
State processes and their role in design and
implementation of financial models

Dmitry Kramkov

Carnegie Mellon University, Pittsburgh, USA

Implementing Derivative Valuation Models, FORC, Warwick,
February 24

1 / 37

Outline

Introduction

State processes: theory

Design of cfl

Pricing of path-dependent derivatives

Models with identical state process

Choosing the “right” financial model

2 / 37

“Financial Computing with C++”: a course in MSCF

Goals of the course:

”Theoretical”: review and expand the knowledge of the basic
topics:

1. Object Oriented Programming with C++
2. Arbitrage-Free Pricing of Derivatives
3. Stochastic Calculus
4. Numerical Analysis

”Practical”: improve the ability to use C++ (speak C++ !) for
practical financial computations.

Case study: cfl (Library for the course Financial Computing)

3 / 37

Final exam

I Students are given 3 hours to price 3 derivative securities.

In the final exam for 2005 students had to price:

1. “BOOST” (Banking on Overall Stability Option)

2. Ratchet Bond

3. Target Inverse Floater Swap

Results for Pittsburgh’s section:

of solved problems 3 2 1 0

of students 3 9 1 12

4 / 37

“BOOST”: Banking On Overall Stability

N : notional amount.

L < U : lower and upper barriers.

(ti)1≤i≤m : barrier times

The option terminates at the first barrier time, when the price of
the stock hits either of the barriers, that is, at the barrier time ti∗ ,
which index is given by

i∗ = min{1 ≤ i ≤ m : S(ti) > U or S(ti) < L}.

At the exit time ti∗ the holder of the option receives the payoff
N i∗−1

m (the product of the notional amount on the percentage of
the barrier times that the price of the stock spends inside two
barriers).

5 / 37

Ratchet bond

N : notional

c : initial coupon rate

d : reset value for the coupon rate (d < c).

δt : interval of time between the payments given as year
fraction.

m : total number of coupon payments.

L : the redemption price of the bond as percentage of
the notional. Typically, L < 1.

After coupon payment the issuer can reset the coupon rate from
the original (higher) value c to the (lower) reset value d . However,
later the holder can sell the bond back to the issuer for the
redemption value LN.

6 / 37

Target Redemption Inverse Floater

δt : interval of time between the payments given as year
fraction.

m : maximal number of payments

N : notional amount.

R : strike fixed rate.

Q : the total coupon paid to a client as percentage of
the notional.

We pay inverse float coupon (= Nδt max(R − Libor, 0)) to the
client and receive Libor until the total coupon reaches the threshold
QN. Then the trade is terminated. Note that the total coupon
paid to the client over the time of the trade equals exactly QN.

7 / 37

Design of pricing library

Models:
Black
. . .
Hull-White
. . .

Derivatives:
Boost option
. . .
Ratchet Bond
Target Redemption Inverse Floater
. . .

Basic goal of design: re-usability.

1. Tools of C++: inheritance, templates, . . .

2. Basic concepts of Arbitrage-Free Pricing Theory: rollback
operator, state process,

8 / 37

Rollback operator

Vs : the value of
this payoff at s

Vt : a payoff at t�
Rollback

Risk-neutral pricing:

Vs = Rs [Vt] = E∗s [Vt exp(−
∫ t

s
rudu)]

where

(rt): short-term interest rate

P∗: (money market) martingale measure

9 / 37

State processes

Main Idea: efficient storage scheme for relevant random variables.

Remark
The storage scheme should be adapted to the type of the
derivative security.

Definition
A process (Xt)0≤t≤T is called a state process if

I for all s < t and any deterministic function f = f (x)

I there is a deterministic function g = g(x)

such that
g(Xs) = Rs [f (Xt)].

10 / 37

State and Markov processes

Theorem
The following conditions are equivalent:

1. X is a state process

2. We have

2.1 X is a Markov process under the money market martingale
measure P∗

2.2 For any time t the short term interest rate rt is determined by
Xt , that is,

rt = h(Xt , t), t > 0,

for some deterministic function h = h(x , t)

11 / 37

Some standard examples

1. Black and Scholes model:

dSt = St(qtdt + σtdWt),

Here (St) is a state process.

2. Commodity model with mean-reversion:

dSt = St [(θt − λt lnSt)dt + σtdWt]

Here (St) is a state process.

3. Hull and White model for interest rates:

drt = (θt − λtrt)dt + σtdWt

Here (rt) is a state process.

