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OVERVIEW 
• Products 
 
• Dynamic programming principle 

 
• Longstaff Schwartz approach 

 
• Regression noise 

 
• Variance reduction in pricing 

 
• Variance reduction in regression 

 
• Numerical results 

 
• Extensions 
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PRODUCTS 
 
• American/Bermudan options on a single stock. 
 
• Bermudan swaptions: given a set of swaps 0,0,...,( ) ,j j L LZ Z= =  the 

holder of the Bermudan iB  has the right to exchange his contract 
with jZ  at each time , .jT j i   ≥

 
• Cancellable swaps: let SW be a swap, which one party has the right 

to cancel at a pre-specified set of dates 0{ ,..., }LT T . Let jSW  denote 
the sub-swap containing all cash-flows with anchor date 

,i

,i jT t T≤ <  
and j   the associated cancellable swap. Then we can define a set 
of offsetting swaps j L

,iC

, .jZ SW= −  Let us denote by jB  the associated 
Bermudan swaption, we have  

 B, , .j L j L jC SW  = +
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DYNAMIC PROGRAMMING PRINCIPLE 
 
• We consider a probability space ( , , )A QΩ , equipped with a discrete 

time filtration LF . Given an adapted payoff process L0,...,( )j j= 0,...,( )j jZ =

j

  
with )2 ( , ,Z L A∈ Ω  Q , 0,LZ =  we are interested in computing  

 
0,

sup ( ),
L

E Zτ τ∈ϒ  
where ,j Lϒ  denotes the set of all stopping times with 
values in . { ,..., }j L
 

• We have  
 

0, 0sup ( ) ,
L

E Z Uτ τ∈ϒ =  
where  is recursively defined by  jU

 
1

,
max( , ( | )), 0,..., 1.

L L

j j j j

U Z
U Z E U F j L+

=
= = −
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• This dynamic programming solution can be rewritten in terms of 
optimal stopping times 

j
τ  as follows 

1 1

0

{ ( | )} 1 { ( | )}

0

,
1 1 , 0,..., 1,

( ).
j j j jj j

L

j Z E Z F j Z E Z F

L
j j L

U E Z
τ τ

τ

τ
τ τ

+ +
≥ + <

=
= + = −

=

 

 
• We assume that there is a (D-dimensional) ( )-Markov chain 

L  such that, for j=0,…,L, 
jF

0,...,( )j j=X
 ( , )j jZ f j= X  

for some Borel function ( , ).f j ⋅  We then have ( , )j jU V j= X  for 
some function ( , ),V j ⋅  and  

1
). We also 

assume that  is deterministic. 
1

( | ) ( |
j jj jE Z F E Zτ τ+ +

= X

0X
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LONGSTAFF SCHWARTZ APPROACH 
 
• Pricing by Monte Carlo simulation (←multi-factor models) 
 
• The LS approach to compute  consists of two steps. The first step 

is to replace each conditional expectation )jE U F  by its 2
0U

1( |j+ L  
projection on a subspace generated by a finite set of -measurable 
variables ,M   plus a constant. We denote 
by 

jF

1,...,{ ( )}k j ke =X 2|| ( ) || 0,k je >X
M
jP  the projection operator. We recall that 

 M
j J j J jP Z E Z E( ) ( ) ( ) ( ( )),= ⋅ + − ⋅α e X α e X  

     where 
 1 ( ( ), ),J j jCov U−=α A e X  
      being the covariance matrix of M . jA 1,...,{ ( )}k j ke =X
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• The second step consists in running a preliminary simulation, 
computing empirical projections, and using the empirical projection 
coefficients in place of the exact ones in the actual pricing 
simulation: 

( )

 
( ) ( ) ( ) ( )

( ) ( ) 1 ( )

( ) ( ) ( ) ( ( )),

( ( ), ),

M N N N N N
j j j j j

N N N
j j j

P Z E U E

Cov U−

= ⋅ + − ⋅

=

α e X α e X

α A e X
 

where ) is the empirical covariance matrix of ,M  
obtained from an N-dimensional sample, and  is 
the empirical covariance of j  and U obtained from the same 
sample. 

