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1 Introduction

State space models have a long history in time series econometrics and, owing to their versatility, they

are nowadays ubiquitous in economics and finance. In this setting, the Kalman filter (KF) is the main

tool to calculate recursively the likelihood function, whereas the Kalman smoother (KS) recursively

retrieves the state vector given all the available observations. Harvey (1989) provides a comprehensive

treatment of state space methods in the frequentist framework, while Durbin and Koopman (2012)

provide an extensive treatment for both the classical and Bayesian approaches.

In this note we illustrate how to estimate Gaussian state space models in the classical framework

without using the KF and KS. By taking advantage of the matrix representation, we derived closed

form expressions for the likelihood function and the smoothed state vector that are computationally

feasible. Although the matrix formulation is not new in the literature, this approach has been typically

considered to be unfeasible and inefficient compared with the recursive approach based on the KF and

KS (see Durbin and Koopman, 2012, sec. 4.13). One of the main purposes of this note is to highlight

how the matrix formulation is not only tractable but can also be computationally more efficient than

the recursive approach. In particular, for large systems the matrix approach is order of magnitude

more efficient than the standard approach.

Our work draws on Chan and Jeliazkov (2009) and McCausland et al. (2011), who propose an

efficient precision-based method to simulate the state vector in the Bayesian framework. In our paper,

we map their findings to the classical framework and highlight how similar computational gains exist

not only for the estimation of the state vector but also for evaluating the likelihood function, thereby

rendering the matrix approach feasible for the maximum likelihood estimation (MLE). Moreover,

we show how to recover the weighting function that maps the observations to the state vector (see

Koopman and Harvey, 2003), and how to deal with the presence of missing observations in the data (see

Harvey and Pierce, 1984). The latter extension is particularly important from a practical perspective,

as the flexibility of the KF in dealing with missing observations is one of the key advantages of

state space methods. For instance, it makes it possible to deal with mixed frequency (Mariano and

Murasawa, 2003) and the ‘ragged edge’ in the data that is typically present in real-time nowcasting

applications (Giannone, Reichlin and Small, 2008). These extensions are novel and potentially of

interest in a Bayesian setting as a complement to the findings of Chan and Jeliazkov (2009) and

McCausland et al. (2011).

The rest of the note is organized as follows. In Section 2 we present an efficient implementation of

the matrix approach. Section 3 presents additional results on the weighting function and the case of

missing observations. Section 4 provides a numerical analysis that highlights the computational gain

of the matrix approach. Section 5 concludes.

2 An efficient matrix approach

In this section we first recall the standard recursive approach, we then introduce the matrix represen-

tation, and finally we show how to render the matrix approach computationally efficient.
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2.1 The standard approach to state space models

Consider the general linear Gaussian state space model:

yt = Ztαt + εt, εt ∼ N (0, Ht), t = 1, ..., n,

αt+1 = Ttαt + ηt, ηt ∼ N (0, Qt), α1 ∼ N (a1, P1).
(1)

The first equation is the measurement equation linking the N × 1 vector of observables yt to the

m× 1 state vector αt. The second equation is the transition equation describing the dynamics of the

state vector, εt and ηt are Gaussian random shocks, and the initial state vector α1 is also Gaussian

distributed. It is usually assumed that E(α1η
′
t) = 0, E(α1ε

′
t) = 0, and E(εtη

′
t) = 0 ∀t, this last

assumption can be relaxed at the cost of a slightly complication of the filtering formulae (see Harvey,

1989, sec. 3.2.4).

The system matrices Zt, Ht, Tt, and Qt are assumed to be non-stochastic1, as such the observations

and the state vector are conditionally Gaussian: yt|Yt−1 ∼ N (Ztat, Ft) and αt|Yt−1 ∼ N (at, Pt), where

Yt−1 = {yt−1, ..., y1} represents the information set at time t− 1. Thus, the log-likelihood function for

the observations, y = (y′1, . . . , y
′
n)′, can be expressed by the prediction error decomposition:

log p(y) =
n∑
t=1

log p(yt|Yt−1) = −nN
2

log 2π − 1

2

n∑
t=1

(
log |Ft|+ v′tF

−1
t vt

)
, (2)

where vt and Ft are recursively computed by the KF:

vt = yt − Ztat, Ft = ZtPtZ
′
t +Ht,

Kt = TtPtZ
′
tF
−1
t , Lt = Tt −KtZt,

at+1 = Ttat +Ktvt, Pt+1 = TtPtL
′
t +Qt, t = 1, . . . , n.

