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Abstract

By employing datasets for seven developed economies and considering four classes of multi-

variate forecasting models, we extend and enhance the empirical evidence in the macroeconomic

forecasting literature. The evaluation considers forecasting horizons from one-quarter up to two-

years ahead. We find that the structural model, a medium-sized DSGE model, provides accurate

US and UK long-horizon inflation forecasts. To strike a balance between being comprehensive

and producing clear messages, we employ meta-analysis regressions to 2,976 relative accuracy

comparisons that vary with forecasting horizon, country, model class and specification, number

of predictors, and evaluation period. For point and density forecasting of GDP growth and infla-

tion, we find that models with a large number of predictors do not perform better than models

with 13-14 hand-picked predictors. Factor-augmented models and equal-weighted combinations

of single-predictor mixed-data sampling regressions are a better choice for dealing with a large

number of predictors than Bayesian VARs.
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1 Introduction

Forecasting is one of the major aims of economic and econometric analysis along with modelling the

foundations of economic phenomena. As a result, considerable efforts have been made in academic

work to lay the foundations and build tools for effi cient forecasting.

The macroeconomic forecasting literature can be divided into two broad categories. The first

aims to produce models that attempt to explain the economy first and then provide forecasts only

as a byproduct of their main aim. This is, in principle, optimal in the sense that a model which can

explain successfully the economy should be able to forecast well. Nevertheless the complexity of the

economy and of the models that are needed for its full explanation implies that such forecasts might

not be accurate in sample, let alone out of sample.1 The second stream of research considers models

that do not attempt a full structural modelling but simply a reduced-form statistical description.

These models frequently have superior forecasting performance, but their reduced-form nature makes

it harder to provide economic storytelling to support forecasts. This characteristic is classified as a

relevant disadvantage by many economists and policymakers.

This has not stopped the proliferation of reduced-form models and a rapid rise in their sophisti-

cation. Recent trends in this literature include modelling structural changes and the effi cient use of

increasingly larger datasets. The former has been driven by the widespread recognition that struc-

tural change is a leading cause of forecast failure. A number of approaches of varying sophistication

are being used to accommodate structural change. These range from time-varying coeffi cient models

to methods that allow for time varying estimation of standard econometric forecasting models. In

this context, as is common with forecasting in general, increasing sophistication has not been found

to necessarily correlate closely with superior forecasting performance.2 The second trend of consid-

ering large datasets has been spurred by their use in many economic analyses, given their availability

in central banks and other policy making institutions.3

1For example, Faust and Wright (2013) and Chauvet and Potter (2013) conclude their reviews on the forecasting

performance of structural and reduced-form models for predicting inflation and output growth arguing that structural

models do not have better forecast accuracy than univariate time series models.
2For example, Faust and Wright (2013) provide evidence that time-varying vector autoregressive models with sto-

chastic volatility do not improve point forecasts of inflation in comparison with a univariate benchmark, although there

is stronger evidence that stochastic volatility improves density forecasts of inflation (Clark, 2011). Chauvet and Potter

(2013) consider Markov-Switching models to predict output growth, and they find gains only during recessions and only

at short horizons. Based on data for a set of countries, Ferrara, Marcellino and Mogliani (2015) show that nonlinear

models rarely improve forecasts of their linear counterpart.
3Stock and Watson (2002) is an influential paper supporting the use of large datasets for forecasting macroeconomic

variables. Other more recent contributions, all pointing towards the importance of using medium-large dataset for
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The above developments set the scene for the current paper. Our aim is to provide a state of the

art and comprehensive evaluation of recently proposed model classes for forecasting output growth

and inflation, giving special attention to model classes able to deal with a large number of predic-

tors. The aim of the paper is to strike a balance between being comprehensive and producing clear

messages. This requires considering a wide range of models but being selective in some dimensions

so as to make the evaluation exercise feasible and informative. Further, it requires an evaluation

across a number of different countries and different sample periods. Finally, we aim to compare and

contrast reduced-form models and structural models, which have traditionally been considered infe-

rior for forecasting purposes. This latter aspect of our analysis is less commonly found in forecasting

evaluations.4

Forecasting comparisons in the literature focus normally on data from a single country or a small

subset of countries (US, UK and Euro Area).5 We will use instead data from seven economies:

US, UK, Euro Area, Germany, France, Italy and Japan. For these seven economies, we compute

forecasts for output growth and inflation with three classes of state-or-art reduced-form forecasting

models: Factor-Augmented Distributed Lag (FADL) Models, Mixed Data Sampling (MIDAS) Mod-

els, Bayesian Vector Autoregressive (BVAR) Models.6 These model classes are useful to explore the

macroeconomic forecasting, include Bańbura, Giannone and Reichlin (2010), Carriero, Clark and Marcellino (2015),