( N
jA k j ke =X

e X

1,...,{ ( )}
( ) ( ( ), )N

j kCov Ue X
( )k
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CONVERGENCE: 
 
• Let us introduce the stopping times M

jτ  and )(M N
jτ  defined as 

follows: 

 ..
1 1

1{ ( )} { ( )}

,

1 1 , 0, ., 1,M M
j j M j j M

j j

M
L
M M
j jZ P Z Z P Z

L

j j L
τ τ

τ

τ τ
+ +

+≥ <

=

= + = −  

and  

 
( ) ( )

( ) ( )
1 1

( )

( ) ( )
1{ ( )} { ( )}

,

1 1 , 0,..., 1,M N M N
j j M N j j M N

j j

M N
L
M N M N
j jZ P Z Z P Z

L

j j L
τ τ

τ

τ τ
+ +

+≥ <

=

= + = −  

as well as the approximated option values defined as 

 
( )

( )

( ),

( ).

M
j

M N
j

M
j

M N
j

U E Z

U E Z
τ

τ

=

=
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Theorem (Clement, Lamberton, Protter, 2002) 
 

• Assume that for L1,...., 1j = − e X

jL
 the sequence j  is total in 

)
( )k

2 ( ( )σ X . Then, for 0,....,j L= , M
jU  converges to  in jU 2L . 

 
• Assume that for 0,...., 1j L= −  ( ( ) ) 0ZM

j j jQ ⋅ = =α e X . Then, for 
0,....,j L= , )(M N

jU  converges to M
jU  almost surely. 

 
Combining the two, we obtain the 2L  convergence of )(M N

jU  to . 0U
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REGRESSION NOISE 
 
• What metric shall we use? Expected value of  ( )

0 0
M N MUU − ? 2L  norm 

of 1( ) ( )M N M
jP U U +

( )
1j j jP+ − ? The latter, for practical reasons. 

 
• One-period problem: Let  be a measurable variable, U Ε  an M-

dimensional subspace of )L A Q2 ( , ,Ω , P and NP  respectively the 
exact and the N-sample empirical projection from 2 )L A Q( , ,Ω  into 
Ε . 

 
• We measure the empirical regression error as the variance ( 2L  norm) 

NV  of ( ) ( ) ( )NP U P U− . Note that NV  is a random variable as it 
depends on the simulation samples. Let us denote by 2σ  the 
variance of  ( )U P U− . Then 

( ) 2( ) .N

N
E V N Mσ

→∞
⋅ →  
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• Multi-period setting, the variable to be regressed is itself, in general, 

the result of previous regressions. Assuming that the number of 
basis function M  is the same for all regressions, the orthogonal 
variance 2σ  depends then on M , as U  and ( )P U  do. 

 
• However, we expect this dependence to be very mild, in our 

framework. The increment ( )U P U−  essentially depends on the 
underlying variables' variation between the two dates j and j+1: 

 

 
,

1

1 1

,

( ) ( )

M
j

M M
j j

M
j

U Z

U P U Z P Z
τ

τ τ

+

+ +

=

− = −
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1 1

1 1

1 1

2 2 2 2
,

2

2 2
,

2

,

( ( | )),

( ( | ))

( ( | ) ( )) 0.

j j

M M
j j

M
j j

O M M O

O j

O M j OM

M
M j j M

Var Z E Z F

Var Z E Z F

Var E Z F P Z

τ τ

τ τ

τ τ

σ σ σ σ

σ

σ σ

σ

+ +

+ +

+ +

→∞

→∞

= + ≈

= −

= − →

= − →

 

  
• Therefore, we neglect this dependency: 

the expected empirical regression error at each date is well 
approximated by 

 
2

,M
N

σ ⋅  

where the variance term 
2

σ  is model-, product- and date-specific, 
and independent of M  and . N
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• Note that this result is different from that of Glasserman and Yu  
who find that the empirical regression error grows exponentially in 
M  or faster. 
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VARIANCE REDUCTION IN MC SIMULATION 
 
• The MC error is proportional to the variance of the simulated 

payoff. We write  
 ( ) ,X X C C= − +  

where C is another payoff whose PV can be computed efficiently 
without recurring to simulation, and such that the variance of the 
residual payoff X-C is smaller than that of the X. 

 
• Typically, the payoff C is chosen to be that of another option, or that 

of static positions in some underlying assets. 
 
• An alternative approach is to use dynamic control variates: the 

payoff C is given by the final value of a self financing dynamically 
rebalanced portfolio. While running the Monte Carlo simulation, we 
can use approximate greeks, and still obtain a substantial variance 
reduction. 
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• Clewlow and Cavernhill propose to use analytical deltas computed 
from simple models, within Monte Carlo simulations of more 
complex ones. 

 
• Bouchaud, Potters and Sestovic propose to regress optimal (variance 

minimizing) deltas. 
 
