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Abstract

Macroeconomic data are subject to data revisions as later vintages are released. Yet, the

usual way of generating real-time density forecasts from BVAR models makes no allowance

for this form of data uncertainty. We evaluate two methods that consider data uncertainty

when forecasting with BVAR models with/without stochastic volatility. First, the BVAR

forecasting model is estimated on real-time vintages. Second, a model of data revisions is

included, so that the BVAR is estimated on, and the forecasts conditioned on, estimates

of the revised values. We show that both these methods improve the accuracy of density

forecasts for US and UK output growth and inflation. We also investigate how the charac-

teristics of the underlying data and revisions processes affect forecasting performance, and

provide guidance that may benefit professional forecasters.
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1 Introduction

Decision makers employ probabilistic forecasts of macroeconomic variables to compute the

probability of future outcomes of interest as an aid to determining which course of action to take.

For example, based on density forecasts, one can quantify the probability of sluggish growth

(say lower than 1%) and/or of deflation to support a monetary policy decision. This paper

considers whether it is important to make an allowance for data uncertainty when computing

probabilistic forecasts in real-time, given that most macroeconomic variables are subject to

data revisions.

Clements (2017) considers the impact of data revisions on the assessment of macroeconomic

forecasting uncertainty. He shows that the standard real-time approach, which estimates the

forecasting model on the vintage of data available at the forecast origin, will likely give an

inaccurate assessment of the uncertainty surrounding future values of the variables, especially of

the early-vintage estimates of those values. He considers autoregressive models with constant-

variance disturbances, and his work follows on from the work on point forecasts of Koenig,

Dolmas and Piger (2003) and Clements and Galvão (2013), inter alia. Yet the recent literature

on macroeconomic forecasting suggests using multivariate models with time-varying conditional

volatility to obtain accurate density forecasts in real time (see, for example, Clark (2011), Clark

and Ravazzolo (2014), Diebold, Schorfheide and Shin (2016) and Carriero, Clark and Marcellino

(2020)).

Although the literature on forecasting with multivariate models with time-varying volatility

uses real-time data, that is, the vintages of macroeconomic time series that were actually

available at the time the forecast was made, it does not explicitly consider the impact of data

revisions on the measurement of forecasting uncertainty. The conventional approach to real-

time forecasting that underlies this literature - using the vintage of data available at the forecast

origin - fails to make an allowance for data uncertainty in the estimation of the model, or in

the generation of forecasts from the model. It regards the data as given, and does not allow for

the consequences of the data being revised over time. However, making an allowance for data

uncertainty in the evaluation of the forecasts from the model is commonplace: forecasts are

routinely compared to advance estimates of the actual data, or first-finals, or the latest vintage

of data available when the study is undertaken.
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This main purpose of the paper is to assess whether the conventional way of forecasting

in real-time can be improved upon for Bayesian Vector Autoregressions (BVARs, see, e.g.,

Sims (1980) and Doan, Litterman and Sims (1984)) with stochastic volatility. These are mul-

tivariate models which are popular in probabilistic macro forecasting (Clark (2011), Clark and

Ravazzolo (2014), and Carriero et al. (2020)). First and foremost, whether it is possible to

obtain improvements in density forecasting performance from an appropriate treatment of data

uncertainty in such models is regarded as an empirical issue. Obtaining analytical results in

general settings that match the complexity of the actual forecasting environment is challeng-

ing, especially allowing for small-sample parameter estimation uncertainty. Instead we consider

simplified settings which abstract from features such as parameter estimation uncertainty, non-

gaussian disturbances, and multiple rounds of revisions. These analyses serve to illustrate some

of the factors which shape the empirical findings, such as the properties of the revisions, but

the analytical results are at best a rough guide to the empirics. The question as to whether the

neglect of revision-driven data uncertainty in BVARs matters can ultimately only be answered

by the establishment of a representative body of empirical work. Our paper is a first step in

this direction.

To summarize our contribution, we focus on the impact of data uncertainty when computing

one and four-step-ahead probabilistic forecasts in real-time, using BVAR models, allowing the

disturbances to be characterized by time-varying volatility. We consider two ways of allowing

for revision-driven data uncertainty, and these are compared to the conventional approach of

using the latest vintage of the time series available at each point in time. This conventional

approach makes no allowance for data uncertainty. It is sometimes known as end-of-sample,

abbreviated to EOS. The first of the two approaches that allow for data uncertainty is the use

of real-time-vintage (RTV) data, advocated by Koenig et al. (2003) and Clements and Galvão

(2013) for point forecasting, and shown by Clements (2017) to be a simple and effective way of

delivering more accurate assessments of forecasting uncertainty in univariate AR models when

the error variance is homoscedastic. The second approach is based on Kishor and Koenig (2012)

(KK), who propose estimating the VAR on the "true values" of the variables at the same as

modelling the revisions. Instead of the estimation procedure proposed by Kishor and Koenig

(2012), we develop a Bayesian estimation strategy. This allows priors (such as the Minnesota
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prior) to be used to counter problems of high dimensionality, and facilitates the modelling of the

innovations (including the innovations to the revisions processes) as processes with stochastic

volatility.

Because we are interested in potential improvements from allowing for data uncertainty,

our focus is on relative measures of density forecasting performance (compared to a benchmark

which ignores data uncertainty), rather than absolute tests for correct specification (such as

those of Rossi and Sekhposyan (2013), for example). In simplified settings, we can show that

RTV maximizes the out-of-sample real-time log score, and this motivates our interest in RTV

as a method to deal with data uncertainty when forecasting with BVARs in real-time. Clearly,

if the KK model provides an accurate description of the real-time forecasting environment, by

explicitly modelling data revisions it will correctly account for data uncertainty, and so should

also provide improved density forecasts.

The plan of the remainder of the paper is as follows. Section 2 describes the two ways

of allowing for revision-driven data uncertainty. Section 3 sets out the empirical forecasting

comparisons we undertake, and presents the findings. Section 4 explains some aspects of our

findings using simplified settings, and section 5 reports the results of a Monte Carlo study.

Section 6 offers some concluding remarks, and argues that there are occasions when revision-

driven data uncertainty ought to be taken seriously.

Proofs of the main analytical results are available in an Appendix.

2 Methods to deal with Data Uncertainty in BVAR forecasting

Clements and Galvão (2013) show that if real-time data is reorganized into ‘real-time vintages’

(RTV) for model estimation, instead of employing the conventional end-of-sample approach,

the real-time accuracy of point forecasts from autoregressive models may be improved. This is

one of the methods we consider here to improve real-time forecasting with BVARs by taking

into account data uncertainty. The other method is based on Kishor and Koenig (2012) (KK),

who propose estimating the VAR using "true values" of the variables subject to revision, as part

of a system that also includes equations to model the dynamics of data revisions. We extend

KK to incorporate stochastic volatility (SV) to allow for time-variation in expected forecast

4



uncertainty. This puts the KK approach on the same footing as the BVAR models with SV.

Below we consider the BVAR with RTV, followed by the KK approach, and finally the two

models with SV.

2.1 BVAR with Real-Time Vintages

Consider the simple case of a forecaster using a vector autoregressive model of order p for

forecasting in real time. If the forecaster employs the latest-available vintage, that is, EOS, she

will estimate the following model:

yT+1t = βEOSxT+1t−1 + eEOSt , for t = p+ 1, .., T (1)

where yT+1t is a N × 1 vector of the vintage T + 1 estimate of each variable for the reference

period t value, where t runs from p + 1 up to T . The lags are also obtained from the latest

vintage as xT+1t−1 = (1,yT+1
′

t−1 , ...,yT+1
′

t−p )′, implying that βEOS is N×(Np+1) matrix. We assume

the data are published with a one period delay.

If the forecaster has access to T − 1 past vintages of the endogenous variables, that is, she

has access to a real-time database, then RTV for the VAR(p) model is given by estimation of:

yt+1t = βRTV xtt−1 + eRTVt , for t = p+ 1, .., T (2)

where yt+1t is the first estimate of each endogenous variable for reference period t such that{
yt+1t

}t=T
t=p+1

is the time series of first releases for each variable. The Np+1 vector of right-hand

side variables consist of:

xtt−1 = (1,yt′t−1,y
t′
t−2, ...,y

t′
t−p)

′, for t = p+ 1, ..., T,

that is, all lags are taken from the vintage at t, so for more than one lag (p > 1), at least

partially-revised data are used.

When forecasting in real-time, the forecasts are typically conditioned on initial and early

releases, that is, on xT+1T (and xT+1T−1 etc. depending on p).
1 As described by Clements and

1By ‘real time’we mean feasible forecasts that could have been made at the time the forecasts are assumed
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Galvão (2013), estimating the VAR with RTV data gives theoretically optimal forecasts, as

opposed to using EOS. Hence the use of RTV is a promising way of dealing with variables

subject to data revisions. Clements and Galvão (2013) apply RTV to univariate models and

predictive regressions, but they do evaluate the forecasting performance of RTV applied to VAR

models.

