of estimator more efficient by using kernel

3Let

εj =
1

S

S−1X

s=0

»“
U

δ#(j+ s

S ) − U
δ#(j−1+ s

S )

”2

− 2ω2 + 2
“
U

δ#(j+ s

S ) − U
δ#(j−1+ s

S )

”“
Y

δ#(j+ s

S ) − Y
δ#(j−1+ s

S )

”–
,

then

R =

"
nX

j=1

`
x2

j,. − 2ω2
´ `

x2
j−2,. − 2ω2

´
#
−

nX

j=1

y2
j,.y

2
j−2,. =

nX

j=1

y2
j,.εj−2 +

nX

j=1

εjy
2
j−2,. +

nX

j=1

εjεj−2

≃
nX

j=1

εj

`
y2

j−2,. + y2
j+2,.

´
+

nX

j=1

εjεj−2.
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type estimators. For now we use moderate values of n and high values of S in our Monte Carlos

and empirical work.

The finite sample performance of our estimator can be improved by using the inequality
∫ t
0 σ4

udu ≥ 1
t

(∫ t
0 σ2

udu
)2

. This is useful as we have a very efficient estimator of
∫ t
0 σ2

udu. Thus

our preferred way of estimating integrated quarticity is

ÎQδ,S = max

[
1

t

(
K̃(Xδ)

)2
,
{
Xδ# , ω̂2;S

}[2,2]
]

.

5 Relaxing some of the assumptions

5.1 Effect of endogenous and stochastically spaced data

So far our analysis has been based on measuring prices at regularly spaced intervals of length δ.

In some ways it is more natural to work with returns measured in tick time and so it would be

attractive if we could extend the above theory to cover stochastically spaced data. The convergence

result inside QV is known to hold under very wide conditions that allow the spacing to be stochastic

and endogenous. This is spelt out in, for example, Protter (2004, pp. 66-77) and Jacod and Shiryaev

(2003, p. 51). It is important, likewise, to be able to derive central limit theorems for stochastically

spaced data without assuming the times of measurement are independent of the underlying BSM.

This is emphasised by Renault and Werker (2005) in both their theoretical and empirical work.

Let Y ∈ BSM and assume we have measurements at times tj = Tδj, j = 1, 2, ..., n, where

0 = t0 < t1 < ... < tn = T1 and where T is a stochastic process of the form Tt =
∫ t
0 τ2

udu, with τ

having strictly positive, càdlàg sample paths. Then we can construct a new process Zt = YTt , so

at the measurement times Zδj = YTδj
j = 1, 2, ..., n. Performing the analysis on observations of Z

made at equally spaced times then allows one to analyse irregularly spaced data on Y . The following

argument shows that Z ∈ BSM with spot volatility σTtτ t and so the analysis is straightforward.

In particular, the feasible CLT is implemented by recording data every 5 trades, say, but then

Now

Var

 
nX

j=1

εj

`
y2

j−2,. + y2
j+2,.

´
|Y

!
≃

12ω4

S

nX

j=1

`
y2

j−2,. + y2
j+2,.

´2
= O(n−1S−1).

So

Var(R|Y ) ≃ Var

 
nX

j=1

εjεj−2|Y

!
=

nX

j=1

Var (εjεj−2|Y ) + 2nCov (εjεj−2, εj−1εj−3|Y )

=
nX

j=1

E
`
ε2

j |Y
´
E
`
ε2

j−2|Y
´

+ 2nCov (εjεj−2, εj−1εj−3|Y )

≃
nX

j=1


8ω4

S
+

8ω2

S

`
y2

j

´
.

ff
8ω4

S
+

8ω2

S

`
y2

j−2

´
.

ff
+

n

S2
2
`
2ω2

´2
+ ... =

72ω8n

S2
+ O(S−2).
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analysing it as if the spacing had been equidistant.

Write Z = Y ◦T and St =
∫ t
0 σ2

udu. We assume that Y and T are adapted to a common filtration

Ft, which includes the history of the paths of Tu and Y ◦Tu for 0 ≤ u ≤ t. This assumption implies

that σu− is in Ft for 0 ≤ u ≤ Tt. Recall the key result (e.g. Revuz and Yor (1999, p. 181))

[Z] = S ◦ T , while Z ∈ Mloc. The following proposition shows that [Z] is absolutely continuous

and implies by the martingale representation theorem that Z is a stochastic volatility process with

spot volatility of σTtτ t.

Proposition 1 Let υt = σTtτ t and

Υt =

∫ t

0
υ2

udu. (23)

Then υ is a càdlàg process and Υ = S ◦ T .

The implication of this for kernels is that we can write

Zt =

∫ t

0
aTuτudu +

∫ t

0
σTuτudB#

u ,

where B# is Brownian motion. Hence if we define a tick version of the kernel estimator

γh(Zn)t =

⌊t/δ⌋∑

j=1

(
Y ◦ Tδj − Y ◦ Tδ(j−1)

) (
Y ◦ Tδ(j−h) − Y ◦ Tδ(j−h−1)

)
,

K̃(Zn)t = γ0(Zn)t +
H∑

h=1

k

(
h − 1

H

){
γh(Zn)t + γ−h(Zn)t

}
,

then the theory for this process follows from the previous results. Thus using the symmetric kernel

allows consistent inference on [Z]t = [Y ]Tt .

5.2 Effect of serial dependence

So far we have assumed that U ∈ WN . Now we will relax this assumption by considering kernels

of the type

K(Xδ) =

H∑

h=−H

k

(
h

H

)
γh(Xδ),

where as usual we write k(0) = 1 and k(±1) = 0. To analyse these kernels it is helpful to write

γh =
∑n

i=1 UiUi−h.

Proposition 2 Suppose U has a zero mean. If as H → ∞
H∑

h=−H

ah,HUh = Op(1), for any

H∑

h=−H

a2
h,H = O(1),
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then

H∑

h=−H

k

(
h

H

)
γh(Uδ) =

H∑

h=−H

k

(
h

H

)(
2γh − γh−1 − γh+1

)
+ Op(H

−1/2).

Further, suppose k is twice continuously differentiable, then

H∑

h=−H

k

(
h

H

)
γh = − n

H2

H∑

h=−H

k′′

(
h

H

)(
1

n
γh

)
+ Op(nH−3) + Op(H

−1/2). (24)

Proposition 3 We assume k′′ (0) = 0 and that U is an AR(1) process with persistence parameter

ρ, then

√
n

H

(
H∑

h=−H

k′′

(
h

H

)(
1

n
γh

))
d→ N

{
0, 4ω4 1 + ρ2

1 − ρ2

∫ 1

0
k′′(x)2dx

}
.

This means that

H∑

h=−H

k

(
h

H

)
γh = Op

(
n1/2

H3/2

)
+ Op

( n

H3

)
+ Op(H

−1/2).

So if H = cn1/2 then

H∑

h=−H

k

(
h

H

)
γh = Op

(
n−1/4

)
.

If we assume that Y ⊥⊥ U then temporal dependence in U makes no difference to the asymptotic

behaviour of γh(Uδ , Yδ) as δ ↓ 0 for the limit behaviour is driven by the local martingale difference

behaviour of the increments of the Y process. The above results mean that if H = cn2/3 then

K(Uδ) = Op(n
−1/3) which implies that this term has no impact on the asymptotic distribution

of K(Xδ). The same is not true when H = cn1/2, since then K(Uδ) = Op(n
−1/4) and so the

rate of convergence of the realised kernel is not changed by serial dependence, but the asymptotic

distribution is altered.

5.3 Endogenous noise

One of our key assumptions has been that Y ⊥⊥ U , that is the noise can be regarded as an exogenous

process. Hence it is interesting to ask if our realised kernels continue to be consistent when U is

endogenous. We do this under a simple linear model of endogeneity

Uδi =
H∑

h=0

βh

(
Yδ(i−h) − Yδ(i−1−h)

)
+ U δi,

where Y ⊥⊥ U and for simplicity we assume that U ∈ WN . Now

γh(Yδ, Uδ) =

H∑

j=0

βjγh+j(Yδ) −
H∑

j=0

βjγh+j+1(Yδ) + γh(Yδ, U δ).
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Hence our asymptotic methods for studying the distribution of realised kernels under exogenous

noise can be used to study the impact of endogenous noise on realised kernels through the limit

theory we developed for γh(Yδ) and γh(Yδ, U δ). In particular

γh(Yδ, Uδ) − γh(Yδ, U δ) =





β0[Y ] + Op(n
−1/2), h = 0,

−β0[Y ] + Op(n
−1/2), h = −1,

Op(n
−1/2), |h| 6= 1.