(3)

Specifically, at = E(αt|Yt−1) is the predictive filter with Pt = E[(at − αt)(at − αt)′] being the mean

square error (MSE) matrix. In the case that a proper distribution for α1 is not available, the filter is

initialized with the diffuse initial condition (see Harvey, 1989, sec. 3.3.4 and Durbin and Koopman,

2012 ch. 5).

Conditional on the full information set Yn = {yn, ..., y1}, we have that αt|Yn ∼ N (at|n, Pt|n), where

the conditional moments at|n = E(αt|Yn) and Pt|n = E[(at|n−αt)(at|n−αt)′] are recursively obtained

by the KS:

rt−1 = Z ′tF
−1
t vt + L′trt, Nt−1 = Z ′tF

−1
t Zt + L′tNtLt,

at|n = at + Ptrt−1, Pt|n = Pt − PtNt−1Pt, t = n, . . . , 1,
(4)

with rn = 0 and Nn = 0. For more details see Harvey (1989, sec. 3.6) and Durbin and Koopman

(2012, sec. 4.4).

1Some or all the matrices depend on the unknown parameter vector θ. In order to save on notation we avoid making
such reference.
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2.2 The matrix representation

Following Durbin and Koopman (2012, sec. 4.13), we express the model (1) as follows:

y = Bα+ ε, ε ∼ N (0, U),

α = A(α∗ +Rη), η ∼ N (0, V ), α∗ ∼ N (a∗, P ∗).
(5)

The elements of the measurement equation are:

y =


y1
...

yn

 , B =


Z1

. . .

Zn

 , α =


α1

...

αn

 , ε =


ε1
...

εn

 , U =


H1

. . .

Hn

 . (6)

The elements of the transition equation are:

A =



I

T1 I

T2T1 T2
. . .

...
...

. . .
. . .

Tn−1 . . . T1 Tn−2 . . . T2 · · · Tn−1 I


, α∗ =


α1

0
...

0

 , R =


0 · · · 0

I
. . .

I

 , η =


η1
...

ηn−1

 ,

V =


Q1

. . .

Qn−1

 , a∗ =


a1

0
...

0

 , P ∗ =


P1

0
. . .

0

 , G =


P1

Q1

. . .

Qn−1

 , (7)

where G = Var(α∗+Rη) = (P ∗+RV R′). Let recall the dimensions of the vectors and matrices in the

above representation: y and ε are Nn× 1; α, α∗ and a∗ are mn× 1; η is m(n− 1)× 1; B is Nn×mn;

U is Nn×Nn; V is m(n− 1)×m(n− 1); R is mn×m(n− 1); while A, P ∗, and G are mn×mn. It

is important to stress that A is block lower triangular matrix, while B, U , and G are block diagonal

matrices.

The join distribution of α and y is:(
α

y

)
∼ N

([
µα

µy

]
;

[
Σαα Σαy

Σ′αy Σyy

])
,

µα = Aa∗, Σαα = AGA′, Σαy = ΣααB
′,

µy = Bµα, Σyy = BΣααB
′ + U.

(8)

The log-likelihood in (2) can then be expressed in the following matrix formulation:

log p(y) = −nN
2

log 2π − 1

2

[
log |Σyy|+ (y − µy)′Σ−1yy (y − µy)

]
. (9)

Using the Lemma of the Multivariate Normal, the smoother in (4) can be retrieved as follows:

α|y ∼ N (µα|y,Σαα|y)

µα|y = µα + ΣααB
′(BΣααB

′ + U)−1(y − µy),
Σαα|y = Σαα − ΣααB

′(BΣααB
′ + U)−1BΣαα,

(10)
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where

µα|y =


a1|n

...

an|n

 , Σαα|y =


P1|n · · · P(1,n)|n

...
. . .

...

P(n,1)|n Pn|n

 , (11)

the off-diagonal elements of Σαα|y are the cross-covariances P(i,j)|n = E[(ai|n − αi)(aj|n − αj)′].
It is possible in principle to compute the log-likelihood and the smoothed state vector without

the need of the KF and KS. Unfortunately, the expressions in (9) and (10) involve operations among

large matrices making it computationally inefficient, as pointed out by Durbin and Koopman (2012,

p.118). This is the reason why the recursive approach has typically been favored in practice.

2.3 Feasible matrix approach

We now show how to compute efficiently both the log-likelihood and the smoother by exploiting

operations between vectors and sparse matrices.