The literature on forecasting with VAR models typically employs Bayesian estimation, en-

abling the use of prior restrictions to mitigate dimensionality issues. We follow the literature

and estimate the models in eqs. (1) and (2) using Bayesian methods. We estimate the BVAR

as in Carriero, Clark and Marcellino (2015) with a Minnesota prior and an overall tightness

prior chosen by maximizing the marginal data density. The restrictions from the imposition of

prior information mean that the Clements and Galvão (2013) justification for RTV is no longer

strictly applicable, even in principle, but the practical importance of RTV remains an empirical

issue.

Draws from the predicted density are obtained using 10,000 draws from the posterior den-

sities of the parameters (including the variance-covariance matrix of the disturbances) with

multi-step forecasts obtained by iteration, including draws from the disturbances. We com-

pute point forecasts and their forecasting uncertainty using the mean and the variance of the

predicted density draws for each horizon.

2.2 The KK BVAR Approach

An alternative to RTV to deal with data uncertainty, when forecasting variables subject to data

revisions, is the approach proposed by Kishor and Koenig (2012), henceforth KK. KK propose

estimating the VAR on the ‘true values’of the endogenous variables, that is:

yt = cKK + βKKxt−1 + eKKt , for t = p+ 1, .., T, (3)

where xt−1 = (y′t−1, ...,y
′
t−p)

′. The problem of course is that we do not observe true (or even

the revised) values of all the observations at time T + 1, the forecast origin. The solution is

to simultaneously model data revisions to provide ‘true values’up to T . The main assumption

to have been made.
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is that the true values, or an effi cient estimate of these, is available l quarters after the refer-

ence quarter, that is, yt = yt+lt for t = p + 1, ..., T − l + 1. For the remaining observations,

yT+1T−l+2, . . . ,y
T+1
T , KK suggest using a system of equations and the Kalman Filter. Let revt

denote the N(l − 1)× 1 vector of revisions given by

revt = ((yt+1t − yt)
′, ...., (yt+l−1t − yt)

′)′. (4)

Then we assume the equations for revisions are given by a VAR(1):

revt = k0 + Krevt−1 + wt. (5)

Were we to estimate (3) and (5) separately, then data revisions would be treated as being

serially-correlated measurement errors. This ignores the possibility that revisions may add

new information (see, e.g., Mankiw and Shapiro (1986), and Clements and Galvão (2019) for

a review). If data revisions are news, then cov(eKKt ,wt) would not be the null matrix. KK

propose estimating both equations jointly using the seemingly unrelated regression estimator

(SURE) with observations up to T − l+1, and then using the Kalman filter and observations on

initial releases up to T to obtain filtered values for y up to T . Finally, forecasts of the revised

values of future observations, yT+1, ...,yT+h are obtained by iteration using eq. (3) conditional

on yT ,yT−1, .... Forecasts of future values of first releases, yT+2T+1, ...,y
T+h+1
T+h , require forecasts

of the revision vector too, obtained via iteration using eq. (5).

A concern is that the number of coeffi cients in eq. (5), and the number of states in the

state-space representation of the model, increase rapidly in l. At a rate N2 for the coeffi cients,

and N for the number of states and observations equations. We follow KK and set l = 2. This

supposes that the second quarterly estimate can be taken to be an effi cient estimate of the true

value. Setting l to a low value facilitates the inclusion of stochastic volatility in the innovations

in eqs. (3) and (5), as explained in the next section.

We estimate eqs. (3) and (5) by Bayesian methods. Assuming l = 2, the model is cast in
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state-space form, assuming no errors in the measurement equations, as:

 yt+1t

yt+1t−1

 =

 cKK + k0

cKK

+

 IN 0N · · · 0N IN

0N IN · · · 0N 0N




yt

yt−1
...

yt−p+1

rev
(1)
t


. (6)

This implies we use time series of first releases,
{
yt+1t

}t=T
t=p+1

, and of second releases,
{
yt+1t−1

}t=T
t=p+1

,

in estimation. Note that yt−1 = yt+1t−1 − cKK , because the second release is equal to the true

values, and we include the VAR intercepts in the measurement equations. By way of contrast,

the first release is not equal to the true values, but instead yt+1t − cKK −k0 = yt + rev
(1)
t . The

state equations are then:



yt

yt−1
...

yt−p+1

rev
(1)
t


=



βKKp=1 βKKp=2 · · · βKKp=p 0N

IN
...

. . .
...

IN 0N

0N K





yt−1

yt−2
...

yt−p

rev
(1)
t−1


+



IN 0N

0N
...

...
...

... 0N

0N IN



 eKKt

wt

 . (7)

Define the 2N × 1 vector of disturbances in the state equation by ζt = (eKK′t ,w′t)
′. When

var(ζt) = Q is a full matrix, the revisions disturbances are correlated with the disturbances to

the true values, allowing for revisions to be news.

If we further assume that the disturbances of the state equation are ζt ∼ N(0,Q), then we

can use the Kalman filter and a smoother to obtain estimates for the state variables yt and

rev
(1)
t if the parameters cKK , βKK , k0, K and Q in (6) and (7) are known. To be able to

jointly estimate state-equation parameters and the unobserved components, we obtain draws for

the time-series of state variables (αt = (y′t, ...,y
′
t−p+1, rev

(1)′
t )′) using that αt ∼ N(αt|T , Pt|T ).

We use the Carter and Kohn (1994) filtering/smoothing approach to obtain αt|T and Pt|T for

t = 1, ..., T , with smoothing step as described in Galvão (2017). To obtain posterior distribution

draws for all the parameters, we employ a Gibbs sampler, so the first step is to obtain draws
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for the unobserved components as just described, and the second step is to obtain draws for

the VAR parameters assuming yt and rev
(1)
t are fully observed (up to T ). We assume normal-

Wishart conjugate priors, that is, we apply the SUR model strategy described by Greenberg

(2013, ch. 10.1) to draw from normal-Wishart conditional distributions. The SUR model

approach is required when Q is full. We use Minnesota-type priors for the parameters of eqs.

(3) with the overall prior tightness fixed at the same value as in a standard BVAR model with

only the observed values.

We run the Gibbs sampler over 10,000 draws, remove the first 20% as burn-in, and com-

pute multi-step forecasts for each one of the kept draws by iteration including draws from the

disturbances. We compute point forecasts and forecast uncertainty as described earlier for the

BVAR specifications.

2.3 Adding Stochastic Volatility

In the macroeconomic forecasting literature stochastic volatility has been found to play a key

role in density forecasting (see in particular Clark and Ravazzolo (2014)). Hence we allow

for time-variation in the volatility of the disturbances in eqs. (1) and (2) by allowing for a

random walk process for the conditional variances. We choose the BVAR-SV specification

and estimation algorithm used by Carriero, Clark and Marcellino (2019).2 The specification is

such that the variance of each disturbance in the VAR may change slowly over time, but the

covariances are fixed.

For the KK BVAR model, we add stochastic volatility in two ways. The first one assumes

that

var

 eKKt

wt

 = var(ζt) = Qt = A−1ΛtA
−1

where Λt is a diagonal matrix and A−1 is lower triangular with ones on its main diagonal, as in

Carriero et al. (2019). This specification permits time-varying volatilities for the disturbances

in the equations for both the true values and the revisions. This also has the advantage of

allowing revisions to be news (i.e., that data revisions may be incorporated into true values),

2We use the code made available on M. Marcellino’s webpage.
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since cov(eKKt ,wt) is allowed to be non-zero. Allowing for SV in this form implies that:

ζt = A−1Λ0.5
t ηt, ηt ∼ N(0, I2N ).

The fact that Λt is diagonal implies that the jth element of the rescaled disturbances, ζ̃t = Aζt,

can be written as ζ̃t =
√
λj,tηj,t. The observational link between the disturbances of the KK

model (eq. (7)) and the unobserved volatility processes is:

ln ζ̃
2
t = lnλj,t + ln η2j,t. (8)

And the process for the time-varying volatility is given by:

lnλj,t = lnλj,t−1 + εj,t, εj,t ∼ N(0,Φ), (9)

where Φ is full. We estimate the KK BVAR-SV model by adding additional steps to the Gibbs

sampler described earlier to implement the Kim, Shephard and Chib (1998) algorithm to draw

values for the time-varying volatilities using the state-space form implied by eqs. (8) and (9).

We also include an additional step to draw the values in A using a Gaussian density.

Although the empirical literature provides evidence of changes in volatility for true values of

macroeconomic series (see, e.g., McConnell and Perez-Quiros (2000) and Sensier and van Dijk

(2004)), it is not clear that the variability of revisions has also been changing. This motivates our

second way of adding stochastic volatility. We suppose that only var(eKKt ) changes over time,

with var(wt) assumed constant. To do so, we need to assume thatQt is a block diagonal matrix,

implying that cov(eKKt ,wt) is constrained to zero. The block diagonality assumption allows us

to treat the errors of eq. (3) as described in the previous paragraph, while drawing the values

for the revision block (eq. (5)) from a Wishart distribution. From a practical perspective, this

constrained specification leads to fewer issues with the sampler algorithm when the estimation

sample is small. But has the disadvantage of not accommodating news revisions.