12 / 37

“Implementation” of a financial model

1. The specification of a state process X (the choice of the state
process is determined by the type of derivative security).

2. The implementation of the following operations for random
variables from the families

{f (Xt) : f = f (x)} , t > 0

2.1 For given time t: all arithmetic and functional operations
2.2 Between two times s < t: rollback operator.

Example

Standard implementation of Black and Scholes model allows us to
operate at time t with random variables of the form

{f (St) : f = f (x)}

13 / 37

A model in cfl library

Basic components:

1. (ti)0≤i≤M : sorted vector of event times given as year
fractions.

Event times: all times needed to price a particular derivative
security (exericse times, barrier times, reset
times, . . .).

Numerical efficiency: create the vector of event times with a
smallest size.

2. X = (X 0, . . . ,X d−1): (d-dimensional) state process.

At an event time ti we operate with random variables:

Xti = {f (Xti) : f = f (x)}

represented by the class cfl::Slice

14 / 37

cfl::Slice

There are 2 types of operations for cfl::Slice:

1. At given event time ti : all possible arithmetic, functional,
etc. . For example, if

uSpot: cfl::Slice for the spot price S(ti) at ti
dK: double for a cash amount K at ti

then

Slice uCall = max(uSpot - dK, 0.);

creates cfl::Slice for the payoff

max(S(ti)− K , 0)

of the call option with strike K and maturity ti .

15 / 37

cfl::Slice

There are 2 types of operations for cfl::Slice:

2. Between two event times ti < tj : only rollback operator.

The value of
this payoff at ti

A payoff at tj� Rollback

Algorithm for pricing of standard call:

...
//two event times: 0 (initial) and 1 (maturity)
Slice uCall = max(uModel.spot(1) - dK, 0);
uCall.rollback(0);

16 / 37

Program flow

1. Basic objects of the type cfl::Slice such as

1.1 spot prices
1.2 discount factors, etc.

are created by an implementation of a particular financial
model

2. We then manipulate these basic objects using the provided
operators and functions:

2.1 for given event time: all arithmetic and functional operations;
2.2 between two event times: rollback operator.

17 / 37

Code for BOOST (Banking on Overall Stability) option

...
Model uModel(rData, uEventTimes, dInterval, dQuality);
int iTime = uModel.eventTimes().size()-1;
Slice uOption = uModel.cash(iTime, dNotional);
while (iTime > 0) {
//uOption = value to continue
Slice uInd = indicator(uModel.spot(iTime), dLowerBarrier)*
indicator(dUpperBarrier, uModel.spot(iTime));

uOption *= uInd;
double dPayoff = dNotional*(iTime-1.)/rBarrierTimes.size();
uOption += dPayoff*(1. - uInd);
iTime--;
uOption.rollback(iTime);

}
...

18 / 37

Code for Ratchet Bond

...
Model uModel(rData, uTimes, dInterval, dQuality);
int iTime = uTimes.size()-1; //last minus one coupon time
double dOriginalCoupon = dNotional * rBond.rate * dPeriod;
double dResetCoupon = dNotional * dResetCouponRate * dPeriod;
double dRedemptValue = dRedemptionPrice * dNotional;
Slice uBondBeforeReset = uModel.discount(iTime,dMaturity) *
(dNotional + dOriginalCoupon);

Slice uBondAfterReset = uModel.discount(iTime,dMaturity) *
(dNotional + dResetCoupon);

while (iTime > 0) {
uBondAfterReset = max(uBondAfterReset, dRedemptValue);
uBondBeforeReset = min(uBondAfterReset, uBondBeforeReset);
uBondAfterReset+= dResetCoupon;
uBondBeforeReset+=dOriginalCoupon;
iTime--;
uBondBeforeReset.rollback(iTime);
uBondAfterReset.rollback(iTime);
}

... 19 / 37

Pricing of path-dependent derivatives

Assume that we have standard implementation of some interest
rate model, that is, at any time t we can work with random
variables:

{f (B(t,T)) : f = f (x) T > t}

where B(t,T) is a discount factor with maturity T .

I Using this implementation we can price different standard and
barrier, European and American options.

I However, we are not able to handle Path-Dependent
derivatives such as Target Redemption Inverse Floater.

Solution: extend the dimension of the model by adding new
component Y to the original state process.