Hence flat-top kernels will be robust to this type of endogenous noise. An alternative approach

to dealing with endogenous noise has been independently proposed by Kalnina and Linton (2006)

using multiscale estimators.

6 Simulation study

6.1 Goal of the study

In this Section we report simulation results which assess the accuracy of the feasible asymptotic

approximation for the realised kernel. A much more thorough analysis is provided in a Web

Appendix to this paper available from www.hha.dk/∼alunde/bnhls/bnhls.htm.
Before we turn our attention to feasible asymptotic distributions, we note the Web Appendix

also reports on the accuracy of K̃(Xδ) as an estimator of
∫ t
0 σ2

udu and ÎQδ,S as an estimator of
∫ t
0 σ4

udu. The raw estimator K̃(Xδ) may be negative, in which case we always truncate it at zero

(the same technique is used for ML estimators of course). The Web Appendix shows this occurrence

is extremely rare, even for small sample sizes, but increases with ω2.

In this short section our focus will be assessing the infeasible and feasible central limit theories for

K̃(Xδ) −
∫ t
0 σ2

udu. Throughout we simulate over the time interval [0, 1]. We recall the asymptotic

variance of K̃(Xδ)1 is given in (15) which we write as ̟ here. This allows us to compute the

asymptotic pivot

Traw =
K̃(Xδ)1 −

∫ 1
0 σ2

udu√
̟

L→ N(0, 1).

An alternative is to use the delta method and base the asymptotic analysis on (e.g. Barndorff-

Nielsen and Shephard (2002) and Goncalves and Meddahi (2004))

Tlog =
log
{

K̃(Xδ)1 + d
}
− log

{∫ 1
0 σ2

udu + d
}

√
̟/
{

K̃(Xδ)1 + d
} L→ N(0, 1).

The presence of d ≥ 0 allows for the possibility that K̃(Xδ)1 may be truncated to be exactly zero.

By selecting d = 0.12 we have the property that K̃(Xδ)1 + d is not negative in any of our Monte

Carlo experiments. In our simulations we have taken d = 0.2.
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In the infeasible case our simple rule-of-thumb for the choice of H is H∗ = 5.74ω
√

n/[Y ]1,

which immediately gives us ̟ for in this case we assume knowledge of the path of σ. In practice

this is less interesting than the feasible version, which puts Ĥ∗ = 5.74ω̂
√

n/[Xδ∗ ]1, where [Xδ∗ ]1

is the realised variance estimator based on low frequency data, such as 10 minute returns, which

should not be too sensitive to market frictions. Having selected H, in the feasible case we can then

compute K̃(Xδ) and ÎQδ,S and so plug these into ̟, replacing
∫ 1
0 σ2

udu and
∫ 1
0 σ4

udu respectively.

Monte Carlo results reported in the Appendix suggest taking S =
√

n in computing ÎQδ,S .

6.2 Simulation design

Recall we simulate over the time interval [0, 1]. We normalize one second to be 1/23400, so that

the interval [0, 1] is thought to cover 6.5 hours. The X process is generated using an Euler scheme

based on N = 23, 400 of intervals. We then construct sparsely sampled returns Xi/n − X(i−1)/n,

based on sample sizes n. In our Monte Carlo designs n takes on the values 195, 390, 780, 1, 560,

4, 680, 5, 850, 7, 800, 11, 700 and 23, 400. The case of 1 minute returns is when n = 390.

We consider the following SV model, which was also simulated by e.g. Huang and Tauchen

(2005) and Goncalves and Meddahi (2004)

dYt = µdt + σtdWt, σt = exp (β0 + β1τ t) , dτ t = ατ tdt + dBt, corr(dWt,dBt) = ρ.

Here ρ is a leverage parameter. To make the results comparable to our constant volatility simu-

lations reported in our Appendix we impose that E
(
σ2

t

)
= 1 by setting β0 = β2

1/(2α). We utilize

the fact that the stationary distribution τ t ∼ N
(
0, (−2α)−1

)
to restart the process each day. In

these experiments we set µ = 0.03, β1 = 0.125, α = −0.025 and ρ = −0.3. The variance of σ is

comparable to the empirical results found in e.g. Hansen and Lunde (2005). Finally, the market

microstructure effects are modelled through ω2. This is varied over 0.0001, 0.001 and 0.01, the

latter being regarded as a very large effect indeed. These values are taken from the detailed study

of Hansen and Lunde (2006).

6.3 Results

Table B.1 shows the Monte Carlo results for the infeasible asymptotic theory for Traw, knowing a

priori the value of ̟. We can see from the Table that the results are rather good, although the

asymptotics are slightly underestimating the mass of the distribution in the tails. The mean and

standard deviations of Traw show that the T-statistic is slightly overdispersed.

Table B.2 shows the results for the feasible asymptotic theory for Traw. This indicates that

the asymptotic theory does eventually kick in but it takes very large samples for it to provide

anything like a good approximation. The reason for this is clearly that it is hard to consistently
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well approximate the integrated quarticity empirically. This result is familiar from the literature

on realised volatility where the same phenomena is observed.

Table B.3 shows the results for the log version of the feasible theory based on Tlog. The accuracy

of the asymptotic predictions does not seem to change very much with ω2 and is much better than

in the Traw case. For small sample sizes extreme quantiles suffer from important distortions, but

generally the asymptotics perform extremely well.

7 Empirical study

7.1 Analysis of General Electric trades in 2004

In this subsection we implement our efficient, feasible inference procedure for the daily increments

of [Y ] for the realised kernel estimator on trades of General Electric (GE) shares carried out on the

New York Stock Exchange in 2004. A more detailed analysis, including a comparison with results

based on data from 2000 and on 29 other major stocks, is provided in our Web Appendix. We

should note that the variance of the noise was around 10 times higher in 2000 than in 2004 and so

looking over both periods is instructive. This Appendix also details the cleaning we carried out on

the data before it was analysed and the precise way we calculated all of our statistics.

CI kernel CI RV

E
st

im
at
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f [
Y

]

0
1

2
3

1 2 3 4 5 8 9 10 11 12 15 16 17 18 19 22 23 24 29 30

Days in November 2004 (GE)

Figure 1: Confidence intervals for the daily increments to [Y ] for General Electrics (GE) in Novem-
ber 2004. Rectangles denote the 95% confidence intervals based on 20 minute returns using the
Barndorff-Nielsen and Shephard (2002) feasible realised variance inference method. The other in-
terval corresponds to our realised kernel, sampling in tick times so the period over which returns
are calculated is roughly 60 seconds.
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Our realised kernel will be implemented on returns recorded every k trades, where k is selected

each day so that there are approximately 360 observations a day4. This means that on average

these returns are recorded every 60 seconds. This inference method will be compared to the

feasible procedure of Barndorff-Nielsen and Shephard (2002), which ignores the presence of market

microstructure effects, based on returns calculated over 20 minutes within each day. This baseline

was chosen as Hansen and Lunde (2006) has suggested that the Barndorff-Nielsen and Shephard

(2002) method was empirically sound when based on that type of interval for thickly traded stocks.