• We propose, within the LS-AMC framework, to compute 

approximate greeks from the previously computed option value 
approximations. Simple and flexible approach, as few extra 
calculations (and no extra simulations) are required if all 
explanatory variables are martingales or securities. 

 
• We a little abuse of notation, we denote by  the (D’-dimensional) 

set of explanatory variables used at time j, L
jX
 0,...,j = , and by  
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1,...,{ ( )} ,M  the set of basis function that generate the projection 
space. 

k j ke =X

 
• To simplify the implementation, we assume from now on that all 

explanatory variables are securities. As a result, we can use them 
directly as hedging instruments. 

 
• Let us denote by  the numeraire at time j, we set jN

  

1
,

,

, 1,
1,

1,..., 1

2,...,

( )
, 1,..., 1,

( ), 2,..., ,

.

j j
j d

j d

j d j d
j j d

d D j j

j
j L

P U
j L

X

X X
H j L

N N

C H

δ

δ

+

−
−

= −

=

∂
= = −

∂

= ⋅ − =

=

∑

∑
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Note that 

 jE C E H( ) ( ) 0. = =
 
• Although the use of securities as explanatory variables may look as 

a restriction, in practice it turns out not to be the case. 
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VARIANCE REDUCTION INSIDE REGRESSIONS 
 
• Starting from the theoretical result above, we look at possible ways 

to reduce the empirical regression error by reducing 2σ . Two 
strategies are proposed. 

 
• The first is to adjust the variable to be projected, replacing the 

original payoff by a less volatile equivalent hedged payoff. Due to 
the linearity of ( )P ⋅ , 

 ( ) ( ) ( )P U P U C P C  = − +
We then look for a payoff C for which we can compute P(C) 
exactly, and such that the orthogonal variance of U-C is smaller than 
that of U:  
 ( ( )) ( ( )).Var Z C P Z C Var Z P Z− − − −  

 
• Our candidate is the approximate local hedging portfolio: we 
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compute the standard projection ) first, then compute the 
approximate deltas with respect to the explanatory variables, 

( )( M N
jα

 ( )
,

1,...,
( ), 1,..., ',M N

d j k j
k M d

h d D
X=

∂
= =

∂∑ α e X  

and finally set 

 1, ,

1,..., ' 1

( ).j d j d
d

d D j j

X X
C h

N N
+

= +

= −∑  

As the explanatory variables are securities, ( ) 0P C = . 
 
• The second proposed strategy is to enlarge the projection space first, 

2reducing the orthogonal variance σ , in such a way that a second 
projection from this enlarged space into the original one can be 
computed exactly. From a mathematical point of view, we replace 
the empirical projection )N(P  with a hybrid projection 

 
( ) ( ) ,
N N

YP P P=  
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where ( )N
YP  denotes the empirical projection on a subspace Y of 

2 ( , , )L A QΩ  containing Ε , and P the projection from form Y into Ε . 

Convergence can be proved. 
 
• The enlargement of the projection space comes at a cost, namely 

YM
ME

.  

 
• We propose to use some ''deltas'' as orthogonal extensions of , 

precisely to project on  
Ε

 1, ,
0,..., 1,..., '

1

{ ( )} ,{ } } .j d j d
k j k M d D

j j

X X
Y e

N N
+

= =
+

=< − >X  

      As the explanatory variables are securities,  

 
1, , 1, ,

1 1

( ) ( ( ) | )) 0.j d j d j d j d
j

j j j j

X X X X
P P E F

N N N N
+ +

+ +

− = − =  
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EMPIRICAL RESULTS 
 
• For the sake of providing a simple example, we apply the variance 

reduction techniques to price a Bermudan option in the Black & 
Scholes model. Let the risk neutral dynamics of the underlying asset 
S be given by  

 
0

,
1,

t t tdS S dW
S

σ=
=

 

with 20%σ = , and let us assume zero rates (and dividends). 
 

• The Bermudan option has ten years maturity, and can be exercised 
every year into an atm call option on S whose notional changes with 
time as in the following table: 

 
Expiry (years) 1 2 3 4 5 6 7 8 9 10
Notional 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
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The value of this option (computed by PDE) is 14.82%. 
 

• As far as the LS-AMC pricing, we use the underlying asset S as 
explanatory variable, and regress the Bermudan as N-degree 
polynomial function of S. The simulation (and regression) dates are 
the ten exercise dates, plus two extra dates, one week and two 
months from today. 