As before, we use a Gibbs sampler to obtain the posterior distribution of the parameters

and the unobserved components (including the stochastic volatility). We compute forecasts

by iteration for each set of the posterior parameters. Forecasts are obtained as in Clark and
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Ravazzolo (2014), so draws from the disturbances are included at each horizon. These draws

use ζt ∼ N(0, QT+h), that is, the variance covariance matrix may change with the horizon, as

we compute lnλj,T+1, ..., lnλj,T+h using equation (9) with draws from the variance equation

disturbances. We apply a similar approach to calculate forecasts from the BVAR-SV models.

3 Applications to US and UK real-time density forecasting

In this section, we use BVAR models estimated by both RTV and KK to forecast US and UK

macroeconomic variables. Our aim is to assess the relevance of accounting for data uncertainty

when making probabilistic forecasts of macro-variables using BVARs, and to determine whether

one of the two approaches we consider is superior to the other.

3.1 Forecasting Exercise Design

The BVAR model estimated with EOS is the benchmark against which we assess forecasting

performance, as this is the approach typically used in the literature (as in, for example, Clark

and Ravazzolo (2014)). We are interested in real-time forecasting, and EOS is a real-time

approach, in that it makes use only of data (including vintages of data) available at the time

the forecasts are made. But as argued by Koenig et al. (2003) and Clements and Galvão (2013),

amongst others (and see the review by Clements and Galvão (2019)), other real-time approaches

may give superior forecasts. RTV and KK are considered as alternatives which account for data

uncertainty. These approaches are implemented both with, and without, stochastic volatility.

This results in the following set of forecasting models: BVAR RTV, BVAR-SV EOS, KK-BVAR,

KK-BVAR-SV and KK-BVAR-SVT. The last specification (KK-BVAR-SVT) allows for SV in

the innovations in eq. (3) but not in eq. (5).

The VAR comprises four key quarterly macroeconomic variables: the first differences of

the logs of real GDP (GNP prior to 1991) and the GDP deflator (so that these variables are

effectively growth rates), the unemployment rate and an interest rate. These are the variables

considered by Clark and Ravazzolo (2014) for the US. They establish the benefits of allowing

for SV when forecasting with BVAR models. They use our benchmark method, EOS.

For the US, the real-time data for real GDP, the GDP deflator and unemployment are all
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obtained from the Philadelphia Fed Real-Time Database,3 and we consider quarterly vintages.

Prior to 1991, GDP is GNP. The interest rate is the Treasury Bill rate. For the UK, a similar set

of variables is used. We obtain monthly real-time vintages from the Offi ce of National Statistics

(ONS) website on real GDP (GDP in chained volume measures) and on nominal GDP (GDP

at current prices).4 We compute the implied GDP deflator using the ratio between the nominal

and real GDP values, and use the monthly vintages that include first releases as the quarterly

vintages. UK data on the unemployment rate and the 3-month interbank rate are taken from

the St Louis FRED dataset.5

There are some differences between the availability of real-time vintages of data between

the two countries, which might be expected to have an impact on the results. For the US,

data vintages are available for growth and inflation from 1965Q4, but only from 1990Q1 for the

UK (limited by the availability of nominal GDP data). We set the US out-of-sample period

to the forecast origins (vintages) of 2000Q3 to 2017Q4 (a total of 70), while for the UK it is

2004Q4 to 2019Q2 (59 origins). For both countries we use increasing estimation windows (a

‘recursive scheme’), because larger sample sizes are helpful when forecasting with models with

SV. Nonetheless, estimation periods are clearly markedly shorter for the UK.

The description of the KK approach in section 2.2 assumed all variables in the VAR were

subject to revision. However, this is only true of GDP growth and the GDP deflator, because

revisions to US and UK unemployment are negligible, and the short-rate is not subject to

revision. Given l = 2, as explained earlier, the vector revt is therefore 2× 1.

We evaluate the forecasting accuracy of each BVAR specification for the four variables, for

two measurement of actual values. We use the first release such that the target is Y T+2
T+1 when

evaluating one-step-ahead forecasts and Y T+5
T+4 for four-step-ahead forecasts, and also the second

quarterly release (equivalent to the Bureau of Economic Analysis third estimate, and the Offi ce

for National Statistics Quarterly National Accounts (ONS QNA) end of quarter release), that

is, Y T+3
T+1 and Y

T+6
T+4 , respectively.

3https://www.philadelphiafed.org/research-and-data/real-time-center/real-time-data/
4https://www.ons.gov.uk/economy/grossdomesticproductgdp/datasets/realtimedatabaseforukgdpabmi
and:
https://www.ons.gov.uk/economy/grossdomesticproductgdp/datasets/realtimedatabaseforukgdpybha
5https://fred.stlouisfed.org/

12



Two measures of forecast performance are reported. For point forecasts, we use the root

mean squared forecast error (RMSFE). For density forecast evaluation, we calculate minus

the log of the predictive density score (logscore), such that a smaller (more negative) value is

preferred. If pT+1|T (.) is the one-step ahead density of YT+1 made at time T , the logscore is

− ln(pT+1|T (yT+1) for realization yT+1. We compute the logscore using its closed-form solution

for Gaussian densities (as in Clark and Ravazzolo (2014)), using the mean and the variance

obtained using the predictive density draws. When the mean and variance are given by µT+1|T

and σ2T+1|T , the (negative) score is:

− ln(pT+1|T (yT+1)) =
(yT+1 − µT+1|T )2

2σ2T+1|T
+

1

2
ln(σ2T+1|T ) +

1

2
ln(2π) (10)

The negative of the logscore computed analytically for a normal predictive density is equivalent

to the Dawid-Sebastiani score function. It is a proper score function, meaning that the optimal

forecast is to deliver the true density function - there is no incentive to gameplay (as surveyed

in Gneiting and Katzfuss (2014)).

We test whether the differences in forecast performance between the models are statistically

significant using the Diebold and Mariano (1995) (DM) test statistic. Values of the DM statistic

in bold in the tables signify rejection of the null hypothesis of equal accuracy in favour of the

alternative (to the benchmark, BVAR EOS) at the 5% level (with critical values from a Gaussian

distribution).

3.2 Empirical Results

Tables 1 to 4 present the results of the forecasting exercise. Tables 1 and 2 evaluate one-step-

ahead forecasts, and Tables 3 and 4 one-year-ahead forecasts. Tables 1 and 3 are for the US,

and Tables 2 and 4 for the UK. Each table presents the two measures of accuracy. Entries for

the BVAR EOS model are either RMSFE or the logscore. The remaining entries are either

ratios of the RMSFE with respect to the BVAR EOS benchmark, or logscore differences with

respect to the benchmark. Ratios smaller than 1 suggest that the alternative forecasting model

is more accurate than the BVAR EOS in terms of RMSFE. Negative differences in logscore also

suggest improvements in accuracy in comparison with the BVAR EOS.
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The tables also present the DM statistics computed with respect to the BVAR EOS forecast

performance. The results in Panel A use the first release, yT+H+1T+H as the target variable, and

Panel B presents the results for the second quarterly release yT+H+2T+H as the target variable.

Note that accuracy only differs across releases for variables subject to revision (that is, for

GDP growth and GDP deflator inflation).

Firstly, does SV enhance forecast accuracy? The comparisons between specifications with

and without SV suggest that SV improves density forecasts, and even point forecasts, for the

US. To illustrate, consider the comparison of the BVAR_SV EOS against the benchmark.

The RMSFE ratio of 0.765 (table 1A) suggests a reduction of nearly 25% from SV, which is

statistically significant. Similarly, there is a statistically significant improvement in the log

score. For the UK the gains are more limited and are usually confined to the deflator and the

short-rate. The shorter sample period for the UK data may explain why SV is less beneficial.

At the one-year horizon, whether or not there are improvements from including SV depend

in part on whether we look at the point forecasts or density forecasts. The main reason is

that the predictive variance increases with the horizon, given the form of the stochastic process

assumed for the SV. This can result in improved logscores when the point forecasts are relatively

inaccurate, but conversely may be detrimental in other cases.

More importantly for our purposes, the improvements from modelling data uncertainty are

also clear. At h = 1 the BVAR_SV RTV yields significant improvements for GDP growth for

the US, and for inflation for the UK. The qualitative results for forecasting one-quarter ahead

do not change if instead we use the second release values. For the US, there is evidence that

taking into account data uncertainty also improves the forecasts of variables not subject to data

revision - unemployment and the short rate. The improvements for forecasting the short rate

as measured by the logscore are mainly at the one-quarter-ahead horizon, while improvements

for the unemployment are at the one-year-horizon using the the KK-BVAR-SV model.

The tables also indicate (in blue) the best forecasting model for each variable, horizon

and loss function. If we consider only the forecasts for output growth and inflation, we have

32 competitions. Of these, only 4 (1-in-8) are won by a forecasting model that disregards

data uncertainty (BVAR-SV EOS). In contrast, a half are won by one of the three KK BVAR

specifications.
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The findings suggest the KK BVAR models perform well for UK output growth and inflation

at the one-year horizon, for first releases. There is some evidence (e.g., point forecasts of output

growth) the KK models work well at the longer horizon for the US too. There is less evidence

that the performance of models using RTV depends on the forecast horizon.