Assumption 1 (Invertibility of the System Matrices). The inverse of G and U exist.

Given the representation (5)-(7), Assumption 1 implies that the inverse of Ht, Qt and P1 exist. By

an appropriate specification of the matrix representation this condition is satisfied for a wide range

of models. In Appendix B we present few illustrative examples.

Let express the matrix representation (5) as follows:

y = Bα+ ε, ε ∼ N (0, U),

Dα = α∗ +Rη, η ∼ N (0, V ), α∗ ∼ N (a∗, P ∗),
(12)

where D = A−1 is a banded sparse matrix:

D =


I

−T1 I
. . .

. . .

−Tn−1 I

 . (13)

Using the Woodbury matrix identity and the results in (8) and (10), the precision matrices Σ−1αα = Ωαα

and Σ−1αα|y = Ωαα|y are also banded sparse matrices. Specifically,

Ωαα = D′G−1D =



M1 −C ′1
−C1 M2 −C ′2

−C2
. . .

. . .

. . . Mn−1 −C ′n−1
−Cn−1 Q−1n−1


, (14)
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where Ct = Q−1t Tt, Mt = Q−1t−1 + T ′tQ
−1
t Tt, M1 = P−11 + T ′1Q

−1
1 T1, and

Ωαα|y = (Ωαα +B′U−1B) =



J1 −C ′1
−C1 J2 −C ′2

−C2
. . .

. . .

. . . Jn−1 −C ′n−1
−Cn−1 Jn


, (15)

where Jt = Mt + Z ′tH
−1
t Zt and Jn = Q−1n−1 + Z ′nH

−1
n Zn.

For diffuse initial condition we delete first m rows and m columns from matrix G and the first m

rows from matrix D, as such Ωαα is singular but Ωαα|y is non-singular.

Computing the log-likelihood. The quadratic term in (9) is obtained by the following operations

among sparse matrices and vectors:2

(y − µy)′Σ−1yy (y − µy) = v′ζ − ξ′ω, (16)

where

v = [y −B(D−1a∗)], ζ = U−1v, ξ = B′ζ, ω = Ω−1αα|yξ, (17)

the determinant of covariance matrix in (9) is

log |Σyy| = log |Ωαα|y|+ log |P1|+
n−1∑
t=1

log |Qt|+
n∑
t=1

log |Ht|, (18)

where Ωαα|y is sparse, while P1, Qt and Ht are matrices of small dimension with respect to the overall

size of the system. See Appendix A.1 for details.

Computing the smoother. The conditional mean of the smoothed states in (10) can also be

retrieved as:

µα|y = Ω−1αα|y[ã
∗ +B′(U−1y)], (19)

where ã∗ = (ã′1, 0
′, . . . , 0′)′ and ã1 = P−11 a1; see Appendix A.2 for details. The expression (19) can be

efficiently computed as it involves only operations among sparse matrices and vectors. Finally, the

covariance Σαα|y is computed as the inverse of the sparse matrix in (15).

3 Additional results

3.1 Weighting function

It is well known that both filtering and smoothing estimators can be expressed as a weighted average

of the observations; see Koopman and Harvey (2003). Given the expression (19) and the definition of

2Given a k × k non-singular sparse matrix S and a k × 1 vector x, we have that S−1x = S\x, which denotes the
unique solution for z to the system Sz = x. Following Chan and Jeliazkov (2009), we compute the Cholesky factor C,
such that CC′ = S, and then we compute S−1x = S\x = C′\(C\x), so we have to solve two triangular systems by
forward substitution followed by back substitution. Therefore, in total we have three operations and each one requires
O(k) complexity. Finally, we compute log det(S) = 2

∑k
i=1 log cii, where cii are the diagonal elements of C.
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B, U , y, ã∗, we can express the smoothed estimator at time t as follows:

at|n = P(t,1)|nã1 +

n∑
j=1

ωt,jyj , with ωt,j = P(t,j)|nZ
′
jH
−1
j , (20)

where P(t,j)|n = E[(at|n−αt)(aj|n−αj)′]. For j = t we have the expression for the weight of the current

observation yt, that is ωt,t = Pt|nZ
′
tH
−1
t . For t = n we obtain the set of weights for the real time filter

an|n. It is easy to check that our expressions for the weights ωt,j match exactly those proposed by

Koopman and Harvey (2003) and summarized in Durbin and Koopman (2012, pp.105-106).