Day Trans Lower RV20m Upper n Lower KV60s Upper k n H bω2

1 4631 0.48 0.83 1.46 20 0.55 0.76 1.07 13 357 4 0.0016
2 4974 0.62 1.19 2.28 20 0.83 1.16 1.63 14 356 4 0.0025
3 4918 0.51 0.92 1.63 20 0.73 1.01 1.42 14 352 4 0.0021
4 5493 0.26 0.52 1.03 20 0.43 0.60 0.85 16 344 4 0.0013
5 5504 0.65 1.26 2.44 20 1.24 1.72 2.38 16 344 3 0.0028
8 4686 0.25 0.46 0.85 20 0.31 0.45 0.66 14 335 4 0.0014
9 4923 0.38 1.05 2.95 20 0.58 0.80 1.11 14 352 3 0.0014

10 4970 0.29 0.55 1.07 20 0.39 0.55 0.77 14 355 4 0.0013
11 4667 0.27 0.71 1.91 20 0.37 0.51 0.72 13 359 4 0.0011
12 4822 0.17 0.32 0.60 20 0.23 0.33 0.48 14 345 4 0.0009
15 4681 0.38 0.80 1.72 20 0.52 0.72 1.02 14 335 4 0.0015
16 4526 0.31 0.54 0.93 20 0.47 0.65 0.91 13 349 4 0.0011
17 5477 0.77 1.39 2.51 20 0.79 1.10 1.52 16 343 3 0.0018
18 4738 0.24 0.41 0.68 20 0.36 0.51 0.73 14 339 4 0.0014
19 5224 0.83 1.73 3.62 20 0.96 1.32 1.81 15 349 3 0.0019
22 5359 0.39 0.72 1.33 20 0.55 0.75 1.04 15 358 3 0.0012
23 5405 0.47 0.97 1.99 20 0.75 1.03 1.41 15 361 3 0.0016
24 4626 0.19 0.36 0.68 20 0.51 0.80 1.26 13 356 3 0.0013
29 4709 0.59 1.17 2.31 20 1.00 1.39 1.93 14 337 3 0.0023
30 4719 0.32 0.74 1.71 20 0.64 0.90 1.27 14 338 4 0.0018

Table 5: Inference for General Electric (GE) volatility in November 2004. Trans denotes the number
of transactions on that day. RV20m is the daily [X20 minutes]. KV60s denotes K̃th2

w (Xap. 1 min),
that is the corresponding corresponding realised kernel calculating returns every k observations. n
is the sample size per day, H is the number of lags in the kernel and ω̂2 = [X1min; 60]/2n.

General Electric shares are traded very frequently on the NYSE. A typical day results in between

1, 500 and 6, 000 trades. For this stock Hansen and Lunde (2006) have presented detailed work

which suggests that over 60 second intervals it is empirically reasonable to assume that Y and U

are uncorrelated and U is roughly a white noise process. Hence the main assumptions behind the

inference procedure for our efficient kernel estimator are roughly satisfied and so we feel comfortable

implementing the feasible limit theory on this dataset. We should note that on all the days in 2004

our realised kernel estimator of the daily increments of [Y ] was positive. In the 2004 sample period,

we found ω̂2 = [X1min]/2n to be very small and it was used to calculate Ĥ∗ and ̟. Due to the

positive bias in ω̂2, this will result in conservative confidence intervals.

4As our sample size is quite large it is important to calculate it in tick time in order not to be influenced by the
bias effect discussed by Renault and Werker (2005) caused by sampling in calender time.

23



Figure 1 shows daily 95% confidence intervals (CIs) for the realised kernel for November 2004

using the modified Tukey-Hanning weights (21) with H = cn1/2. Also drawn are the corresponding

results for the realised variance. We can see the realised kernel has much shorter CIs. The width of

these intervals does change through time, with them tending to be slightly wider in high volatility

periods. Over the entire year there are only 3 days when the CIs do not overlap.

Table 5 shows the details of these results for November 2004. The estimates of ω2 are very

small, ranging from about 0.001 to 0.003. These are in the range of the small to medium levels of

noise set out in our Monte Carlo designs discussed in the previous Section. The Table shows the

sample size for the realised kernel, which is between 335 and 361 intervals of roughly 60 seconds.

Typically each interval corresponds to about 15 trades. It records the daily selected value of H

that ranges from 3 to 4, which is rather modest and is driven by the fact that ω2 is quite small.

Mean Std. (HAC) ρ([̂Y ], K̃) acf(1) acf(2) acf(5) acf(10)

Modified Tukey-Hanning kernel (H = cn1/2)

K̃th2
w (Xap. 1 min) 0.962 0.568 (1.195) 1.000 0.34 0.32 0.28 0.08

Parzen kernel (H = cn1/2)

K̃par
w (Xap. 1 min) 0.962 0.570 (1.197) 1.000 0.34 0.32 0.27 0.08

Cubic kernel (H = cn1/2)

K̃cub
w (Xap. 1 min) 0.959 0.568 (1.192) 1.000 0.34 0.32 0.27 0.08

5th order kernel (H = cn1/2)

K̃5th
w (Xap. 1 min) 0.971 0.558 (1.186) 0.999 0.35 0.32 0.28 0.08

8th order kernel (H = cn1/2)

K̃8th
w (Xap. 1 min) 0.965 0.578 (1.212) 0.995 0.34 0.32 0.27 0.09

Top-Flat Bartlett kernel (H = cn2/3)

K̃bart
w (Xap. 1 min) 0.963 0.562 (1.184) 0.997 0.34 0.31 0.27 0.07

Simple RV

[X20 minutes] 0.879 0.524 (1.008) 0.832 0.28 0.24 0.26 0.06
[X5 minutes] 0.948 0.518 (1.100) 0.954 0.36 0.34 0.26 0.10
[X1 minutes] 0.941 0.382 (0.919) 0.887 0.44 0.40 0.38 0.11
[X10 seconds] 1.330 0.389 (1.142) 0.803 0.60 0.56 0.51 0.32
[X1 second] 2.183 0.569 (1.828) 0.733 0.69 0.66 0.57 0.48

Table 6: Summary statistics for six realised kernels based on returns measured every K trades, where
K is selected such that over the day returns on average roughly spans 60 seconds. Also given are
the RV, computed using 20, 10, 1 minute, 10 and 1 second returns. Note that RV statistics based
on 1 second returns is the same as RV statistics based on all trades. acf denotes serial correlation.
The correlation is between the various RV statistics and our Modified Tukey-Hanning kernel.
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Table 6 provides summary statistics for some alternative estimators over the entire year. This

suggests the other realised kernel estimators have roughly the same average value and that they

are quite tightly correlated. The Table also records the summary statistics for the realised variance

computed using 20, 5, 1 minute and 10, and 1 second intervals. The last two of these estimators

show a substantially higher mean. Interestingly, the realised QV based on 5 minute sampling is

most correlated with the realized kernels. This is in line with the optimal sampling frequencies

for the realised QV reported in Bandi and Russell (2005a). The realised kernels have a stronger

degree of serial dependence than our benchmark realised QV, [X20 minutes]. This point suggests the

realised kernel may be useful when it comes to forecasting, extending the exciting work of Andersen,

Bollerslev, Diebold, and Labys (2001). The high serial dependence found in the realised QVs based

on the high sampling frequencies suggests a strong dependence in the bias components of these

estimators.
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Figure 2: Four estimators for the daily increments to [Y ] for General Electrics in November 2004.
The intervals are the confidence intervals for our realised Modified Tukey-Hanning kernel based
on returns sampled roughly every 60 seconds. The triangles denote the subsampled version of this
realised kernel. Diamonds denote our modified Tukey-Hanning kernel based on all trades, circles
represents [X20 minutes; 1200] (calculates RV over 20 minutes returns, averaged over 1200 times, just
changing the initial place prices are recorded). Squares (TSRV (K,J) - aa) denote the bias adjusted
Aı̈t-Sahalia, Mykland, and Zhang (2006, eq. (4.22)) two scale estimator.
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7.2 Speculative analysis

The analysis in the previous subsection does not use all of the available data efficiently, for the

realised kernel is computed only on every 15 or so trades. This was carried out so that the empirical

reality of the GE data matched the assumptions of our feasible central limit theory, allowing us

to calculate daily confidence intervals. In this subsection, we give up on the goal of carrying out

inference and simply focus on estimating [Y ] by employing all of the data. The results in Section

6 suggest our efficient realised kernel can do this, even though the white noise assumption and

independence of Y and U are no longer empirically well-grounded assumptions. For these robust

estimators we select H = cn2/3, where we use the same values for c as in the previous subsection.

Inevitably then, the results in this subsection will be more speculative than those given in the

previous analysis.

We calculate the realised kernel using every trade on each day, based on returns sampled roughly

every 60 seconds, or by applying the kernel weights to returns sampled every trade. The time series

of these estimators are drawn in Figure 2, together with the corresponding bias corrected two scale

estimator and a subsampled version of the realised variance estimator using 5 minute returns, where

the degree of subsampling was selected to exhaust the available data. For the sake of comparison,

we also include the confidence intervals from Figure 1. Figure 2 shows that realised kernels give

very similar estimates – on some days the estimates are almost identical. The uncorrected two scale

estimators and the bias corrected two scale estimator based on white noise are quite biased, but the

two scale estimator based on being robust to the white noise assumption5 (denoted TSRV(K,J)-aa)

seems in line with the results for the realised kernels and the subsampled RV estimators. Table 7

provides summary statistics of these estimators. The realised kernels are pretty robust to choice of

the design of the weights.