In the next section, we explain some key aspects of these empirical results. In particular,

we relate the density-forecasting performance of RTV to the characteristics of data revisions,

and we discuss why the KK approach may perform relatively better at longer horizons.

4 Explaining the Empirical Evidence

The complexity of the forecasting environment once we allow for multivariate models estimated

by Bayesian methods, for data revisions, time-varying conditional variances, small-sample pa-

rameter estimation uncertainty, etc., means that clearcut analytical expressions that explain

the empirical outcomes in their entirety will be hard to come by. In this section, we consider a

number of aspects which will influence the outcomes of the empirical forecast comparisons.

4.1 News and Noise Revisions and Forecasting Uncertainty

We start by considering the roles of news and noise revisions in determining the importance of

allowing for data uncertainty. That is, the role played by the characteristics of data revisions.

Our statistical framework assumes an autoregressive model (AR(1)) for the true (i.e., fully-

revised) values yt:

yt = φyt−1 + ηt + vt, |φ| < 1 (11)

where ηt is the underlying disturbance. Here vt is a news revision, and the first estimate is

given by:

yt+1t = yt − vt + εt (12)

with yt+lt = yt for l = 2, 3, . . ., when we assume the second estimate reveals the true value.

εt is a noise revision. Then the revision yt+2t − yt+1t ≡ yt − yt+1t = vt − εt consists of a noise

component (when σ2ε = E
(
ε2t
)
6= 0) and a news component (when σ2v = E

(
v2t
)
6= 0), see e.g.,

Mankiw and Shapiro (1986). We assume ηt, vt and εt are mutually uncorrelated, zero-mean
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random variables.

This setup is a simplified version of the statistical model of Jacobs and van Norden (2011):

they allow for l-revisions (l > 1); the possibility that the truth is not eventually revealed; and

for more general processes for the true data. The statistical framework described in this section

is general enough to bring out the impact of certain characteristics of data revisions on the

calculation of forecast uncertainty, using both RTV and the KK approaches, compared to the

traditional approach.

Pure news revisions (with σ2ε = 0) are characterized by the revision being uncorrelated with

the first estimate:

Cov
(
yt+2t − yt+1t , yt+1t

)
= Cov (vt, αyt−1 + ηt) = 0,

and the revised estimate - the fully-revised estimate here - adds the news vt. Later estimates

are more accurate estimates of the true value than earlier estimates (here, yt+2t = yt) and have

larger unconditional variance than earlier estimates. This implies that if data revisions are pure

news, we expect that var(yt+2t ) > var(yt+1t ).

Conversely, noise revisions remove measurement error: the revisions are predictable (based

on period t− 1 information) but are not correlated with the true value, i.e.:

Cov
(
yt+2t − yt+1t , yt+1t

)
= Cov (−εt, yt + εt) = −σ2ε,

but:

Cov
(
yt+2t − yt+1t , yt

)
= Cov (−εt, yt) = 0.

Hence later estimates have smaller unconditional variances, that is, under pure noise revisions

var(yt+2t ) > var(yt+1t ).

In Tables 1 to 4 we have evaluated forecast performance using both the first and the second

releases of output growth and inflation. The forecasts themselves from the BVAR models do

not depend on the target, except for the KK BVAR. We can clearly see that the RMSFEs are

larger for the second release than for the first release for forecasting output growth. But the

opposite is true for inflation. This suggests that data revisions to output growth and inflation
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are mainly news and noise, respectively, because the RMSFEs reflect the magnitudes of the

unconditional variances of the target variables.

Another way of looking at the effects of data revisions is via their effects on forecast uncer-

tainty, σ̂2T+1. We graph the time series of estimates of the conditional predictive variances using

the KK BVAR-SV model, for the first release σ̂2,KK,T+2T+1|T , and for the second releases σ̂2,KK,T+3T+1|T .

We do this for both output growth and inflation for the US: see Figure 1. As expected, for

output growth σ̂2,KK,T+2T+1|T < σ̂2,KK,T+3T+1|T for all quarters, because data revisions are news. Al-

though differences are small in some periods, in others they are large, such as in 2009. For

inflation the differences between the two series of predicted variances are generally small, and

sometimes change sign. At least for output growth, though, the KK BVAR-SV suggests that

data revisions increase the predicted variability of ‘true’US output growth, relative to that

of the first estimate. And this is consistent with revisions to output growth by the statistical

agency adding news.

The characteristics of data revision also affect the calculation of forecast uncertainty by EOS

and RTV. To understand why, first define δ as the relative size of the data revision process,

that is:

δ =
var(revt)

σ2η
,

implying that if data revisions are news, δ = σ2v/σ
2
η, and if data revisions are noise, δ = σ2ε/σ

2
η.

Suppose eqs. (11) and (12) are supplemented with eq. (13):

ηt = σηξ1t; vt = σvξ2t; εt = σεξ3t (13)

where ξit ∼ iidN(0, 1) for i = 1, 2, 3, and are mutually uncorrelated,

to emphasize the independence of the three disturbances, as well as that they are assumed

to be homoscedastic. Using the statistical framework given by the data generation process,

eqs. (11), (12) and (13), and the assumption that the forecasting model is an AR(1) with an

intercept, Clements (2017) provides expressions for the predictive variances for EOS and RTV.

In our empirical exercise, the model is a VAR(p), so that the results here are indicative. The

predicted variances (forecast uncertainty), under EOS and RTV are denoted by σ2,EOST+1|T and

17



σ2,EOST+1|T , respectively, and for the case of pure news revisions are given by:

σ2,EOST+1|T = σ2η + σ2v = σ2η(1 + δ)

σ2,RTVT+1|T = σ2η + φ2σ2v = σ2η(1 + φ2δ).

Under stationarity φ2 < 1, so that σ2,EOST+1|T > σ2,RTVT+1|T . Thus, for news revisions the EOS forecast-

error variance exceeds that of RTV.

Next, consider noise revisions. Because all but the last observation used to compute σ2,EOST+1|T

are revised data, for large T the EOS forecast of the variance is simply:

σ2,EOST+1|T = σ2η (14)

The one-step-ahead variance with RTV is:

σ2,RTVT+1|T = σ2η(1 + δ + %), (15)

where % = [φ2(B − 1)2/(1 − φ2) + δB2φ2]. This expression is derived in the Appendix, where

we show that B < 1 and so % > 0. Consequently, for pure noise revisions, we expect that

σ2,EOST+1|T < σ2,RTVT+1|T , the opposite to the finding for news.

Because RTV accurately reflects one-step ahead forecast uncertainty for the first release

value, i.e., for yT+2T+1 (as shown by Clements (2017)), in this simple setup EOS under-estimates

future uncertainty when there are noise revisions, but over-estimates uncertainty for news re-

visions.

These analytical results abstract from stochastic volatility, and assume the forecasting model

is an AR(1). Given that the empirical exercise shows SV improves the BVAR density forecasts

(in particular for the longer time series available for the US data), we check whether these

findings carry over to SV models. Figure 2 presents the empirical ratio of the time series

σ2,EOST+1|T /σ
2,RTV
T+1|T for US output growth and inflation. The results are as expected, in that the

ratio is usually above one for output growth, for which revisions are news. For inflation the

ratio is generally lower, and for the most part is less than one, which is consistent with noise

revisions.
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From Figure 2, the largest differences between the EOS and RTV predicted variances are for

output growth forecasts after 2011 (with ratios from 1.5 up to in excess of 3). This is consistent

with the large forecasting improvement on logscore from using RTV (instead of EOS) for the

BVAR-SV for output growth: the improvement in accuracy is close to 25%. For inflation the

improvement is much more muted at around 5%. (See the last panel of Table 1).

In summary, we have shown how the characteristics of data revisions (news/noise) can affect

predicted forecast uncertainty in a relatively simple setup, and have shown that these effects

carry over to the empirical comparisons involving the BVAR-SV forecasting models.

4.2 Why does RTV improve logscore performance relative to EOS?

The findings for predictive variances - when the model is estimated by RTV or EOS - directly

affect log score performances, as described below. We provide some analytical results consistent

with the empirical findings that RTV often delivers superior densities on logscore at the one-

quarter-horizon for both output growth and inflation, and for the US and the UK data.

For the DGP given by (11), (12) and (13), propositions 1 and 2 provide the analytical values

of the expected differences between EOS and RTV logscores for an AR(1) forecasting model.

From (10), the logscore for a Gaussian forecast density is:

E[− ln(pT+1|T (yT+1))] = E

[
(yT+1 − µT+1|T )2

2σ2T+1|T
+

1

2
ln(σ2T+1|T ) + 0.5 ln(2π)

]
(16)

where pT+1|T (.) is the one-step-ahead density, µT+1|T is the mean of the predictive density,

σ2T+1|T is the predicted variance, and yT+1 is the realization.