Equation (20) highlight that the weights are proportional to the cross-covariances among smoothed

estimates P(i,j)|n. The full sets of cross-covariances Ψt = [P(t,1)|n, . . . , P(t,n)|n] can be computed effi-

ciently by solving the system of equations ΨtΩαα|y = Υt, where Υt = [0m, . . . , 0m, Im, 0m, . . . , 0m] is

a selection matrix with identity matrix in the t− th position.

3.2 Missing observations and mixed frequency

One of the advantages of working within a state space framework is that the KF/KS can easily deal

with data irregularities, such as missed observations and data sampled at different frequencies. In

this section we show how the matrix approach is amended to deal with data irregularities.

Let yt contain missing data, we define the selection matrix Wt of dimension Nt × N with 1 ≤
Nt ≤ N , such selection matrix eliminates the i− th row from IN when the i− th variable is missing.

Thus, we have that ỹt = Wtyt is the vector of observed variables at time t. The likelihood of the

model and the associated smoother can be retrieved applying equations (16)-(19) to the available

information. Specifically, the measurement equation of the model becomes ỹt = Z̃tαt + ε̃t, where

Z̃t = WtZt, ε̃t = Wtεt, ε̃t ∼ N (0, H̃t), and H̃t = WtHtW
′
t . In case no observations are available at

time t, we set Wt = 0N×N such that ỹt, Z̃t, and H̃t are vector and matrices of zeros.

The case of mixed frequencies is of particular interest for a number of applications, like for instance

forecasting low frequency variables using higher frequency predictors (nowcasting). Mixed frequencies

typically involve missing observations and temporal aggregation.3 Specifically, the low frequency

indicators can be modeled as a process that is observed at regular low frequency intervals and missing

at higher frequency dates, as such this can be easily handled using the matrix approach with the

appropriate amendments of the system matrices discussed above.

4 Computational efficiency analysis

In this section we compare the efficiency of the matrix approach with that of the standard recursive

approach. Specifically, we report two exercises. First we look at a generic state space model with

constant matrices Z, T , H and Q. Second, we look at the VARMA model. Details on the matrix

representation of both models are highlighted in Appendix B.

Time-invariant state space model We use the generic state space model with constant system

matrices to assess the efficiency of the matrix approach for different dimensions of the model. Specif-

3The temporal aggregation requires a modification of the state space representation. The relation between the
observed low frequency variable and the corresponding (latent) higher frequency indicator depends on whether the
variable is a flow or a stock and on how the variable is transformed before entering the model (see e.g. Banbura et al.,
2013).
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Table 1: Relative Performance of the Matrix Approach

(a) Likelihood (b) Smoother (c) Smoother & Lik.

m m m

n N 1 5 10 1 5 10 1 5 10

100

1 0.500 0.265 0.510 0.622 0.632 1.690 0.720 0.704 1.835
5 0.084 0.131 0.253 0.126 0.351 0.943 0.124 0.398 1.031
10 0.075 0.119 0.233 0.093 0.312 0.867 0.110 0.347 0.941
30 0.047 0.082 0.147 0.054 0.187 0.495 0.065 0.217 0.568
100 0.020 0.026 0.045 0.012 0.033 0.098 0.020 0.052 0.111
200 0.014 0.019 0.036 0.006 0.017 0.036 0.012 0.024 0.055

200

1 0.299 0.202 0.443 0.400 0.574 1.643 0.473 0.626 1.773
5 0.050 0.097 0.221 0.067 0.313 0.906 0.077 0.340 0.987
10 0.052 0.091 0.205 0.057 0.284 0.837 0.067 0.310 0.914
30 0.033 0.066 0.134 0.034 0.169 0.488 0.044 0.193 0.396
100 0.012 0.020 0.050 0.008 0.029 0.100 0.012 0.038 0.105
200 0.008 0.018 0.028 0.004 0.016 0.038 0.007 0.020 0.043

500

1 0.179 0.164 0.421 0.266 0.595 1.807 0.312 0.634 1.927
5 0.031 0.084 0.209 0.042 0.317 1.001 0.049 0.342 1.053
10 0.031 0.080 0.201 0.038 0.288 0.914 0.046 0.312 0.971
30 0.022 0.041 0.111 0.023 0.178 0.548 0.030 0.171 0.506
100 0.008 0.022 0.042 0.006 0.035 0.096 0.007 0.038 0.116
200 0.005 0.015 0.024 0.003 0.015 0.038 0.004 0.017 0.044