8 Conclusions

In this paper we have provided a detailed analysis of the accuracy of realised kernels as estimators

of quadratic variation when an efficient price is obscured by simple market frictions. We show

how to make these estimators consistent and derive central limit theorems for the estimators under

various assumptions about the kernel weights. Such estimators can be made to converge at the

fastest possible rate and are very close to being efficient. They can be made robust to dynamics in

the noise process, robust to endogenous market frictions and robust to endogenous spacing in the

5In empirical work we found this statistic to be sensitive to the choice of K. To be consistent with our empirical
findings J has to be about 15 (yielding returns measured roughly over 1 minute). Aı̈t-Sahalia, Mykland, and Zhang
(2006) show K has to much larger than J , but their automatic selection formula for K typically selects K smaller
than J , so we initially imposed K ≥ 2J . That was not enough to get good empirical results and so we finally imposed
K ≥ 5J , which worked well in practice.
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Mean Std. (HAC) ρ(c[Y ], eK) acf(1) acf(2) acf(5) acf(10)

Modified Tukey-Hanning kernel (H = cn1/2)
eKth2

w (Xap. 1 min) 0.962 0.568 (1.195) 1.000 0.34 0.32 0.28 0.08

Modified Tukey-Hanning kernel (inefficient rate H = cn2/3)
eKth2

w (X1 tick) 0.945 0.521 (1.127) 0.990 0.37 0.31 0.30 0.08

Parzen kernel (inefficient rate H = cn2/3)
eKpar

w (X1 tick) 0.947 0.524 (1.133) 0.990 0.37 0.31 0.30 0.08

Cubic kernel (inefficient rate H = cn2/3)
eKcub

w (X1 tick) 0.948 0.528 (1.142) 0.991 0.37 0.32 0.30 0.08

5th order kernel (inefficient rate H = cn2/3)
eK5th

w (X1 tick) 0.951 0.531 (1.148) 0.989 0.37 0.31 0.30 0.08

8th order kernel (inefficient rate H = cn2/3)
eK8th

w (X1 tick) 0.954 0.573 (1.207) 0.998 0.34 0.31 0.27 0.09

Simple RV subsampled
[X20 minutes; 1200] 0.885 0.516 (1.036) 0.933 0.27 0.27 0.27 0.08
[X5 minutes; 300] 0.943 0.503 (1.088) 0.984 0.37 0.32 0.30 0.08
[X1 minutes; 60] 0.942 0.376 (0.921) 0.899 0.46 0.43 0.38 0.12

ZMA (2005)

TSRV (K, 1) 0.544 0.321 (0.711) 0.842 0.40 0.34 0.29 0.05
TSRV (K, 1) - adj 0.596 0.353 (0.784) 0.854 0.40 0.34 0.29 0.04

AMZ (2006)

TSRV (K, J) 0.736 0.436 (0.929) 0.944 0.33 0.35 0.28 0.11
TSRV (K, J) - aa 0.946 0.560 (1.194) 0.944 0.33 0.35 0.28 0.11

Table 7: Summary statistics: First the realised Modified Tukey-Hanning kernel using approximate 1
minute returns. Then, five realised kernels which also appear in Table 6, but now they are computed
using the inefficient rate and based on all available trades. Next, subsampled versions of simple
RV statistics based on 20, 5 and 1 minute returns. For instance, the subsampled [X5 minutes; 300]
calculates RV over 5 minutes, averaged over 300 times, just changing the initial place prices are
recorded. Under ZMA (2005) the two scale RV estimators suggested in Zhang, Mykland, and Aı̈t-
Sahalia (2005, eq. (55) and (64)) are listed. The AMZ (2006) are two scale estimators (see Aı̈t-
Sahalia, Mykland, and Zhang (2006, eq. (4.4) and (4.22))) designed to be robust to deviations from
i.i.d. noise. These authors also proposed the second estimator (their equations (64) and (4.22)),
which scales the first estimator, to overcome the finite sample bias of TSRV.

timing of the data. The last two of these features are new to this literature.

Our efficient feasible central limit theory for our estimators performed satisfactorily in Monte

Carlo experiments designed to assess finite sample behaviour. Our kernel was shown to be consistent

under rather broad assumptions on the dynamics of the noise term. We have applied the estimator

empirically, using 60 second return data on General Electric transaction data for 2004. Feasible

inference for our realised kernel is compared with that for a simpler realised variance estimator

based on 20 minute returns. The empirical results suggest that the realized kernel estimator is

more accurate. Its serial correlation suggests that the realized kernel may be useful for forecasting,

following Andersen, Bollerslev, Diebold, and Labys (2001).
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There are many possible extensions to this work, e.g. multivariate versions of these results which

deal with the scrambling effects discussed by, for example, Hayashi and Yoshida (2005), Bandi and

Russell (2005c), Zhang (2005), Sheppard (2005), Voev and Lunde (2005) and Griffin and Oomen

(2006) and derive an asymptotically efficient choice of kernel under temporal dependence in U .
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Appendix A: Proofs

Proof of Theorem 1. Throughout we take t = 1 and so δ = 1/n for the other cases follow

trivially.

PURE BSM CASE. Write yj = Yj/n − Y(j−1)/n, then the terms we need to study are
∑n

j=1 y2
j ,

∑n
j=1 yjyj+1, . . . ,

∑n
j=1 yjyj+H . This can be written in the form of a set of multipower variation

statistics (e.g. Barndorff-Nielsen, Graversen, Jacod, and Shephard (2006))

n∑

j=1

H∏

k=0

gl,k(yj+k) =

n∑

j=1

gl(yj , yj+1, ..., yj+H), l = 0, 1, 2, ...,H,
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by selecting the functions gl,k appropriately. In particular, writing gl,k into a matrix form

g(x) =




x2
0 1 1 · · · 1

x0 x1 1 · · · 1
x0 1 x2 · · · 1
...

...
. . .

. . .

x0 1 1 · · · xH




, x ∈ R
H+1.

We satisfy all the conditions in Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard

(2006) except there the gl,k(x) are assumed all to be even functions. To see that for our specific

form of g this assumption of evenness does not matter, we will look solely at the
∑n

j=1 yjyj+1

statistic. The other terms then follow immediately by the same argument.

We think of the bipower variation statistic

1

n

n∑

j=1

g2,1

(√
nyj

)
g2,2

(√
nyj+1

)
,

where g2,1(x0) = x0 and g2,2(x1) = x1. Then using the notation of Barndorff-Nielsen, Graversen,

Jacod, Podolskij, and Shephard (2006) that ρσ(h) = E
(
h (x) |σ2

)
, x|σ2 ∼ N(0, σ2) we note that

ρσ(g2,1) = ρσ(g2.2) = 0, which enormously simplifies the task. Inspection of their proof shows two

steps use this assumption. It is used on page 67, where various features of their zn
i are defined and

studied. In our case zn
i = 0 and so they follow immediately.

The only non-trivial step involves their equation (4.12) applied to the bipower case which is

presented in the first equation of their Proposition 4.2. This corresponds to checking condition

(7.29) in Jacod and Shiryaev (2003). The sole task then is satisfied if we can show

n∑

j=1

E
(
ζn

j wj|F j−1

n

)
p→ 0,

(actually converging to a continuous process would be enough) where we define

ζn
j =

1√
n

g2,1(βj−1)g2,2(β
′

j−1),

with βj =
√

nσ j−1

n
wj , β′

j =
√

nσ j−1

n
wj+1, and wj = W j

n
− W j−1

n
. Thus ζn

j =
√

nσ2
i−2
n

wj−1wj .

Clearly

n∑

j=1

E
(
ζn

j ∆n
j W |F j−1

n

)
=

1√
n

n∑

j=1

σ2
j−2

n

(
∆n

j−1W
)

=
1√
n

∫ 1

0
σ2

udWu + op(n
−1/2)

p→ 0.

Hence the result holds.

This implies then that Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard (2006)

result holds and so

δ−1/2




[Yδ]t −
∫ t
0 σ2

udu
γ1(Yδ)

...
γH(Yδ)




Ls→ MN

(
0,

∫ t

0
A(σu, g)du

)
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where

Al,k(σ, g) = Cov
{
gl(x), gk(x)|σ2

}
, x|σ2 ∼ N(0, σ2I)

= σ4Cov {gl(x), gk(x)} , x ∼ N(0, I).