20 / 37

General framework

Assume that we are given an “implementation” of a financial
model corresponding to a particular choice of a state process X ,
that is, for random variables from the sets

Xt = {f (Xt) : f = f (x)} , t > 0

the following operations are implemented:

1. for given time t — all arithmetic and functional

2. between two times s < t — rollback, that is for any f = f (x)
we know how to compute g = g(x) such that

g(Xs) = Rs(f (Xt))

21 / 37

General framework

Consider also a stochastic process Y which values change at reset
times t1, . . . , tN :

t0
q q q q q-

t1

-

t2

-

· · ·

-

tN−1

-

tN
-

6Y

22 / 37

Main Theorem on Path-Dependence

Question: is (X ,Y) a state process?

Theorem
Assume that for any reset time ti+1 there is a deterministic
function Gi+1 = Gi+1(x , y) (reset function) such that

Yti+1 = Gi+1(Xti+1 ,Yti)

Then (X ,Y) is a state process.

Remark
The value of Y at a reset time t is determined by

I the value of the original state process X at t

I and the value of Y before t.

23 / 37

Implementation in cfl library

1. We start with “standard” implementation of the model
determined by the basic state process X .

2. To price a path dependent derivative security we add another
state process Y determined by

2.1 reset times: t1, . . . , tN
2.2 reset functions: (Gi)1≤i≤N

Yti+1 = Gi+1(Xti+1 ,Yti).

3. Classes for path dependent processes:

3.1 Interface class cfl::IResetValues (describes reset
functions).

3.2 Concrete class cfl::PathDependent (is related to
cfl::IResetValues through pimpl idiom).

24 / 37

Code for Target Redemption Inverse Floater
class TotalNextCoupon: public IResetValues

{

public:

TotalNextCoupon(const Model & rModel, double dCapRate, double dPeriod)

:m_dCapRate(dCapRate), m_dPeriod(dPeriod), m_rModel(rModel)

{}

Slice resetValues(unsigned iTime, double dBeforeReset) const

{

return dBeforeReset + m_dPeriod *

max(m_dCapRate - rate(m_rModel, iTime, m_dPeriod),0.);

}

private:

const Model & m_rModel;

double m_dCapRate, m_dPeriod;

};

PathDependent totalNextCoupon(const Model & rModel,

const std::vector<unsigned> & rResetIndexes,

double dCapRate, double dPeriod)

{

return PathDependent(new TotalNextCoupon(rModel, dCapRate, dPeriod),

rResetIndexes, 0., 0.);

}

25 / 37

Code for Target Redemption Inverse Floater
...

Model uModel(rData, uTimes, dInterval, dQuality); //standard model

std::vector<unsigned> uResetIndexes(uTimes.size(),0);

std::transform(uResetIndexes.begin(), uResetIndexes.end()-1,

uResetIndexes.begin()+1, std::bind1st(std::plus<unsigned>(),1));

unsigned iState =

uModel.addState(totalNextCoupon(uModel,uResetIndexes,dCapRate,dPeriod));

//extended model

int iTime = uTimes.size()-1; //last minus one payment

Slice uSwap = uModel.cash(iTime, 0.);

while (iTime >= 0) {

//uSwap = current value of all payments after the next payment time

Slice uNextCoupon = max(dCapRate-rate(uModel,iTime,dPeriod),0)*dPeriod;

Slice uTotalNextCoupon = uModel.state(iTime, iState);

Slice uTotalCouponToday = uTotalNextCoupon - uNextCoupon;

Slice uIndContinueNextTime = indicator(dMaxCoupon, uTotalNextCoupon);

if (iTime == uTimes.size()-1) {

uIndContinueNextTime = uModel.cash(iTime, 0.);

}

uNextCoupon *= uIndContinueNextTime;

uNextCoupon += (1. - uIndContinueNextTime)*(dMaxCoupon-uTotalCouponToday);

Slice uIndContinueToday = indicator(dMaxCoupon, uTotalCouponToday);

double dNextPaymentTime = uModel.eventTimes()[iTime] + dPeriod;

Slice uDiscount = uModel.discount(iTime, dNextPaymentTime);

uSwap -= uIndContinueToday*(uNextCoupon*uDiscount - (1. - uDiscount));

iTime--;

if (iTime >=0) {

uSwap.rollback(iTime);

}

}

uSwap *= rSwap.notional;

... 26 / 37

Models with identical state process

Consider two financial models A and B such that

I They have the same state process X .