1000

1 0.133 0.156 0.436 0.228 0.620 2.223 0.264 0.658 2.305
5 0.026 0.080 0.222 0.036 0.341 1.239 0.043 0.361 1.275
10 0.024 0.073 0.205 0.032 0.300 1.115 0.039 0.320 1.169
30 0.018 0.057 0.153 0.020 0.190 0.627 0.025 0.191 0.694
100 0.006 0.020 0.040 0.005 0.037 0.109 0.007 0.038 0.121
200 0.007 0.014 0.026 0.004 0.016 0.045 0.005 0.018 0.049

2000

1 0.113 0.152 0.632 0.207 0.629 2.454 0.241 0.676 2.621
5 0.021 0.078 0.318 0.032 0.345 1.341 0.038 0.370 1.436
10 0.022 0.064 0.313 0.028 0.307 1.246 0.034 0.308 1.353
30 0.015 0.060 0.200 0.018 0.193 0.729 0.022 0.197 0.783
100 0.009 0.022 0.050 0.006 0.035 0.125 0.008 0.040 0.139
200 0.006 0.014 0.028 0.004 0.016 0.050 0.005 0.018 0.055

Notes: We simulate the model 101 times (on Matlab R2017a, with Intel Core i7-7700K and 4.20 GHz CPU) and
take the median value of the computational time for each of the two methods. The table reports the ratio of the
computational time of the matrix approach over the recursive approach. Values below one (in grey) highlight that
the matrix approach is more efficient. The dimensions of the state space model (1) are: m = dim(αt), N = dim(yt),
and n is the sample size. The correspending dimension for the matrix representation (5) is dim(α) = mn.

ically, Table 1 reports the relative performance of the matrix approach compared with the traditional

recursive approach with different N and n, i.e. the cross-section and time series dimension of the

vector of observables, and m, the length of the state vector. We then look at three possible scenarios:

one where we only compute the likelihood of the model (Panel a), one where we only compute the

smoother (Panel b) and the combined case where we compute both the likelihood and the smoother

(Panel c).

When a model is estimated by ML the likelihood needs to be computed repeatedly and the results

reported in Panel (a) are the ones of interest. This case is also of interest if one is using a Metropolis
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Table 2: Relative Performance for VARMA(1,1)

Likelihood

N\n 100 200 500 1000 2000

1 0.126 0.069 0.043 0.037 0.028
3 0.089 0.066 0.047 0.044 0.038
5 0.103 0.076 0.066 0.063 0.055
7 0.115 0.091 0.079 0.073 0.069
10 0.159 0.134 0.118 0.102 0.106
15 0.121 0.115 0.103 0.119 0.120

Notes: For each DGP we simulate the models 101 times and take the
median computational time, the table reports the ratio of the matrix
approach over the standard recursive KF/KS. For the computations
we use Matlab R2017a (on an Intel Core i7-7700K and 4.20 GHz
CPU).

step within a Gibbs sampler (see e.g. Chib and Greenberg, 1995, and Geweke and Tanizaki, 2001) and

for MCMC methods for classical estimation (Chernozhukov and Hong, 2003), as the rejection step in

these cases requires the evaluation of the likelihood for each of the proposal draws.4 Panel (b) and (c)

are of interest if the model is estimated using the EM algorithm. In this case one needs to compute the

vector of the smoothed stated and the associated covariance matrix in order to update the estimates

of the coefficient of the model, and the likelihood is required in order to devise a stopping rule for the

algorithm (see Shumway and Stoffer, 1982, and Banbura and Modugno, 2014).

The results in Table 1 highlight how the matrix approach is a competitive alternative to the

standard recursive approach. In fact, for most of the cases considered the ratio of computational time

is below 1, indicating the matrix approach is more efficient.5 The gains are particularly accentuated

for models featuring large datasets (i.e. large N and n).

The matrix approach is always more efficient for the computation of the likelihood, whereas when

it comes to computing the smoother it becomes inefficient for m >> N , and this is due to the inverse

of Ωαα|y that has dimension equal to dim(α). It is also worth noting that, while in Table 1 we have

assumed that dim(α) = mn, in practice it is often possible to find a convenient representation of

the model that allows to reduce dim(α), therefore making the matrix approch more efficient.6 For

instance, take the case of N = 1 and m = 10, a realistic setting which would give rise to a model

with these dimensions is a univariate trend-cycle-seasonal model. This model can easily be re-written

in a matrix representation so that dim(α) = n rather then mn; see Appendix B.3 for details. The

possibility of a matrix representation that reduces the dimensionality of the problem arises also for

VARMA models as we highlight in the next example.