Simple calculations based on the normal distribution delivers the result immediately.

THE CROSS TERM. Be implicit about the dependence on δ, then we can express γ0(Yδ, Uδ)

and γ̃h(Yδ, Uδ) as

n∑

j=1

yj(Uj − Uj−1) =

n∑

j=1

(yj − yj+1)Uj + Op(n
−1/2)

n∑

j=1

yj(Uj−h − Uj−h−1 + Uj+h − Uj+h−1) =

n∑

j=1

(yj+h − yj+h+1 + yj−h − yj−h−1) Uj + Op(n
−1/2).

Then the result follows immediately as γh(Yδ) = Op(n
−1/2) for |h| > 0.

PURE NOISE CASE. The expectation and covariance of γ(Uδ) and γ̃(Uδ) can be computed in

the following way. We write the terms into uncorrelated items

[Uδ] =

n∑

j=1

(Uj − Uj−1)
2 =

n∑

j=1

U2
j +

n∑

j=1

U2
j−1 − 2

n∑

j=1

UjUj−1

= 2

n−1∑

j=1

U2
j − 2

n−1∑

j=1

UjUj−1 +
(
U2

n + U2
0 − 2UnUn−1

)
.

γ1(U) =

n∑

j=1

(Uj − Uj−1) (Uj−1 − Uj−2) =

n∑

j=1

UjUj−1 −
n∑

j=1

U2
j−1 −

n∑

j=1

UjUj−2 +

n∑

j=1

Uj−1Uj−2

= 2

n−1∑

j=1

UjUj−1 −
n−1∑

j=1

UjUj−2 −
n−1∑

j=1

U2
j +

(
−UnUn−2 + UnUn−1 + U0U−1 − U2

0

)
.

γ2(U) =
n∑

j=1

(Uj − Uj−1) (Uj−2 − Uj−3) =
n∑

j=1

UjUj−2 −
n∑

j=1

Uj−1Uj−2 −
n∑

j=1

UjUj−3 +
n∑

j=1

Uj−1Uj−3

= 2

n−1∑

j=1

UjUj−2 −
n−1∑

j=1

UjUj−1 −
n−1∑

j=1

UjUj−3 + (−UnUn−3 + UnUn−2 + U0U−2 − U0U−1) .

The relevant covariance matrix can then be computed straightforwardly.

Finally, we show that end effects matter in the pure noise case. For simplicity we consider solely

the h = 1 case. Writing n = ⌊t/δ⌋

γ1(Uδ) = 2

n−1∑

j=1

UjδU(j−1)δ −
n−1∑

j=1

UjδU(j−2)δ −
n−1∑

j=1

U2
jδ + G1

γ−1(Uδ) = 2

n−1∑

j=1

UjδU(j−1)δ −
n−1∑

j=1

UjδU(j−2)δ −
n−1∑

j=1

U2
jδ + G−1,
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with end effects: G1 = −UnδU(n−2)δ + UnδU(n−1)δ + U0U(−1)δ − U2
0 , and G−1 = −U(n+1)δU(n−1)δ +

U(n+1)δUnδ + U1δU0 −U2
nδ. The terms U2

0 and U2
nδ differ and they never go away as n gets large. �

Proof of Lemma 1. Recall that Y #
n

Ls→ Y # means that for any bounded random variable V on

(Ω,F , P ) and any bounded continuous function f , as n → ∞, E
{
V f
(
Y #

n

)}
→ E

{
V f
(
Y #
)}

.

To show that X#
n

Ls→ Y # it suffices to verify that for any given V and f , as above,

E
{

V f
(
X#

n

)}
− E

{
V f
(
Y #

n

)}
→ 0. (B.1)

Now, let c and c′ be constants such that |V | ≤ c < ∞ and |f | ≤ c′ < ∞, then

∣∣∣E
{

V f
(
X#

n

)}
− E

{
V f
(
Y #

n

)}∣∣∣ ≤ E
{
|V |
∣∣∣f
(
X#

n

)
− f

(
Y #

n

)∣∣∣
}
≤ cE

{∣∣∣f
(
X#

n

)
− f

(
Y #

n

)∣∣∣
}

.

By the assumed properties of Y #
n and Z#

n , to any ε > 0 there exists an n0 and a finite closed

interval I such that for any n > n0 we have Pr
{

Y #
n /∈ I or X#

n /∈ I
}

< ε and hence, for n > n0,

E
{∣∣∣f

(
X#

n

)
− f

(
Y #

n

)∣∣∣
}
≤ c′ε + E

{∣∣∣f
(
X#

n

)
− f

(
Y #

n

)∣∣∣1n
Y #

n ∈I and X#
n ∈I

o
}

.

Since f is uniformly continuous on I there exists a δ = δ (ε) such that

|f (x) − f (y)| < ε for all x, y ∈ I with |x − y| < δ.

Next, take n′
0 > n0 and so large that P

{∣∣∣Z#
n

∣∣∣ ≥ δ
}

< ε provided n > n′
0. Then, for such n

E

{∣∣∣f
(
X#

n

)
− f

(
Y #

n

)∣∣∣ 1n
Y #

n ∈I and X#
n ∈I

o
}

≤ c′ε + E

{∣∣∣f
(
X#

n

)
− f

(
Y #

n

)∣∣∣ 1n
Y #

n ∈I and X#
n ∈I

o1n˛̨
˛Z#

n

˛̨
˛<δ

o
}

≤ c′ε + E

{∣∣∣f
(
X#

n

)
− f

(
Y #

n

)∣∣∣ 1n˛̨
˛Z#

n

˛̨
˛<δ

o
}

≤ c′ε + ε.

All in all we therefore have that
∣∣∣E
{
V f
(
X#

n

)}
− E

{
V f
(
Y #

n

)}∣∣∣ ≤ c (2c′ε + ε) for n > n′
0 from

which (B.1) follows. �

Proof of Proposition 1. The càdlàg property of υ follows by direct argument. Further, by

Lebesgue’s Theorem, the integral (23) is the same whether interpreted as a Riemann integral or a

Lebesgue integral. With the latter interpretation we find

Υt =

∫ t

0
σ2

Tu
τ2

udu =

∫ t

0
σ2

Tu
dTu =

∫ Tt

0
σ2

udu = S ◦ Tt.

�

Proof of Theorem 2. Write w = (w⊺, v⊺)⊺ where w = (1, 1)⊺ and v is a (H − 1)× 1 vector. Then

the variances of Kv(Uδ) and K̃v(Uδ) are, respectively,

V = 4ω4 {nVC(v) + VD(v)} , Ṽ = 4ω4
{
nVC(v) + V eD(v)

}
, (B.2)
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where, for a generic matrix E which splits as before into blocks E11, E21, E22,

VE(v) = w⊺E11w + 2v⊺E21w + v⊺E22v.

Likewise, under Y ∈ BSM the conditional variance of K̃v(Yδ, Uδ) given Y is

Var
{

K̃v(Yδ, Uδ)|Y
}

= 2ω2VB(v)[Y ] + O(δ),

and we have that

n1/2

√
t
(
3 + 2

∑H
h=2 v2

h

)
(

K̃v(Yδ) −
∫ t

0
σ2

udu

)
Ls→ MN

(
0, 2t

∫ t

0
σ4

udu

)
. (B.3)

We study the large sample behaviour of v⊺A22v, v⊺B22v, v⊺C22v, v⊺D22v.

v⊺A22v =
H∑

i=1

v2
i , v⊺B22v = v1(2v1 − v2) +

H−1∑

i=2

vi(−vi−1 + 2vi − vi+1) + vH(−vi−1 + 2vi),

v⊺C22v = v1(6v1 − 4v2 + v3) + v2(−4v1 + 6v2 − 4v3 + v4)

+

H−2∑

i=3

vi(vi−2 − 4vi−1 + 6vi − 4vi+1 + vi+2)

+ vH−1(vH−3 − 4vH−2 + 6vH−1 − 4vH) + vH(vH−2 − 4vH−1 + 6vH),

−v⊺D22v = v1(2v1 − 2v2 + v3) + v2(−2v1 + 2v2 − 2v3 + v4)

+
H−2∑

i=3

vi(vi−2 − 2vi−1 + 2vi − 2vi+1 + vi+2)

+vH−1(vH−3 − 2vH−2 + 2vH−1 − 2vH) + vH(vH−2 + 2vH−1 − 2vH).

v⊺D̃22v = v1 {−7v1 + 6v2 − 2v3} + v2

{
6v1 − 10v2 + 8v3 −

5

2
v4

}

+
H−2∑

h=3

vh

{
−h + 1

2
vh−2 + 2(h + 1)vh−1 − (3h + 4)vh + 2(h + 2)vh+1 −

h + 3

2
vh+2

}

+vH−1

{
−H

2
vH−3 + 2HvH−2 − (3H + 1)vH−1 + 2(H + 1)vH

}

+vH

{
−H + 1

2
vH−2 + 2(H + 1)vH−1 − (3H + 4)vH

}
.