Proposition 1 The difference between the EOS and RTV logscores, ∆scoreNews, for an AR(1)

model, when the target is the initial release yT+2T+1, data revisions are pure news, and the DGP

is given by (11), (12) and (13), is given by:

∆scoreNews =
1

2

[
δ(φ2 − 1)

1 + δ
+ ln[(1 + δ) /(1 + φ2δ)]

]
. (17)

The Proof is given in the Appendix, where we show that ∆scoreNews ≥ 0, that is, the loss for

EOS density forecasts exceeds that of the RTV density forecasts.
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Proposition 2 The difference between the EOS and RTV log scores, ∆scoreNoise, for an AR(1)

model, when the target is the initial release yT+2T+1, data revisions are pure noise, and the DGP

is given by (11), (12) and (13), is given by

∆scoreNoise =
1

2

[
(δ(1 + φ2))− ln(1 + δ + %)

]
. (18)

The Proof is given in the Appendix, where we show that ∆scoreNoise ≥ 0, that is, the loss for

EOS density forecasts exceeds that of the RTV density forecasts..

Figure 3 shows how ∆scoreNews and ∆scoreNoise vary with the revision size δ, and the

persistence of the underlying process φ, for some illustrative values. For a given revision size

δ, it is apparent that differences in logscore are larger when when data revisions are noise

(compare the scales of the vertical axes). Moreover, logscore differences are increasing in φ for

noise revisions, but declining in the persistence of the process for news revisions.

Figure 3 suggests we might expect to see larger differences between EOS and RTV one-

step-ahead logscores for inflation than output growth, if revisions to inflation are noise, and

those to output news. If we look at the results in table 2 for the UK, we do indeed find larger

gains from RTV over EOS for inflation, than for output. For US data, we find the gains are

smaller. A close examination of figures 1 and 2 suggests that although the broad categorization

of early US inflation revisions as being noise may be correct, there are periods where the binary

news/noise dichotomy may not hold. If US inflation revisions are not pure noise, then the lack

of corroboration between the analytical results and empirical evidence would not be surprising.

An additional implication of Figure 3 is that if data revisions are news, then larger gains

should result for series that are a) less persistent and b) have larger revisions. The first-order

serial correlation of the second release of UK GDP growth is approximately 0.6, compared to

0.5 for the US, while revision are similar in size. Comparing the logscore differences for the

UK growth in Table 2 to the those for the US in Table 1, we find that RTV gains are indeed

smaller for the UK, as expected.

The analytical results presented here provide insight into why larger improvements in real-

time forecasting with BVARs are obtained from using RTV (instead of EOS) for some variables

as opposed to others.
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4.3 Why the KK model performs better at longer horizons

We consider why the KK model performs relatively better at longer horizons (h = 4), especially

for the first-release actuals. Compare, for example, the KK model US GDP growth forecasts in

tables 1 (h = 1) and 4 (h = 4). Intuitively, RTV might be expected to beat KK for forecasting

the first release because in essence it exploits the correlation between adjacent first-release data

estimates. It uses only observed data, and the forecast is conditioned on yT+1T . This simple

approach might be more robust in some circumstances than KK. Forecasts from the KK BVAR

model are conditioned on filtered estimates of yT , since we only observe yT+1T , and not yT+2T .

The KK approach generates a forecast of the true value, and then adjusts this using the forecast

revision to obtain yT+2T+1|T , a forecast of the first release. The relative advantage of RTV over KK

is likely to diminish at longer horizons if the KK approach accurately captures the dynamics of

revisions and true values.

We might expect the KK BVAR approach to produce predicted densities which are relatively

more accurate than RTV for yT+3T+1, than for yT+2T+1, in principle, because the RTV estimates of

the two densities are the same. In practice, any gains will be tempered by the similarity between

the KK predictive variances for the two targets for many time periods (as shown in figure 3).

5 A Monte Carlo Exercise

In this section, we report the results of a Monte Carlo exercise designed to further explore

when we should expect gains from considering data uncertainty when computing forecasts with

BVAR models in real time, including the effects of forecast horizon and forecast target on the

relative performance of the RTV and the KK approaches. As in the empirical exercise, we

measure forecast performance using the RMSFE and the logscore, and we evaluate relative

forecasting performance using the Diebold and Mariano test for equal forecasting accuracy

using the BVAR EOS (the traditional way to deal with real-time data when forecasting) as the

benchmark forecasting method.

The data generation process (DGP) is the KK model. We assume that yt+14t reveals the

true values, so as to encompass not only the initial revisions but also the subsequent annual
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rounds of revisions.6 The model is estimated on US data for output growth and GDP deflator

inflation. An advantage of having the KK model as the DGP is that we are able to accommodate

data revisions being a combination of news and noise revisions. We consider a VAR(1) for the

(l−1) = 13 data revisions processes for each variable (output growth and inflation), and we allow

revisions across variables and maturity to be contemporaneously and dynamically correlated.

For the true values, we consider a VAR (4), and we estimate the KK VAR model with data from

1985, that is, for the period after the Great Moderation. This lends support to the assumption

that the volatility of the disturbances is constant, that is, we do not allow for SV in the DGP.

As l > p, the extended measurement equation for this case can be written as:



yt+1t

...

yt+1t−p+1
...

yt+1t−l+1


=



cKK + k0,1
...

cKK + k0,p
...

cKK


+



IN IN
. . . . . .

IN IN
. . . . . .

IN 0N





yt
...

yt−p+1
...

yt−l+1

rev
(1)
t

...

rev
(p)
t

...

rev
(l−1)
t



.

And for the state equation, revt is as defined in (4), implying that K is a (l − 1)N square

6See e.g., Fixler, Greenaway-McGrevy and Grimm (2014) on US data releases.
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matrix, and we have:



yt

yt−1
...

yt−p+1
...

yt−l+1

revt


=



βKKp=1 βKKp=2 · · · βKKp=p

IN
. . .

IN
. . .

IN

K





yt−1

yt−2
...

yt−p
...

yt−l+2

revt−1


+



IN 0N

0N
...

...
...

...
...

...
...

... 0N

0N IN



 eKKt

wt

 .

Using data generated from the KK model, the end-of-sample vintage available at the

forecasting origin T + 1
{

yT+1t

}t=T
t=1

is yT+1t = yt for t = 1, ..., T − l + 1, then yT+1T−l+2 =

yT−l+1 + rev
(l−1)
t and so on up to yT+1T = yT + rev

(1)
t . This implies that the variability of

the most recent l− 1 observations which are still subject to revision will differ from that of the

fully-revised earlier values. As a consequence, it may be that allowing for stochastic volatility in

the BVAR estimated on
{

yT+1t

}t=T
t=1

will result in better forecast. The main reason is that SV

may help to accommodate the changing data variability due to the different maturities of the

observations. For comparison purposes, we consider both the BVAR-SV EOS and BVAR-SV

RTV, in addition to the BVAR RTV.

Although we generate data from a KK BVAR for l = 14, we use a KK BVAR with l = 2

as one of the alternative models included in the Monte Carlo. This is so for two reasons. First

because it mimics the empirical exercise in section 3. Output growth and inflation data are

subject to annual revisions, but we only model the initial revisions as the real-time target is

either first estimates or the ‘first final’(or second estimates). This is supported by the fact that

in real time, one takes additional 3 years to observe yt+2t in contrast to yt+14t , making it hard to

update forecasting strategies in real-time. Second, the estimation of the KK model with large

l is computationally intensive because of the large number of state variables. This challenge

can be overcome if the model is used as the DGP and estimated just once, but if the plan is to

estimate the model P times per Monte Carlo replication, then the exercise is not feasible in a

reasonable time frame.

We consider a relatively short sample period, matching that of the empirical exercise. The
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in-sample period T = 150, and the out-of-sample period is set to P = 50.7 We evaluate forecasts

for both first and second releases, and for two horizons: one-step-ahead and four-steps-ahead.

We set the number of draws to approximate the posterior distribution and the predictive density

to 10,000 and the number of Monte Carlo replications is 288. The number of replications is

small because of the computational time required to re-estimate each forecasting model with

increasing samples over the out-of-sample period, P . Our estimates for accuracy measures

(RMSFE and logscore) are actually over 50 × 288 realizations. The number of replications is

used to calculate the rejection rates for the DM statistic. On each replication, DM is computed

using P−h observations, as a 5% level one-sided test against the BVAR EOS. The percentage of

rejections across replications estimates the rejection frequency against equality with the BVAR

EOS, the same benchmark as in the empirical exercises.

Table 5 presents the results of the Monte Carlo exercise. As in the case of the empirical

exercises, the values for the BVAR EOS column are either the RMSFE or the logscore. For the

remaining models we report ratios to these values (RMSFE) or differences with (Logscore). We

summarize out findings as follows.

First, gains from dealing with data uncertainty are reduced as we increase the horizon from

h = 1 to h = 4. Second, the KK BVAR modelling is a better option than BVAR RTV if the

target is the second instead of the first release. The BVAR RTV delivers the most accurate point

and density forecasts for nowcasting (h = 1) first releases. This confirms our empirical results

that suggest that the KK BVAR is not as good as the BVAR RTV for forecasting current-quarter

first-estimates of output growth and inflation. Third, we are more likely to find statistically

significant improvements relative to the benchmark (BVAR EOS) for densities on logscore, as

opposed to point forecasts using RMSFE. Gains from accounting for data uncertainty are more

readily apparent for density forecasting.