VARMA models As a second exercise we look at the relative performance of the matrix approach

in computing the likelihood for a VARMA model. Specifically, we focus on VARMA(1,1) models

of increasing dimensions. This case is of interest because the state space representation leads to a

zero measurement error and m = 2N . A point worth highlighting here is that the matrix form can

be accommodated so that dim(α) = dim(y) = Nn rather than 2Nn; see Appendix B.4 for details.

4This case is also of interest for the estimation of DSGE models (see e.g. An and Schorfheide, 2007).
5In Appendix C we report the relative performance of the fast state smoother (Durbin and Koopman, 2012, sec.

4.6.2). In this case we do not compute covariance matrix of Σαα|y, and the matrix approach is always more efficient.
6See, e.g., Appendix B.
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Table 2 highlights how the matrix approach is always more efficient than the recursive approach, with

a gain in computational times ranging from 86% to 97%.

5 Conclusion

In this paper we propose an efficient matrix approach for estimating state space models in the classical

framework without using the KF and KS. We highlight how the matrix approach is not only tractable

but often computationally more efficient than the traditional recursive approach. This is particularly

true for ‘large data’ settings, i.e. situations where the number of observable variables and their time

series dimension is large. Moreover, we also derive expressions for the weighting function and highlight

how to deal with missing data.
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A Derivations

A.1 The log-likelihood

Using the Woodbury matrix identity we have that

Σ−1yy = (BΣααB
′ + U)−1 = U−1 − U−1B(Σ−1αα +B′U−1B)−1B′U−1 = U−1 − U−1BΣαα|yB

′U−1.

Using the matrix determinant Lemma and given that A is block lower triangular we have that

det(Σyy) = det(BΣααB
′ + U) = det(Σ−1αα +B′U−1B) det(Σαα) det(U) = det(Σ−1αα|y) det(G) det(U).

A.2 The smoother

Rearranging the conditional mean in (10) we have:

µα|y = [I − ΣααB
′(BΣααB

′ + U)−1B]µα + ΣααB
′(BΣααB

′ + U)−1y.

Using other rules of the matrix inversion Lemma we that:

ΣααB
′(BΣααB

′ + U)−1 = (Σ−1αα +B′U−1B)−1B′U−1 = Σαα|yB
′U−1,

[I − ΣααB
′(BΣααB

′ + U)−1B] = (I + ΣααB
′U−1B)−1 = (Σ−1αα +B′U−1B)−1Σ−1αα = Σαα|yΣ

−1
αα.

Moreover, it turns out that

Σ−1ααµα = (D′G−1D)Aa∗ = D′G−1a∗ = (ã′1, 0
′, . . . , 0′)′ = ã∗,

with ã1 = P−11 a1. Putting all together we obtain

µα|y = Σαα|y(ã
∗ +B′U−1y).

1



B Examples (For Online Publication)

In this Appendix we first specialize the description in Section 2 for a time invariant state space model,

then we show how to (efficiently) cast some popular models in the matrix form.

B.1 Time invariant state space model

The matrix representation of a state space model (1) with constant system matrices is

y = Bα+ ε, ε ∼ N (0, U),

Dα = α∗ +Rη, η ∼ N (0, V ), α∗ ∼ N (a∗, P ∗),
(B.1)

where y, α, ε, α∗, R, η, a∗, and P ∗ are the same as in (6)-(7), while

D =


I

−T I
. . .

. . .

−T I

 , B = (In ⊗ Z), U = (In ⊗H), V = (In−1 ⊗Q). (B.2)

Given invertible covariance matrices H, Q and P1 the resulting banded sparse precision matrix is

Ωαα|y =



J1 −C ′

−C J −C ′

−C . . .
. . .

. . . J −C ′

−C Jn


, (B.3)

where C = Q−1T , J = Q−1 + T ′Q−1T + Z ′H−1Z, J1 = P−11 + T ′Q−1T + Z ′H−1Z, and Jn =

Q−1 + Z ′H−1Z. The log-likelihood function and the smoothed state vector are efficiently computed

as in Section 2.3. In case of singularities in H and Q, the matrix representation can be accomodated

to have well defined precision matrices as it is shown in the examples below.