End-Effects: First we study the end-effects. We have the following table of coefficients

k(0) k′(0)δ k′′(0)δ2 k′′′(0)δ3 k′′′′(0)δ4

v1 = k(δ) 1 1 1
2

1
6

1
24

v2 = k(2δ) 1 2 4
2

8
6

16
24

v3 = k(3δ) 1 3 9
2

27
6

81
24

v4 = k(4δ) 1 4 16
2

32
6

128
24
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from which it follows that

2v1 − v2 = k(0) − k′′(0)δ2 − k′′′(0)δ3 + O(δ4) = 1 + O(H−2)

2v1 − 2v2 + v3 = k(0) + k′(0)δ + 3
2k′′(0)δ2 + O(δ3) = 1 + k′(0)H−1 + O(H−2)

−2v1 + 2v2 − 2v3 + v4 = −1 + O(H−2)

6v1 − 4v2 + v3 = 3 + k′(0)H−1 − 1

2
k′′(0)H−2 +

1

6
k′′′(0)H−3 + O(H−4)

−4v1 + 6v2 − 4v3 + v4 = −1 + O(H−4),

−7v1 + 6v2 − 2v3 = −3k(0) − k′(0)δ − 1

2
k′′(0)δ2 + O(δ3),

6v1 − 10v2 + 8v3 −
5

2
v4 = 3/2k(0) − k′′(0)δ2 + O(δ3).

Similarly,

k(1) k′(1)δ k′′(1)δ2 k′′′(1)δ3 k′′′′(1)δ4

vH 1 0 0 0 0

vH−1 = k(1 − δ) 1 −1 1
2 −1

6
1
24

vH−2 = k(1 − 2δ) 1 −2 4
2 −8

6
16
24

vH−3 = k(3δ) 1 −3 9
2 −27

6
81
24

such that (k(1) = 0)

vH−1 = −k′(1)δ +
1

2
k′′(1)δ2 − 1

6
k′′′(1)δ3 + O(δ4)

vH−3 − 4vH−2 + 6vH−1 = −k′(1)δ − 1

2
k′′(1)δ2 − 1

6
k′′′(1)δ3 + O(δ4)

vH−3 − 2vH−2 + 2vH−1 = −k′(1)δ − 3

2
k′′(1)δ2 + O(δ3)

−1

2
vH−3 + 2vH−2 − 3vH−1 =

1

2
k′(1)δ +

1

4
k′′(1)δ2 + O(δ3)

and

vH−1(vH−3 − 2vH−2 + 2vH−1) = δ2k′(1)2 + δ3k′(1)k′′(1) + O(δ4)

vH−1(vH−3 − 4vH−2 + 6vH−1) = −δk′(1)

{
−k′(1)δ − 1

2
k′′(1)δ2 + O(δ3)

}

+
1

2
k′′(1)δ2

{
−k′(1)δ + O(δ2)

}

= k′(1)2δ2 + O(δ4)

B End-Effects v1(2v1 − v2) = 1 + k′(0)δ + O(δ2).

C End-Effects

v1 (6v1 − 4v2 + v3) = 1

{
3 + k′(0)δ − 1

2
k′′(0)δ2 +

1

6
k′′′(0)δ3 + O(δ4)

}

+k′(0)δ

{
3 + k′(0)δ − 1

2
k′′(0)δ2 + O(δ3)

}
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+
1

2
k′′(0)δ2

{
3 + k′(0)δ + O(δ2)

}
+

1

6
k′′′(0)δ3 {3 + O(δ)}

= 3 + 4k′(0)δ +
{
k′(0)2 + k′′(0)

}
δ2 +

2

3
k′′′(0)δ3 + O(δ4),

and

v2 (−4v1 + 6v2 − 4v3 + v4) =

{
1 + 2k′(0)δ +

4

2
k′′(0)δ2 +

8

6
k′′′(0)δ3 + O(δ4)

}{
−1 + O(δ4)

}

= −1 − 2k′(0)δ − 2k′′(0)δ2 − 4

3
k′′′(0)δ3 + O(δ4),

which add up to

v1 (6v1 − 4v2 + v3) + v2 (−4v1 + 6v2 − 4v3 + v4)

= 2 + 2k′(0)δ +
{
k′(0)2 − k′′(0)

}
δ2 − 4

6
k′′′(0)δ3 + O(δ4).

The last end-term is vH−1(vH−3 − 4vH−2 + 6vH−1 − 4vH) = k′(1)2δ2 + O(δ4).

D End-Effects

v1(2v1 − 2v2 + v3) + v2(−2v1 + 2v2 − 2v3 + v4) = 1 + 2k′(0)δ − 1 − 2k′(0)δ + O(δ2) = O(δ2)

vH−1(vH−3 − 2vH−2 + 2vH−1 − 2vH) = k′(1)2δ2 + O(δ4).

D̃ End-Effects:

v1 {−7v1 + 6v2 − 2v3} = −
{
k(0) + k′(0)δ + O(δ2)

}{
3k(0) + k′(0)δ + O(δ2)

}

= −3 − 4k′(0)δ + O(δ2),

v2

{
6v1 − 10v2 + 8v3 −

5

2
v4

}
=

{
k(0) + 2k′(0)δ + O(δ2)

}{3

2
k(0) − k′′(0)δ2 + O(δ3)

}

=
3

2
+ 3k′(0)δ + O(δ2),

vH−1

{
−H

2
vH−3 + 2HvH−2 − (3H + 1)vH−1

}
= vH−1δ

−1

{
−1

2
vH−3 + 2vH−2 − 3vH−1

}
− v2

H−1,

vH−1δ
−1

{
−1

2
vH−3 + 2vH−2 − 3vH−1

}
=

(
−k′(1)δ +

1

2
k′′(1)δ2 + O(δ3)

)

×δ−1

{
1

2
k′(1)δ +

1

4
k′′(1)δ2 + O(δ3)

}

= −1

2
k′(1)2δ + 0 × k′(1)k′′(1)δ2 + O(δ3),

−v2
H−1 = −

{
−k′(1)δ + O(δ2)

}2
= −k′(1)2δ2 + O(δ3).

So the total contribution from end-effects is −3
2 −

{
k′(0) + 1

2k′(1)2
}

δ + O(δ2).
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Summations: From the following table of coefficients,

k(x) k′(x)δ k′′(x)δ2 k′′′(x)δ3 k′′′′(x)δ4

k(x − 2δ) 1 −2 4
2 −8

6
16
24

k(x − δ) 1 −1 1
2 −1

6
1
24

k(x) 1 0 0 0 0

k(x + δ) 1 1 1
2

1
6

1
24

k(x + 2δ) 1 2 4
2

8
6

16
24

we find that the terms in the summation expressions are given by

k(x + δ) − 2k(x) + k(x − δ) = δ2k′′(x) + O(δ4)

k(x + 2δ) − 4k(x + δ) + 6k(x) − 4k(x − δ) + k(x − 2δ) = δ4k′′′′(x) + O(δ6)

k(x + 2δ) − 2k(x + δ) + 2k(x) − 2k(x − δ) + k(x − 2δ) = 2δ2k′′(x) + O(δ4).

Thus

1

H
v⊺A22v =

1

H

H∑

i=1

v2
i →

∫ 1

0
k2(x)dx

v⊺B22v = 1 + k′(0)H−1 − H−1

∫ 1

0
k(x)k′′(x)dx + O(H−2) = 1 + H−16/5 + O(H−2)

v⊺C22v = 2 + 2k′(0)H−1 + H−2
{
k′(0)2 + k′(1)2 − k′′(0)

}
− H−3 4

6
k′′′(0)

+H−3

∫ 1

0
k(x)k

′′′′

(x)dx + O(H−4)

v⊺D22v = −2H−1

∫ 1

0
k(x)k′′(x)dx + O(H−2) = H−112/5 + O(H−2).