Finally, BVAR-SV EOS improves on BVAR EOS for logscore when predicting the second

release. A point of note is that the second-release unconditional variance exceeds that for the

first-release, as evidenced by the benchmark model RMSFEs and logscores for the second-release

being larger than for the first release. As explained earlier, although var(ζt) is homoscedastic

in our DGP, the fact that the variance changes across maturities in the last 13 observations

7At each replication, we simulate 150+50+100 = 300 observations and discard the first 100, so as to remove
the effects of the initial values on our results.
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may explain why the stochastic volatility specification may do better than assuming constant

volatility. Looking back at our empirical exercises in section 3, the evidence that SV improves

forecasting performance may reflect not just changes in the volatility of shocks, but also its

ability to accommodate varying data uncertainty of the end of the sample due to the different

data maturities.

Using a KK model as a DGP ought to favour the KK forecasting model. That we never-

theless find a pattern of results that broadly matches our empirical findings suggests that the

DGP captures some of the salient features of the data and does not unduly bias the findings in

favour of the KK model.

6 Conclusions

In this paper we consider whether it is possible to improve on the standard practice of effectively

ignoring data uncertainty when generating density forecasts from Bayesian VAR models. By

‘data uncertainty’we mean that the recent observations at the time a forecast is to be made will

be subject to future data revisions. Such observations are therefore uncertain. Two methods

are suggested as offering potential improvements - the use of real-time-vintage data (RTV), and

simultaneously modelling data revision along with the true or fully-revised values of the data.

We explore these two possibilities, relative to the standard approach, in empirical exercises

using typical small VARs for output growth and inflation for the US and the UK.

We then consider what can be learnt from analytical expressions for differences in forecast

accuracy between the various models and methods. We consider simplified settings so that

analytical results can be derived, and these serve to highlight certain features of the forecast-

ing environmental which are influential in determining rankings across models and approaches.

Notwithstanding the complexity of the empirical forecasting environment, including the use of

multivariate models estimated by Bayesian methods, allowing time-varying conditional vari-

ances, etc., we find the analytical results do illuminate the empirical findings.

Lastly, we resort to Monte Carlo to dig deeper, and are able to obtain a reasonable match

between the simulation findings and the empirical comparisons.

In summary, our findings suggest the following. Making an allowance for data uncertainty
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can lead to improvements in forecast accuracy for (small) BVAR models. Of the 32 empirical

‘forecasting competitions’we consider, comprising combinations of variable, forecast horizon,

and loss function, in only 1 in 8 of these is the winner a model which disregards data uncertainty.

Beyond that, the picture is more nuanced. Modelling data revisions appears to be relatively

better than RTV at longer horizons when the aim is to forecast revised values of the observations.

We confirm the finding in the literature that allowing for stochastic volatility tends to im-

prove forecast accuracy. But whilst the improvement in density forecasting is usually attributed

to modelling changes in the variances of the underlying shocks in the system, we suggest that

the improvements may also reflect the SV process capturing time-varying variances at the end

of the estimation sample due to the different maturities of the data. That is, including SV

in the model may have the unintended but beneficial effect of dealing with data-revision data

uncertainty.
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A Proofs

A.1 Preliminaries

We begin by summarising the statistical setup, and repeat for convenience the key equations in

the main text.

The negative of the expected log score is given by:

E[− ln(pT+1|T (yT+1))] = E

[
(yT+1 − µT+1|T )2

2σ2T+1|T
+

1

2
ln(σ2T+1|T ) + 0.5 ln(2π)

]
(19)

where pT+1|T (.) is the density.

The DGP is as follows. The true values yt follow an AR(1):

yt = φyt−1 + ηt + vt, |φ| < 1 (20)

where ηt is the underlying disturbance, and vt is a news revision, and the first estimate is given

by:

yt+1t = yt − vt + εt (21)

with yt+nt = yt for n = 2, 3, . . .. Further:

ηt = σηξ1t; vt = σvξ2t; εt = σεξ3t (22)

ξit ∼ iidN(0, 1) for i = 1, 2, 3.

Let yt+1t = yt + revt, and define δ as the relative size of the data revision process, that is:

δ =
var(revt)

σ2η
,

implying that if data revisions are news, δ = σ2v/σ
2
η, and if data revisions are noise, δ = σ2ε/σ

2
η.
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A.1.1 News revisions

The EOS and RTV forecasts of the mean and the variance are given by:

µEOST+1|T = φyT+1T = φ(yT − σvξ2T )

σ2,EOST+1|T = σ2η + σ2v = σ2η(1 + δ)

(23)

µRTVT+1|T = φyT+1T = φ(yT − σvξ2T )

σ2,RTVT+1|T = σ2η + φ2σ2v = σ2η(1 + φ2δ)

using results in Clements and Galvão (2013) and Clements (2017).

A.1.2 Noise revisions

The EOS and RTV forecasts of the mean are given by:

µEOST+1|T = φyT+1T = φ(yT + σεξ3T )

µRTVT+1|T = BφyT+1T = Bφ(yT + σεξ3T ).

where:

B =
σ2y

σ2y + σ2ε
=

σ2η/(1− φ2)
σ2η/(1− φ2) + σ2ηδ

=
(1− φ2)−1

((1− φ2)−1 + δ)

(see Clements and Galvão (2013)).

The EOS and RTV forecasts of the variances are given by:

σ2,EOST+1|T = σ2η (24)

σ2,RTVT+1|T = σ2η(1 + δ + %), (25)
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with % = [φ2(B − 1)2/(1− φ2) + δB2φ2]. Eq. (25) is derived as:

σ2,RTVT+1|T = var(yT+1 + σεξ3T+1 −BφyT −Bφσεξ3T )

= var(yt) +B2φ2var(yt) + (1 +B2φ2)σ2ε − 2BφCov (ytyt−1)

= σ2y(1 +B2φ2 − 2Bφ2) + (1 +B2φ2)σ2ε

= σ2y[(1− φ2) + φ2(B − 1)2] + (1 +B2φ2)σ2ε

= σ2η/(1− φ2)[(1− φ2) + φ2(B − 1)2] + σ2ηδ(1 +B2φ2)

= σ2η + σ2η(φ
2(B − 1)2/(1− φ2)) + σ2ηδ + σ2ηδB

2φ2

= σ2η + δσ2η + σ2η(φ
2(B − 1)2/(1− φ2)) + σ2ηδB

2φ2

= σ2η(1 + δ + %),

Because B < 1 and |φ| < 1, then % > 0, implying that for the same δ and φ, σ2,RTVT+1|T for

noise is greater than σ2,EOST+1|T for news. If there are no revisions (δ = 0), then % = 0 since B = 1.

A.2 Proof of Proposition 1

The difference between EOS and RTV log score when revisions are news:

∆scoreNews = E[− ln(pEOST+1|T (yT+2T+1))]− E[− ln(pRTVT+1|T (yT+2T+1))]

= E[− ln(pEOST+1|T (yT+1 − σvξ2T+1))]− E[− ln(pRTVT+1|T (yT+1 − σvξ2T+1))]

=

[
1 + φ2δ

2(1 + δ)
+

1

2
ln(σ2η(1 + δ))

]
−
[

1

2
+

1

2
lnσ2η(1 + φ2δ)

]
=

1

2

[
1 + φ2δ

1 + δ
+ ln(1 + δ)− 1− ln(1 + φ2δ)

]
=

1

2

[
δ(φ2 − 1)

1 + δ
+ ln[(1 + δ) /(1 + φ2δ)]

]
,

and we need to show that ∆scoreNews ≥ 0 in order to establish the dominance of RTV over

EOS on log score. If we take the derivative of the expression in brackets with respect to φ2,

we find δ/(1 + δ) − δ/(1 + φ2δ). Because (1 + δ) > (1 + φ2δ), since φ2 < 1 and δ ≥ 0, the

derivative is always negative. This means that the minimum value of ∆scoreNews will be at

the maximum value of φ2, that is, φ2 ≈ 1. Based on the expression above, it is clear that if
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φ2 = 1, ∆scoreNews = 0. If ∆scoreNews is equal to zero at its minimum, then for values such

that 0 ≤ φ2 < 1, we have ∆scoreNews ≥ 0.

A.3 Proof of Proposition 2

The difference between EOS and RTV log score when revisions are noise:

∆scoreNoise = E[− ln(pEOST+1|T (yT+2T+1))]− E[− ln(pRTVT+1|T (yT+2T+1))]

= E[− ln(pEOST+1|T (yT+1 + σεξ3T+1))]− E[− ln(pRTVT+1|T (yT+1 + σεξ3T+1))]

=

[
1

2
(1 + δ(1 + φ2)) +

1

2
ln(σ2η)

]
−
[

1

2
+

1

2
ln(σ2η(1 + δ + %))

]
=

1

2

[
(1 + δ(1 + φ2))− 1− ln(1 + δ + %)

]
=

1

2

[
(δ(1 + φ2))− ln(1 + δ + %)

]
.