B.2 Factor model

Consider that the N × 1 vector yt follows the dynamic factor model (Stock and Watson, 2010):

yt = Λft + εt, εt ∼ N (0,Σε), t = 1, ..., n,

ft+1 = Φ1ft + Φ2ft−1 + ηt, ηt ∼ N (0,Ση),
(B.4)

where ft is the r × 1 vector of unobserved factors, εt and ηt are random shock of dimension N × 1

and r × 1 respectively, Λ, Φ1, Φ2, Σε, and Ση are matrices of appropriate dimension. The standard

state space representation of model (B.4) leads to m = 2r and the covariance matrix of the transition

equation is singular. The matrix representation can be appropiately accomodated such that dim(α) =

rn and the covariance matrices are non-singular. Specifically,

y = Bα+ ε, ε ∼ N (0, In ⊗ Σε),

Dα = α∗ +Rη, η ∼ N (0, In−1 ⊗ Ση), α∗ ∼ N (a∗, P ∗),
(B.5)
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where y = (y′1, . . . , y
′
n)′, B = diag[0, (In⊗Λ)], α = (f ′0, f

′
1, . . . , f

′
n)′, ε = (ε′1, . . . , ε

′
n)′, α∗ = (f ′0, f

′
1, 0
′, . . . , 0′)′,

η = (η′1, . . . , η
′
n−1)

′,

D =



I

0 I

−Φ2 −Φ1 I
. . .

. . .
. . .

−Φ2 −Φ1 I


, R =



0 · · · 0

0 · · · 0

I
. . .

I


, G =


P1

Ση

. . .

Ση

 ,

where G = Var(α∗ + Rη), and P1 is the unconditional variance of the vector (f ′0, f
′
1)
′. The precision

matrix Ωαα|y = [Ωαα + B′(In ⊗ Σ−1ε )B], where Ωαα = D′G−1D, and B′(In ⊗ Σ−1ε )B = diag(0, [In ⊗
(Λ′Σ−1ε Λ)]). Thus, the smoother moments are efficiently computed as follows:

µα|y = Ω−1αα|y(0
′, ξ′)′, ξ = (In ⊗ Λ′Σ−1ε )y, Σαα|y = Ω−1αα|y. (B.6)

Note that a∗ = 0, thus log p(y) = −nN
2 log 2π − 1

2(log |Σyy| − y′Σ−1yy y) can be efficiently computed as:

log |Σyy| = log |Ωαα|y|+ log |P1|+ (n− 1) log |Ση|+ n log |Σε|,
y′Σ−1yy y = y′ζ − (0′, ξ′)µα|y, ζ = (In ⊗ Σ−1ε )y.

(B.7)

B.3 Unobserved components model

Let assume that the univariate variable yt follows the trend-cycle model:

yt = τt + ct, t = 1, . . . n,

τt+1 = τt + βt,

βt+1 = βt + uτt, uτt ∼ N (0, σ2τ ),

ct+1 = φ1ct + φ2ct−1 + uct, uct ∼ N (0, σ2c ).

(B.8)

We express (B.8) in the following matrix form:

y = τ + c,

Dττ = uτ , uτ ∼ N (0, σ2τIn−2),

Dcc = c∗ +Ruc, uc ∼ N (0, σ2c In−2), c∗ ∼ N (µc∗ ,Σc∗c∗),

(B.9)

where y = (y1, . . . , yn)′, τ = (τ1, . . . , τn)′, c = (c1, . . . , cn)′, uτ = (uτ1, . . . , uτn−2)
′, uc = (uc2, . . . , ucn−1)

′,

c∗ = (c1, c2, 0, . . . , 0)′,

Dτ =


1 −2 1

. . .
. . .

. . .

1 −2 1

 , Dc =



1

0 1

−φ2 −φ1 1
. . .

. . .
. . .

−φ2 −φ1 1


, R =



0 · · · 0

0 · · · 0

1
. . .

1


,
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µc∗ and Σc∗c∗ are the unconditional moments of c∗. Because of the diffuse initial condition Dτ is rank

deficient.1 It is worth to note that the state space representation of model (B.8) leads to m = 4, the

matrix representation (B.9) leads to matrices and vectors of dimension n rather then mn. This is

generally true for UC models with multiple components (e.g. trend, cycle, seasonal) for which we can

express the matrix form as the sum of vectors of length n.