I The model A has been implemented for the state process X
(“old” model)

I The model B is “new”.

Goal: implement B in terms of A.

Main difficulty: implement RB in terms of RA.

27 / 37

Rollback density

Definition
We call Z = (Zt) a rollback density of B with respect to A

(notation: Z = dRB

dRA) if for any s < t and any payoff ξ at t

RB
s [ξ] =

1

Zs
RA

s [Ztξ]

Remark
The concept of rollback density for two financial models is closely
related to the concept of Radon-Nikodym derivative for two
probability measures.

28 / 37

Rollback density

Denote

dA(s,T): discount factor in model A for maturity T computed
at s < T .

dB(s,T): discount factor in model B for maturity T computed
at s < T .

Theorem
A rollback density process of the model B with respect to the
model A is given by:

Zs =
dRB

s

dRA
s

=
dA(s,T)

dB(s,T)
.

29 / 37

Rollback density for “similar” models

If the models A and B share the same state process X then for any
s > 0 there are deterministic functions fs = fs(x) and gs = gs(x)
such that

dA(s,T) = fs(Xs)

dB(s,T) = gs(Xs)

It follows that

Zs =
dRB

s

dRA
s

=
dA(s,T)

dB(s,T)
=

fs(Xs)

gs(Xs)
= hs(Xs)

30 / 37

Implementation of “similar” models

Therefore, given the implementation of the model A associated
with the state process X we can easily provide the implementation
of the model B for the same state process.
Indeed, if

ξ = φ(Xt)

is a payoff at time t (φ = φ(x)), then

RB
s [φ(Xt)] =

1

hs(Xs)
RA

s [ht(Xt)φ(Xt)]

31 / 37

Key example: Brownian motion

A popular choice of a state process for many one-factor models is

Xt =

∫ t

0
σ(u)dWu

where

σ = σ(t): deterministic volatility

W = (Wt)t≥0: standard Brownian motion

This process appears, for example, in

1. Black model

2. Hull and White model

3. Black-Karachinski model

4. Black-Derman-Toy model etc..

32 / 37

Brownian model in cfl
In cfl an “artificial” Brownian model has been defined, where
interest rate is 0 and, hence,

Rs [·] = Es [·].

This model has been used then to implement Black and
Hull-White models. This is great for testing!

Brownian

Black::Model HullWhite::Model
�

�
�

�
��>

Z
Z

Z
Z

ZZ}

33 / 37

Multi-factor FX model

Problem: price FX swaption where domestic currency pays fixed
and foreign currency pays float.
We need 2 factors:

1. FX rate S

2. Domestic short term interest rate r

“Naive” simplest model: (Black + Hull-White)

dSt = St((rt − q)dt + σdWt)

drt = (θ(t)− λrt)dt + κdBt

where B and W are standard Brownian motions with constant
correlation ρ:

ρ =
〈B,W 〉t√

〈B,B〉t
√
〈W ,W 〉t

(=
dBdW

dt
)

34 / 37

Multi-factor FX model

Looks fine. However, one can show that in this case state
processes are given by

Xt = Wt Yt =

∫ t

0
eλsdBs

The correlation coefficient between X and Y is time-dependent:

〈X ,Y 〉t√
〈X ,X 〉t

√
〈Y ,Y 〉t

= ρ

∫ t
0 eλudu√∫ t

0 e2λudu
√

t
6= const.

Hence, we can not choose state processes to be two independent
Brownian motions.

35 / 37

Multi-factor FX model

“Better” model:

dSt = St((rt − q)dt + σeλtdWt)

drt = (θ(t)− λrt)dt + κdBt

In this case state processes are given by

Xt =

∫ t

0
eλsdWs Yt =

∫ t

0
eλsdBs

and
〈X ,Y 〉t√

〈X ,X 〉t
√
〈Y ,Y 〉t

= ρ = const

Easy to implement as we can choose state processes to be two
independent Brownian motions.

36 / 37

Summary

The concept of state process facilitates greatly the building of
powerful object-oriented pricing libraries:

I Centerpiece of design

I Elegant implementation of path dependent derivatives

I Cross model implementation

I Important role in selection of “right” financial models.

37 / 37

	Introduction
	State processes: theory
	Design of cfl
	Pricing of path-dependent derivatives
	Models with identical state process
	Choosing the ``right'' financial model