To show that ∆scoreNoise ≥ 0, we use the concavity of the logarithm function. But first note

that we can rewrite % as:

% = [φ2(B − 1)2/(1− φ2) + δB2φ2]

= φ2(1− φ2)−1
[

δ2

((1− φ2)−1 + δ)2

]
+ δφ2

[
(1− φ2)−2

((1− φ2)−1 + δ)2

]
=

φ2(1− φ2)−1δ(δ + (1− φ2)−1)
((1− φ2)−1 + δ)2

=
φ2(1− φ2)−1δ

((1− φ2)−1 + δ)
= φ2δB

Recall that x ≥ ln(1 + x) if x ≥ 0. In the case that B = 1, % = δφ2, and then δ(1 + φ2) >

ln(1 + δ(1 + φ2)). When σ2ε > 0, then B < 1, and we have:

∆scoreNoise =
1

2
(δ(1 + φ2))− ln(1 + δ(1 + φ2B)).

Since φ2B < φ2, then it must be the case that ∆scoreNoise ≥ 0, establishing the dominance of

RTV over EOS on log score for noise revisions.
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Tables 1- Forecast Performance at a one-quarter-ahead horizon for the US. Out-of-sample 
origins: 2000Q3-2017Q4 (70 observations).  
Table 1A: Forecasting the first-release values  

 BVAR EOS BVAR RTV BVAR_SV EOS BVAR_SV RTV KK  KK_SVT KK_SV 
 RMSFE Ratios to BVAR EOS RMSFE 
GDP growth 0.403 0.868 0.765 0.716 0.833 0.881 0.849 
Deflator Inf. 0.076 0.902 0.821 0.836 0.844 0.689 0.688 
Unemp. 0.084 1.163 0.950 1.024 1.085 1.186 1.159 
3-month rate 0.203 0.828 0.718 0.685 0.836 0.636 0.621 
  DM t-stat: 
GDP growth  -1.439 -2.933 -2.967 -1.674 -0.966 -0.928 
Deflator Inf.  -2.227 -2.853 -2.720 -2.176 -2.091 -2.159 
Unemp.  1.625 -1.863 0.409 1.186 1.219 1.106 
3-month rate  -1.254 -2.228 -1.780 -0.964 -1.986 -2.107 
 Logscore Differences to BVAR EOS Logscore 
GDP growth 0.984 -0.091 -0.203 -0.235 -0.109 -0.084 -0.169 
Deflator Inf. 0.116 -0.016 -0.033 -0.044 -0.028 -0.039 -0.070 
Unemp. 0.188 0.061 -0.124 -0.069 0.022 -0.053 -0.048 
3-month rate 0.785 -0.062 -0.570 -0.570 -0.084 -0.553 -0.572 
  DM t-stat: 
GDP growth  -1.517 -3.753 -3.229 -2.072 -1.621 -2.546 
Deflator Inf.  -0.470 -0.654 -0.765 -0.613 -0.513 -0.915 
Unemp.  1.325 -0.987 -0.646 0.417 -0.481 -0.401 
3-month rate  -2.612 -3.860 -3.690 -2.733 -3.996 -4.154 

 
Table 1B: Forecasting the second-release (equivalent to BEA third) values 

 BVAR EOS BVAR RTV BVAR_SV EOS BVAR_SV RTV KK KK_SVT KK_SV 

 RMSFE Ratios to BVAR EOS RMSFE 
GDP growth 0.464 0.920 0.826 0.776 0.927 0.969 0.908 
Deflator Inf. 0.067 0.892 0.812 0.836 0.851 0.723 0.721 
  DM t-stat: 
GDP growth  -1.074 -2.429 -2.509 -0.871 -0.275 -0.645 
Deflator Inf.  -2.311 -3.071 -2.615 -2.018 -2.224 -2.306 
 Logscore Differences to BVAR EOS Logscore 

GDP growth 1.040 -0.051 -0.136 -0.094 -0.036 -0.027 -0.080 
Deflator Inf. 0.060 -0.004 -0.031 -0.017 -0.001 -0.038 -0.039 
  DM t-stat: 
GDP growth  -0.757 -1.741 -0.685 -0.939 -0.374 -1.303 
Deflator Inf.  -0.143 -0.922 -0.397 -0.033 -0.612 -0.656 

Notes: Entries are RMSFE or logscore in the first column. Remaining entries are RMSFE ratios to BVAR EOS or 
differences in logscore. Improvements over BVAR EOS are indicated by ratios smaller than 1 and negative 
logscore differences and t-statistics. Models are re-estimated at each new quarterly forecasting origin by 
extending the sample period that starts in 1965Q3. The values in blue indicate the best forecasting model for 
each variable using the respective accuracy measure. The t-statistics in bold indicate that the null of equal 
accuracy with BVAR EOS is rejected at the 5% level in favour of the alternative model (indicated in the column 
headings).   
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Table 2 – Forecast Performance at a one-quarter-ahead horizon for the UK. Out-of-sample 
origins: 2004Q4 -2019Q2 (59 observations).  
Table 2A: Forecasting the first-release values 

 BVAR EOS BVAR RTV BVAR_SV EOS BVAR_SV RTV KK KK_SVT 
 RMSFE Ratios to BVAR EOS RMSFE 
GDP growth 0.285 0.894 1.136 1.049 0.890 1.389 
Deflator Inf. 0.515 0.553 0.986 0.463 0.548 0.514 
Unemp. 0.048 1.032 1.000 1.064 1.067 1.134 
3-month rate 0.214 0.795 0.744 0.736 0.801 0.912 
  DM t-stat: 
GDP growth  -1.391 1.021 0.490 -1.173 1.135 
Deflator Inf.  -2.422 -0.076 -2.818 -2.069 -2.375 
Unemp.  0.454 -0.005 0.923 0.908 0.944 
3-month rate  -1.080 -1.310 -1.293 -1.181 -0.322 
 Logscore Differences to BVAR EOS Logscore 
GDP growth 0.850 -0.054 -0.184 -0.182 -0.025 0.007 
Deflator Inf. 1.112 -0.381 0.132 -0.423 -0.375 -0.401 
Unemp. -0.120 0.059 -0.095 0.019 0.085 0.017 
3-month rate 0.605 -0.071 -0.406 -0.411 -0.047 -0.152 
  DM t-stat: 
GDP growth  -0.765 -1.302 -1.225 -0.029 0.126 
Deflator Inf.  -2.573 1.289 -2.656 -2.245 -3.079 
Unemp.  1.248 -1.762 0.227 1.648 0.310 
3-month rate  -1.320 -2.474 -2.662 -0.365 -1.292 

 
Table 2B: Forecasting the second-release (ONS QNA) values 

 BVAR_EOS BVAR_RTV BVAR_SV_EOS BVAR_SV_RTV KK KK_SVT 
 RMSFE Ratios to BVAR EOS RMSFE 

GDP growth 0.329 0.863 1.086 0.962 0.873 1.279 
Deflator Inf. 0.448 0.564 1.228 0.509 0.676 0.587 

  DM t-stat: 
GDP growth  -1.934 0.690 -0.529 -1.489 0.927 
Deflator Inf.  -2.346 0.949 -2.789 -1.418 -2.025 

 Logscore Differences to BVAR EOS Logscore 
GDP growth 0.971 -0.073 -0.236 -0.193 -0.046 -0.023 
Deflator Inf. 1.059 -0.377 0.220 -0.344 -0.297 -0.368 

  DM t-stat: 
GDP growth  -0.862 -1.319 -1.050 -0.202 -0.150 
Deflator Inf.  -2.680 2.047 -2.420 -1.629 -2.730 

Notes: Entries are RMSFE or logscore in the first column. Remaining entries are RMSFE ratios to BVAR EOS or 
differences in logscore. Improvements over BVAR EOS are indicated by ratios smaller than 1 and negative 
logscore differences and t-statistics. Models are re-estimated at each new quarterly forecasting origin by 
extending the sample period that starts in 1989Q4. The values in blue indicate the best forecasting model for 
each variable using the respective accuracy measure. The t-statistics in bold indicate that the null of equal 
accuracy with BVAR EOS is rejected at the 5% level in favour of the alternative model (indicated in the column 
headings).   
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Table 3 - Forecast Performance at four-quarters-ahead for the US. Out-of-sample origins: 
2000Q3-2017Q1 (67 observations).  
Table 3.1: Forecasting the first-release values 

 BVAR_EOS BVAR_RTV BVAR_SV_EOS BVAR_SV_RTV KK KK_SVT KK_SV 
 RMSFE Ratios to BVAR EOS RMSFE 
GDP growth 0.541 0.889 0.738 0.713 0.805 0.811 0.628 
Deflator Inf. 0.093 0.835 0.759 0.758 0.810 0.797 0.860 
Unemp. 1.390 1.086 0.859 0.868 1.018 0.912 0.867 
3-month rate 1.890 1.002 0.982 1.058 1.035 0.936 0.904 
  DM t-stat: 
GDP growth  -2.514 -3.320 -2.973 -1.937 -2.501 -2.687 
Deflator Inf.  -2.324 -2.184 -2.394 -1.998 -1.275 -0.933 
Unemp.  2.472 -2.276 -1.938 0.473 -1.880 -2.200 
3-month rate  0.036 -0.326 0.604 0.433 -0.868 -1.604 
 Logscore Differences to BVAR EOS Logscore 
GDP growth 1.128 -0.062 -0.084 -0.120 -0.089 -0.008 -0.039 
Deflator Inf. 0.279 -0.018 0.265 0.267 -0.008 0.322 0.341 
Unemp. 2.176 0.090 -0.675 -0.624 -0.082 -0.538 -0.551 
3-month rate 1.771 -0.003 0.015 0.039 0.008 0.023 0.010 
  DM t-stat: 
GDP growth  -1.674 -2.271 -3.515 -1.958 -0.307 -1.149 
Deflator Inf.  -0.797 4.193 4.105 -0.292 4.319 4.383 
Unemp.  2.397 -1.361 -1.298 -0.913 -1.212 -1.217 
3-month rate  -0.147 0.331 0.830 0.290 0.560 0.253 