The distribution for the two components and the observations reads as:

τ ∼ N (0,Ω−1ττ ), Ωττ = D′τG
−1
τ Dτ , Gτ = σ2τIn−2,

c ∼ N (0,Ω−1cc ), Ωcc = D′cG
−1
c Dc, Gc = (Σc∗c∗ + σ2τRR

′)

y ∼ N (0,Σyy), Σyy = (Ω−1ττ + Ω−1cc ), Ω−1ττ = D+
τ GτD

+′
τ , Ω−1cc = D−1c GcD

−1′
c

where D+
τ is the right inverse of Dτ . The smoother estimators for the two components are:

µτ |y = Ω−1ττ |yΩccy, µc|y = Ω−1cc|yΩττy, Ωττ |y = Ωcc|y = (Ωττ + Ωcc)

where Ωττ , Ωcc, Ωττ |y, Ωcc|y are all banded sparse matrices. Moreover, we have the following identities:

Σ−1yy = Ωyy = Ωττ − ΩττΩ−1ττ |yΩττ = Ωcc − ΩccΩ
−1
cc|yΩcc,

and log p(y) = −n
2 log 2π + 1

2 log |Ωyy| − 1
2y
′Ωyyy can be computed efficiently noting that:

y′Ωyyy = y′ζ − ζ ′ξ, ζ = Ωττy, ξ = Ω−1ττ |yζ.

B.4 Vector autoregressive moving average model

Assume that the N × 1 vector of observable variables yt follows the VARMA(1,1) model:

yt = Φyt−1 + εt + Θεt−1, εt ∼ N (0,Σ), t = 1, . . . , n. (B.10)

The matrix representation of model (B.10) is:

Dφy = α∗ +Dθε, ε ∼ N (0, In ⊗ Σ), α∗ ∼ N (a∗, P ∗), (B.11)

where y = (y′1, . . . , y
′
n)′, α∗ = (y′1, 0

′, . . . , 0′)′, ε = (ε′1, . . . , ε
′
n)′, and

Dφ =


I

−Φ I
. . .

. . .

−Φ I

 , Dθ =


0

Θ I
. . .

. . .

Θ I

 ,

It is worth to note that the state space representation of (B.10) usually implies m = dim(αt) = 2N ,

while the matrix representation (B.11) leads to have that dim(y) = Nn. Specifically, y ∼ N (0,Ω−1yy ),

1Alternatively, we can specify a full rank matrix Dτ and, in line with Harvey (1989, sec. 3.3.4), we set a large variance
for the initial vector (τ1, τ2)′.
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where Ωyy = D′φG
−1Dφ, and G = [P ∗ +Dθ(In ⊗ Σ)D′θ] is an invertible banded sparse matrix:

G =



Γ0

M C ′

C M
. . .

. . .
. . . C ′

C M


,

with Γ0 being the unconditional variance of y1, M = (Σ + ΘΣΘ′), and C = ΘΣ. Therefore, the

log-likelihood can be efficiently computed as follows

log p(y) = −nN
2

log 2π − 1

2

(
log |G|+ ζ ′ξ

)
, ζ = Dφy, ξ = G−1ζ. (B.12)

The representation (B.11) can be also found in Lütkepohl (2007, sec. 12.2.3) although it is typically

never used in practice.
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C Additional results (For Online Publication)

In this Appendix we report the performance of the matrix approach against the fast state smoother

(Durbin and Koopman, 2012, sec. 4.6.2).

Table C.1: Relative Performance for Fast Smoother

Fast Smoother

m

n N 1 5 10

100

1 0.180 0.118 0.206
5 0.066 0.075 0.133
10 0.050 0.072 0.129
30 0.038 0.059 0.095
100 0.016 0.024 0.036
200 0.011 0.016 0.030

200

1 0.098 0.091 0.176
5 0.031 0.061 0.114
10 0.033 0.060 0.110
30 0.029 0.050 0.100
100 0.011 0.019 0.041
200 0.007 0.017 0.026

500

1 0.057 0.074 0.202
5 0.018 0.046 0.136
10 0.019 0.048 0.126
30 0.020 0.045 0.115
100 0.008 0.022 0.041
200 0.005 0.014 0.026

1000

1 0.041 0.068 0.205
5 0.013 0.045 0.135
10 0.014 0.045 0.134
30 0.017 0.050 0.112
100 0.007 0.021 0.039
200 0.010 0.019 0.030

2000

1 0.033 0.075 0.310
5 0.010 0.050 0.180
10 0.013 0.050 0.196
30 0.015 0.049 0.145
100 0.010 0.024 0.047
200 0.012 0.020 0.031

Notes: For each DGP we simulate the models 101 times and take the
median computational time, the table reports the ratio of the matrix
approach over the standard recursive KF/KS. For the computations
we use Matlab R2017a (on an Intel Core i7-7700K and 4.20 GHz
CPU).
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