The term for D̃22 is slightly more involved.

−h + 1

2
vh−2 + 2(h + 1)vh−1 − (3h + 4)vh + 2(h + 2)vh+1 −

h + 3

2
vh+2

= −h

2
{vh−2 − 4vh−1 + 6vh − 4vh+1 + vh+2} −

1

2
{vh−2 − 4vh−1 + 8vh − 8vh+1 + 3vh+2}

= −h

2
{vh−2 − 4vh−1 + 6vh − 4vh+1 + vh+2} −

1

2
{vh−2 − 4vh−1 + 6vh − 4vh+1 + vh+2}

−{vh − 2vh+1 + vh+2}

= −h

2
δ4k′′′′(x) + O(δ4) − δ2k′′(x) + O(δ4).

So

H−2∑

h=3

vh

{
−h + 1

2
vh−2 + 2(h + 1)vh−1 − (3h + 4)vh + 2(h + 2)vh+1 −

h + 3

2
vh+2

}

= −δ

∫
k(x)k′′(x)dx − 1

2
δ2

∫
xk(x)k′′′′(x)dx + O(δ3).

Other Terms: Finally we obtain

w⊺C11w = 1, w⊺B11w = 1, w⊺D11w = λ2/2, w⊺D̃11w = −3/2,
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w⊺C12v = −3v1 + v2 = −2 + H−1k′(0) +
1

2
H−2k′′(0) +

5

6
H−3k′′′(0) + O(H−4)

w⊺B12v = −v1 = −1 − H−1k′(0) + O(H−2)

w⊺D12v = v1 − v2 = −H−1k′(0) + O(H−2).

w⊺D̃12v = 3v1 − 3/2v2 = 3/2 − 3/2k′′(0)δ2 + O(δ3).

Combining the results yields the formula given in the Theorem.

Proof of Proposition 2. Ignore the notation δ. Now

n∑

i=1

(Ui − Ui−1)(Ui−h − Ui−h−1) = 2

n∑

i=1

UiUi−h −
n∑

i=1

UiUi−h−1 −
n∑

i=1

UiUi−h+1

+U0(U−h − U−h+1) − Un(Un−h − Un−h+1).

Hence

H∑

h=−H

k
(

h
H

)
γh(Uδ) =

H∑

h=−H

k
(

h
H

) {
2γ̄h(Uδ) − γ̄h−1(Uδ) − γ̄h+1(Uδ)

}

+U0

H∑

h=−H

k
(

h
H

)
(U−h − U−h+1) − Un

H∑

h=−H

k
(

h
H

)
(Un−h − Un−h+1).

Next we show that the last two terms are Op(H
−1/2). We have

H∑

h=−H

k
(

h
H

)
(U−h − U−h+1) =

H∑

h=−H

k
(

h
H

)
U−h −

H+1∑

h=−H+1

k
(

h−1
H

)
U−h

=
H∑

h=−H+1

{
k
(

h
H

)
− k

(
h−1
H

)}
U−h,

since k (−1)UH − k (1) U−H−1 = 0 by the properties of k(x). Defining k(x) = 0 for |x| ≥ 1 allows

us to sum from −H, i.e.
∑H

h=−H

{
k
(

h
H

)
− k

(
h−1
H

)}
U−h. So

H∑

h=−H

k
(

h
H

)
U0(U−h − U−h+1) = H−1/2 × U0 ×

{
H−1/2

H∑

h=−H

k
(

h
H

)
− k

(
h−1
H

)

1/H
U−h

}
,

which is Op(H
−1/2) since ah,H = H1/2

{
k
(

h
H

)
− k

(
h−1
H

)}
is such that

H∑

h=−H

a2
h,H = H−1

H∑

h=−H

{
k
(

h
H

)
− k

(
h−1
H

)

1/H

}2

→
∫ 1

−1

{
k′(x)

}2
dx.

The proof for the other term is very similar.

Now we move to showing (24). We have

H∑

h=−H

k

(
h

H

)
γh =

H∑

h=−H

k

(
h

H

)(
2γh − γh−1 − γh+1

)
+ Op(H

−1/2)
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=
H∑

h=−H

γh

{
2k

(
h

H

)
− k

(
(h − 1)

H

)
− k

(
(h + 1)

H

)}
+ Op(H

−1/2)

= − n

H2

H∑

h=−H

k′′

(
h

H

)(
1

n
γh

)
+ Op(nH−3) + Op(H

−1/2).

�

Proof of Proposition 3. Now we assume k′′ (0) = 0 then

− n

H2

∑

|h|≤H

k′′

(
h

H

)(
1

n
γh

)
= − n

H3

∑

|h|≤H

k′′′ (0) |h|
(

1

n
γh

)
+ Op

( n

H3

)
= Op

( n

H3

)
.

This leaves us thinking of

∑

H≥|h|>H

k′′

(
h

H

)(
1

n
γh

)
.

From Bartlett (1946) we know that for k > h

√
n

(
1
nγh
1
nγk

)
L→ N



(

0
0

)
, ω4

∞∑

j=−∞

(
ρ2

j + ρj+hρj−h ρjρj+(k−h) + ρj+kρj−h

ρjρj+(k−h) + ρj+kρj−h ρ2
j + ρj+kρj−k

)


where ρj denotes the population autocorrelation. In the AR(1) case, with persistence parameter

|ρ| < 1 then it is well known that this simplifies to

√
n

(
1
nγh
1
nγk

)
L→ N

((
0
0

)
, 2ω4

(
1 ρk−h

ρk−h 1

)
1 + ρ2

1 − ρ2

)
,

noting
∑∞

j=−∞ φ2j =
(
1 + ρ2

)
/
(
1 − ρ2

)
.The impact of the serial dependence is that

√
n

H




∑

H≥h>H

2k′′

(
h

H

)(
1

n
γh

)
 L→ N

{
0, 4ω4 1 + ρ2

1 − ρ2

∫ 1

0
k′′(x)2dx

}
.

This implies

− n

H2

∑

|h|≤H

k′′

(
h

H

)(
1

n
γh

)
= Op

(
n1/2

H3/2

)
.

Overall we have Op

(
n1/2H−3/2

)
+ Op(nH−3) + Op

(
H−1/2

)
. Placing H = cn1/2 delivers a term

which is Op

(
n−1/4

)
. �
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Appendix B: Tables with simulation results

Table B.1: Summary Statistics for infeasible Traw where ̟ is known.

ω2 = 0.01, number of reps. = 150000

No. obs H
∗

simple Mean Stdv. 0.5% 2.5% 5% 95% 97.5% 99.5%

195 13.3 0.001 1.035 0.06 1.13 3.50 93.35 95.86 98.50

390 18.6 -0.001 1.057 0.14 1.69 4.27 93.26 95.79 98.41

780 26.0 -0.001 1.077 0.25 2.09 4.84 93.16 95.77 98.43

1560 36.6 -0.002 1.103 0.41 2.56 5.43 92.99 95.67 98.38

4680 63.1 -0.000 1.163 0.68 3.19 6.28 92.59 95.35 98.10

5850 70.5 -0.003 1.180 0.76 3.31 6.44 92.47 95.21 98.04

7800 81.3 -0.001 1.204 0.87 3.58 6.69 92.37 95.11 97.88

11700 99.5 -0.004 1.242 1.01 3.92 7.19 92.12 94.83 97.68

23400 140.4 -0.003 1.329 1.41 4.67 8.05 91.44 94.26 97.23

ω2 = 0.001, number of reps. = 150000

No. obs H
∗

simple Mean Stdv. 0.5% 2.5% 5% 95% 97.5% 99.5%

195 4.54 -0.001 0.999 0.12 1.40 3.67 94.12 96.61 98.94

390 6.21 -0.000 1.001 0.18 1.70 4.05 94.28 96.75 99.09

780 8.58 0.000 0.999 0.22 1.87 4.27 94.42 96.93 99.19

1560 11.9 0.000 1.003 0.26 2.04 4.49 94.45 96.99 99.23

4680 20.3 -0.000 1.007 0.36 2.21 4.71 94.55 97.01 99.27

5850 22.6 0.001 1.007 0.35 2.24 4.75 94.52 97.04 99.29

7800 26.0 -0.001 1.010 0.33 2.28 4.84 94.51 97.06 99.24

11700 31.8 -0.000 1.009 0.37 2.38 4.85 94.57 97.12 99.31

23400 44.8 -0.001 1.017 0.43 2.37 5.01 94.46 97.06 99.29

ω2 = 0.0001, number of reps. = 150000

No. obs H
∗

simple Mean Stdv. 0.5% 2.5% 5% 95% 97.5% 99.5%

195 1.75 -0.000 0.998 0.17 1.63 3.97 94.32 96.75 99.07

390 2.30 -0.000 0.999 0.25 1.86 4.22 94.47 96.95 99.20

780 3.06 0.000 0.998 0.28 1.98 4.49 94.61 97.10 99.26

1560 4.11 -0.001 1.000 0.31 2.12 4.59 94.65 97.11 99.30

4680 6.76 -0.001 1.002 0.39 2.23 4.79 94.71 97.24 99.36

5850 7.50 0.001 1.000 0.40 2.22 4.74 94.72 97.30 99.41

7800 8.58 -0.001 1.005 0.40 2.34 4.84 94.69 97.21 99.37

11700 10.4 -0.002 1.001 0.42 2.30 4.81 94.81 97.29 99.36

23400 14.5 -0.003 1.004 0.46 2.45 4.92 94.78 97.28 99.43

Summary Statistics for the infeasible Traw under stochastic volatility. The first column defines the sampling