 
Table 3.2: Forecasting the second-release (BEA third) values 

 BVAR_EOS BVAR_RTV BVAR_SV_EOS BVAR_SV_RTV KK KK_SVT KK_SV 
 RMSFE Ratios to BVAR EOS RMSFE 

GDP growth 0.612 0.916 0.774 0.759 0.883 0.886 0.711 
Deflator Inf. 0.087 0.807 0.757 0.771 0.825 0.806 0.867 

  DM t-stat: 
GDP growth  -1.960 -3.191 -2.725 -1.231 -1.858 -2.313 
Deflator Inf.  -2.494 -2.069 -2.172 -1.752 -1.160 -0.849 

 Logscore Differences to BVAR EOS Logscore 
GDP growth 1.182 -0.040 -0.084 -0.106 -0.039 -0.018 -0.055 
Deflator Inf. 0.254 -0.017 0.282 0.284 0.010 0.326 0.325 

  DM t-stat: 
GDP growth  -0.870 -2.007 -3.105 -1.042 -0.685 -1.510 
Deflator Inf.  -0.813 4.540 4.446 0.377 4.603 4.575 

Notes: See notes to Table 1.  
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Table 4 – Forecast Performance at four-quarters-ahead for the UK. Out-of-sample origins: 
2004Q4 -2018Q3 (56 observations).  
Table 4A: Forecasting the first-release values 

 BVAR_EOS BVAR_RTV BVAR_SV_EOS BVAR_SV_RTV KK KK_SVT 
 RMSFE Ratios to BVAR EOS RMSFE 
GDP growth 0.463 0.962 1.128 1.307 0.884 1.092 
Deflator Inf. 0.549 0.597 1.122 0.459 0.497 0.389 
Unemp. 0.599 0.969 0.955 1.043 1.086 1.140 
3-month rate 2.109 0.883 0.722 1.125 1.216 1.302 
  DM t-stat: 
GDP growth  -0.598 2.450 1.983 -1.153 0.962 
Deflator Inf.  -2.425 0.646 -2.958 -3.109 -3.058 
Unemp.  -0.392 -0.359 0.302 1.073 0.927 
3-month rate  -1.154 -1.354 0.467 0.747 1.106 
 Logscore Differences to BVAR EOS Logscore 
GDP growth 1.758 -0.233 -0.448 -0.440 -0.155 -0.596 
Deflator Inf. 1.109 -0.294 0.144 -0.221 -0.406 -0.169 
Unemp. 1.432 0.103 -0.201 -0.133 0.053 -0.126 
3-month rate 1.753 0.009 -0.210 -0.019 0.059 0.094 
  DM t-stat: 
GDP growth  -1.415 -0.950 -0.914 -2.627 -0.962 
Deflator Inf.  -1.926 2.601 -2.700 -3.514 -2.345 
Unemp.  1.301 -0.644 -0.420 0.933 -0.396 
3-month rate  0.178 -1.779 -0.156 0.837 0.749 

 
Table 4.2: Forecasting the second-release (ONS QNA) values 

 BVAR_EOS BVAR_RTV BVAR_SV_EOS BVAR_SV_RTV KK KK_SVT 
 RMSFE Ratios to BVAR EOS RMSFE 
GDP growth 0.500 0.945 1.104 1.232 0.911 1.072 
Deflator Inf. 0.585 0.514 1.155 0.406 0.459 0.375 
  DM t-stat: 
GDP growth  -0.848 2.097 1.904 -0.942 0.887 
Deflator Inf.  -2.887 1.018 -3.162 -3.033 -3.047 
 Logscore Differences to BVAR EOS Logscore 
GDP growth 1.963 -0.278 -0.552 -0.552 -0.042 -0.734 
Deflator Inf. 1.218 -0.434 0.090 -0.328 -0.510 -0.307 
  DM t-stat: 
GDP growth  -1.498 -0.956 -0.937 -0.506 -0.992 
Deflator Inf.  -2.862 0.990 -2.524 -3.498 -2.360 

 
Notes: See notes to Table 2 
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Table 5: Simulation Exercise for T=150 and P=50 with KK BVAR(4) l=14 as DGP 
Table 5.1: One-step-ahead Forecasts 

 First Release Second Release 
 BVAR 

EOS 
 

BVAR 
RTV 
 

BVAR-
SV 
EOS 

BVAR-
SV 
RTV 

KK 
 
 

BVAR 
EOS 
 

BVAR 
RTV 
 

BVAR-
SV 
EOS 

BVAR-
SV 
RTV 

KK 
 
 

 RMSFE Ratios to BVAR EOS RMSFE RMSFE Ratios to BVAR EOS RMSFE 
growth 0.703 0.896 1.023 0.903 0.940 1.223 0.958 1.007 0.960 0.981 
inflation 0.338 0.984 1.012 0.987 0.976 0.486 0.987 1.008 0.990 0.989 
  Rejection Rate DM test:  Rejection Rate DM test: 
growth  0.484 0.005 0.401 0.292  0.328 0.031 0.292 0.146 
inflation  0.125 0.010 0.125 0.188  0.151 0.016 0.120 0.094 
 Logscore Differences to BVAR EOS Logscore Logscore Differences to BVAR EOS Logscore 
growth 1.073 -0.107 0.177 -0.062 -0.058 2.019 0.240 -0.321 0.173 -0.408 
inflation 0.382 -0.054 0.064 -0.014 -0.063 1.158 -0.258 -0.376 -0.284 -0.462 
  Rejection Rate DM test:  Rejection Rate DM test: 
growth  0.563 0.000 0.234 0.359  0.000 0.677 0.078 0.708 
inflation  0.177 0.000 0.042 0.219  0.724 0.641 0.594 0.698 

 
Table 5.2: Four-quarter-ahead Forecasts 

 First Release Second Release 
 BVAR 

EOS 
 

BVAR 
RTV 
 

BVAR-SV 
EOS 
 

BVAR-
SV 
RTV 

KK 
 
 

BVAR 
EOS 
 

BVAR 
RTV 
 

BVAR-
SV 
EOS 

BVAR-
SV 
RTV 

KK 
 
 

 RMSFE Ratios to BVAR EOS RMSFE RMSFE Ratios to BVAR EOS RMSFE 
growth 0.684 0.986 0.998 0.988 0.984 1.217 0.993 0.999 0.993 0.992 
inflation 0.358 1.012 1.000 1.002 0.980 0.490 1.016 0.999 1.009 0.994 
  Rejection Rate DM test:  Rejection Rate DM test: 
growth  0.115 0.021 0.063 0.083  0.063 0.057 0.078 0.115 
inflation  0.104 0.083 0.104 0.115  0.047 0.047 0.068 0.104 
 Logscore Differences to BVAR EOS Logscore Logscore Differences to BVAR EOS Logscore 
growth 1.070 -0.031 0.225 0.009 -0.031 1.879 0.292 -0.213 0.203 -0.262 
inflation 0.416 0.010 0.127 0.041 -0.023 0.946 -0.085 -0.180 -0.125 -0.232 
  Rejection Rate DM test:  Rejection Rate DM test: 
growth  0.318 0.000 0.068 0.307  0.000 0.333 0.036 0.438 
inflation  0.036 0.000 0.000 0.057  0.297 0.208 0.240 0.333 

 
Note: The entries for BVAR EOS are the average (across replications and out-of-sample period P) RMSFE or 
logscore. The entries for the other models are RMSFE ratios or differences in logscore. DM t-statistics are 
computed for each replication using P-h recursive forecasts (computing by re-estimating the forecasting 
models with increasing samples from T+1 up to T+P-h), and entries are rejection rates of a 5% sized (one-sided) 
test in favour of the alternative model. The DGP is a KK-VAR(4) for output growth and inflation estimated using 
US data from 1985 and assuming l=14. We compute the posterior distribution for each model using 10.000 
MCMC draws for the conditional distributions. Number of Monte Carlo replications is 288.   
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Figure 1: Predicted variances obtained with the KK BVAR-SV Model with US Data 

 
Note: Inflation values in the right axis and output growth values in the left axis.  
 
 
Figure 2: Ratio of EOS to RTV Predicted Variances obtained for the BVAR-SV forecasting 
model with US data 
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Figure 3: Analytical Results for ∆𝑠𝑐𝑜𝑟𝑒!"#$ and ∆𝑠𝑐𝑜𝑟𝑒!%&$" 
 

comp

 

 
 
Note: Values for the AR(1) parameter f on the horizontal axis.  
[For news revisions when f=0.9, the lines are all above the axis]. 
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