 
• The insertion of the first date allows us to ''hedge'' the Bermudan 

from the very beginning of the simulation (actually, from the second 
week). The insertion of the second date makes the first regressions 
hopeful. 

 
• Variance reduction is defined as the ratio between the variance of 

the hedged Bermudan (Bermudan + Hedge Portfolio) and that of the 
Bermudan alone. 
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• From the following results it appears that we can easily speed up the 
simulation by more than ten times. 

 
• Note that the variance reduction ratio is stable with respect to the 

number of simulation samples. 
 

 Samples 500 5,000  50,000  500,000
Pre-samples 15000 15,000  15,000  15,000 
Polynomial degree 4 4 4 4
Bermudan 15.935% 14.733% 14.654% 14.713%
Berm std 0.950% 0.278% 0.088% 0.028%
Hegde portfolio -0.828% -0.032% 0.040% 0.008%
H.p. std 0.875% 0.262% 0.083% 0.026%
Hedged berm 15.107% 14.701% 14.695% 14.721%
H.b. std 0.265% 0.080% 0.025% 0.008%
Variance reduction 7.787% 8.333% 7.989% 7.966%  

 
• This implies that if we use variance reduction level as an indicator 

of the quality of the approximations, we can estimate the latter more 
quickly than by looking at the PV of the Bermudan. 
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• Different polynomial degrees: 
 
Samples 500,000  500,000  500,000  500,000  500,000  500,000  500,000  500,000  500,000  
Pre-samples 15,000    15,000  15,000  15,000  15,000   15,000  15,000  15,000  15,000  
Polynomial degree 2 3 4 5 6 7 8 9 10
Hedged berm 14.512% 14.715% 14.721% 14.711% 14.740% 14.757% 14.755% 14.757% 14.764%
H.b. std 0.009% 0.008% 0.008% 0.008% 0.008% 0.009% 0.014% 0.012% 0.009%
Variance reduction 10.12% 8.06% 7.97% 8.17% 8.37% 11.41% 25.49% 19.05% 11.19%  
 
• The use of a higher degree polynomial should make the 

approximations more accurate, increasing the value of the option 
and producing better greeks and therefore a better variance reduction 
ratio. But also introduces more noise. 

 
• In this case, it is better to use two different approximations, a high-

order one for determining the exercise strategy (pricing), and a 
lower-order one for variance reduction purposes (hedging).  
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Pre-samples Hedged berm H.b. std Variance reduction
1,000          14.648% 0.013% 22.15%
2,000          14.787% 0.010% 12.21%
3,000          14.789% 0.008% 8.90%
4,000           14.803% 0.008% 9.38%
5,000           14.802% 0.008% 8.84%
6,000           14.804% 0.008% 8.19%
7,000          14.805% 0.008% 8.44%
8,000           14.799% 0.008% 8.45%
9,000          14.803% 0.008% 8.37%

10,000         14.778% 0.008% 8.23%
12,000         14.741% 0.008% 7.99%
15,000        14.761% 0.008% 9.01%

Samples = 500,000;
regression order for pricing = 8; regression order for hedging = 4.  

 
• Finally, we show how the iterated regression in section (the first of 

the two proposed strategies) can be used to improve the regression 
accuracy: we perform a 2nd order regression as a preliminary step 
to both the 8th order pricing regression, and to the 4th order 
hedging one. Note that, as a result, the whole procedure becomes 
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more stable, and better price and variance reduction levels are 
reached. 

 
Pre-samples Hedged berm H.b. std Variance reduction

1,000           14.804% 0.008% 9.56%
2,000           14.803% 0.008% 8.23%
3,000           14.809% 0.008% 7.89%
4,000           14.811% 0.008% 8.01%
5,000           14.813% 0.008% 7.95%
6,000           14.812% 0.008% 7.97%
7,000           14.811% 0.008% 7.97%
8,000          14.806% 0.008% 7.88%
9,000           14.807% 0.007% 7.86%

10,000         14.812% 0.008% 7.90%
12,000         14.812% 0.008% 7.87%
15,000        14.812% 0.008% 7.89%

regression order for pricing = 8; regression order for hedging = 4.
Samples = 500,000; first regression order = 2;
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EXTENSIONS 
 
• Non-American claims. Even though approximating functions are not 

needed to price such claims, they can still be estimated in LS 
regression for variance reduction purposes. 

 
• Greeks: differentiate inside the integral and hedge dynamically the 

new payoff. 
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