frequency. The second gives the average values of H∗. Columns 3 and 5 present the mean and the standard

deviation of the statistics. The remaining 6 columns give the simulated quantiles of distribution.
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Table B.2: Summary Statistics for feasible Traw, estimating ̟ from the data.

ω2 = 0.01, number of reps. = 150000

No. obs H
∗

simple Mean Stdv. 0.5% 2.5% 5% 95% 97.5% 99.5%

195 8.32 -0.220 1.094 3.12 6.89 10.1 98.50 99.64 99.99

390 11.6 -0.188 1.066 2.53 6.05 9.12 97.90 99.38 99.98

780 16.2 -0.155 1.047 2.01 5.29 8.36 97.39 99.11 99.94

1560 22.6 -0.131 1.044 1.78 4.94 8.02 96.83 98.75 99.88

4680 38.8 -0.102 1.059 1.47 4.63 7.71 95.89 98.08 99.68

5850 43.4 -0.099 1.059 1.38 4.53 7.64 95.77 97.96 99.61

7800 50.0 -0.094 1.068 1.40 4.49 7.63 95.45 97.76 99.54

11700 61.1 -0.087 1.083 1.38 4.63 7.85 95.12 97.42 99.37

23400 86.2 -0.079 1.116 1.44 4.71 8.05 94.26 96.83 99.03

ω2 = 0.001, number of reps. = 150000

No. obs H
∗

simple Mean Stdv. 0.5% 2.5% 5% 95% 97.5% 99.5%

195 4.31 -0.232 1.065 2.88 6.45 9.59 98.67 99.69 99.99

390 5.79 -0.177 1.027 2.11 5.25 8.24 98.08 99.40 99.97

780 7.95 -0.138 1.003 1.60 4.52 7.49 97.64 99.18 99.95

1560 11.0 -0.112 0.995 1.29 4.08 6.89 97.19 98.93 99.91

4680 18.7 -0.083 0.992 0.97 3.54 6.29 96.58 98.56 99.83

5850 20.8 -0.077 0.991 0.94 3.47 6.24 96.52 98.53 99.82

7800 23.9 -0.073 0.994 0.90 3.41 6.24 96.36 98.44 99.78

11700 29.2 -0.065 0.993 0.83 3.34 6.07 96.27 98.38 99.77

23400 41.1 -0.056 1.001 0.79 3.20 5.92 95.93 98.14 99.70

ω2 = 0.0001, number of reps. = 150000

No. obs H
∗

simple Mean Stdv. 0.5% 2.5% 5% 95% 97.5% 99.5%

195 2.78 -0.210 1.031 2.54 5.95 9.00 99.19 99.88 100.00

390 2.77 -0.160 0.994 1.70 4.68 7.62 98.34 99.55 99.99

780 3.23 -0.118 0.975 1.22 3.87 6.69 97.62 99.14 99.93

1560 4.20 -0.086 0.974 0.96 3.44 6.14 96.94 98.79 99.87

4680 6.86 -0.059 0.977 0.74 3.01 5.63 96.45 98.48 99.78

5850 7.61 -0.052 0.976 0.71 2.91 5.54 96.35 98.42 99.76

7800 8.71 -0.049 0.982 0.72 2.93 5.55 96.18 98.28 99.72

11700 10.5 -0.045 0.979 0.67 2.81 5.35 96.16 98.22 99.72

23400 14.7 -0.037 0.985 0.66 2.81 5.38 95.87 98.08 99.71

Summary Statistics for feasible Traw under stochastic volatility. The first column defines the sampling

frequency. The second gives the average values of H∗. Columns 3 and 5 present the mean and the standard

deviation of the statistics. The remaining 6 columns give the simulated quantiles of distribution.
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Table B.3: Summary Statistics for feasible Tlog, estimating ̟ from the data.

ω2 = 0.01, number of reps. = 150000

No. obs H
∗

simple Mean Stdv. 0.5% 2.5% 5% 95% 97.5% 99.5%

195 8.32 -0.094 1.003 0.84 3.38 6.35 96.10 98.17 99.67

390 11.6 -0.085 1.007 0.80 3.24 6.11 95.76 97.91 99.61

780 16.2 -0.070 1.008 0.70 3.02 5.86 95.58 97.73 99.54

1560 22.6 -0.060 1.018 0.64 3.03 5.87 95.19 97.54 99.46

4680 38.8 -0.046 1.046 0.71 3.14 6.07 94.55 97.05 99.23

5850 43.4 -0.046 1.049 0.66 3.12 6.11 94.50 96.98 99.14

7800 50.0 -0.043 1.061 0.68 3.25 6.16 94.33 96.79 99.07

11700 61.1 -0.041 1.078 0.75 3.39 6.46 94.08 96.54 98.85

23400 86.2 -0.037 1.117 0.83 3.67 6.87 93.32 96.01 98.52

ω2 = 0.001, number of reps. = 150000

No. obs H
∗

simple Mean Stdv. 0.5% 2.5% 5% 95% 97.5% 99.5%

195 4.31 -0.153 1.004 1.49 4.36 7.33 97.31 98.89 99.87

390 5.79 -0.118 0.992 1.16 3.76 6.54 96.90 98.68 99.81

780 7.95 -0.093 0.982 0.92 3.34 6.12 96.67 98.54 99.78

1560 11.0 -0.076 0.983 0.77 3.13 5.81 96.37 98.36 99.75

4680 18.7 -0.057 0.986 0.68 2.90 5.53 95.98 98.08 99.67

5850 20.8 -0.053 0.985 0.65 2.91 5.49 95.90 98.07 99.67

7800 23.9 -0.051 0.990 0.63 2.86 5.55 95.81 98.01 99.63

11700 29.2 -0.045 0.990 0.59 2.85 5.47 95.76 98.00 99.62

23400 41.1 -0.039 0.999 0.61 2.79 5.43 95.48 97.78 99.59

ω2 = 0.0001, number of reps. = 150000

No. obs H
∗

simple Mean Stdv. 0.5% 2.5% 5% 95% 97.5% 99.5%

195 2.78 -0.142 0.981 1.38 4.20 7.05 98.01 99.35 99.97

390 2.77 -0.114 0.970 1.01 3.51 6.23 97.33 99.01 99.91

780 3.23 -0.085 0.963 0.78 3.05 5.67 96.85 98.67 99.82

1560 4.20 -0.061 0.967 0.64 2.86 5.36 96.36 98.36 99.74

4680 6.86 -0.043 0.974 0.57 2.58 5.16 96.03 98.17 99.68

5850 7.61 -0.037 0.973 0.55 2.56 5.06 95.96 98.12 99.67

7800 8.71 -0.035 0.980 0.56 2.61 5.12 95.82 97.99 99.63

11700 10.5 -0.033 0.978 0.54 2.53 5.02 95.84 97.98 99.62

23400 14.7 -0.027 0.984 0.55 2.59 5.08 95.61 97.86 99.64

Summary Statistics for feasible Tlog under stochastic volatility, using d = 0.2. The first column defines the

sampling frequency. The second gives the average values of H∗. Columns 3 and 5 present the mean and the

standard deviation of the statistics. The remaining 6 columns give the simulated quantiles of distribution.
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