Koop (2013) and Giannone, Lenza and Primiceri (2015).
4Density forecasts of DSGE models are evaluated by Del Negro and Schorftheide (2013) and Diebold, Schorftheide

and Shin (2017), but when DSGE models are compared with a large set of statistical models in Faust and Wright

(2013) and Chauvet and Potter (2013) only point forecasts are considered. Note also that the set of forecasting models

for predicting inflation in Faust and Wright (2013) differs from the models in Chauvet and Potter (2013). While Faust

and Wright (2013) consider up to one-year-ahead horizons, Chauvet and Potter (2013) choose to look at horizons up

to two quarters only, but Del Negro and Schorftheide (2013) evaluate horizons up to two years ahead.
5Stock and Watson (2003) and Kuzin, Marcellino and Schumacher (2013) are exceptions by considering data from

seven countries when designing their forecasting exercises. Ferrara et al. (2015) evaluate models for 19 countries, but

they use only a relatively small set of predictors.
6Time-varying vector autoregressive models, expoited as forecasting models by D’Agostino, Gambetti and Giannone

(2013), and vector autoregressive models with stochastic volatility, with forecasting performance evaluated by Clark

(2011), are classes of models that are excluded from this forecasting comparison. The main reason is that both classes

are not easily adaptable to large datasets. The proposed approach by Koop and Korobilis (2013) for large datasets

considers a VAR with 25 variables as "large". In this paper, we use datasets up to 155 variables. We also use data from

contries with shorter time series where structural changes are harder to identify. In this paper, we consider just one

class of mixed frequency models. Mixed frequency specifications are popular for nowcasting as surveyed by Banbura,

Giannone, Modugno and Reichlin (2013), including recent contribution by Schorfheide and Song (2015). Because we

aim to evaluate forecasting performance from nowcasting up to long horizons (two years), we select just one class of
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predictive information of a large number of indicators. As a consequence, we build a dataset with a

large number of monthly indicators for each country and assess the importance of employing large

(one-hundred predictors) datasets in comparison with medium-sized (a dozen predictors) and small

datasets in macroeconomic forecasting. We also consider one class of structural models: a medium-

sized Dynamic Stochastic General Equilibrium Model (DSGE). We compare the DSGE performance

with reduced-form models for forecasting output growth and inflation in the US, the UK and the

Euro area.

We have some knowledge of the relative point forecasting performance of DSGE models with re-

spect to Bayesian VARs (as, for example, Smets and Wouters (2007)), of FADL to Factor-Augmented

MIDAS Models (Andreou et al. (2013)), and of Bayesian VARs to Dynamic Factor models (Bańbura

et al. (2010)). In this paper, we advance further by comparing the out-of-sample forecasting accu-

racy for point and density forecasts of output growth and inflation for the following class of models:

BVAR, FADL, MIDAS and DSGE models.

The design of our forecasting comparison with the elements described above imply that we eval-

uate the forecasting performance of 13 reduced-from model specifications to predict two quarterly

macroeconomic time series over horizons from one-quarter to eight-quarters ahead. And we do this

comparison for seven different countries and consider four different subperiods of 5 years over a 20

year out-of-sample period. In order to get clear messages from our empirical exercise, we develop

evaluation methods that pool forecasting performance across countries, model class, forecasting origin

period and dataset size.

Our meta-analysis method employs a regression of the relative performance of each multivariate

reduced-form model on a set of characteristics. The relative performance is measured using the root

mean squared forecast error for point forecasts and logscores for density forecasts. The performance

is measured with respect to the autoregressive model for the same variable and horizon. The method

allows us to assess the statistical significance of forecasting horizon, geographical source (country),

model class, evaluation period and number of predictors (dataset size) in explaining forecasting

performance.

A second evaluation method relies on t-statistics for a Diebold and Mariano (1995) equal fore-

cast accuracy test for the 20-year evaluation period. We investigate the empirical distribution of

t-statistics with an autoregressive model under the null. We use this approach to complement the

results of the meta-analysis when comparing the point and density forecasting performance of spec-

ifications that use a large set of predictors in comparison with the ones that use a smaller set. We

also use empirical distributions of equal accuracy t-statistics against an AR benchmark to evaluate

mixed frequency models that has relatively good nowcasting performance (Andreou, Ghysels and Kourtellos (2013)

and Kuzin et al. (2013)).
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how the structural models forecasting accuracy compares with reduced-form models.

We find no support for the use of large datasets (one-hundred predictors) instead of medium-sized

(a dozen predictors) ones. However, we provide evidence that the factor model and an equal-weighted

combination of single regressor MIDAS models are the best specifications to deal with large datasets

since they perform on average better than Bayesian VARs. We find that DSGE models have relative

good performance for forecasting US and UK inflation at forecasting horizons longer than one year.

The empirical results provide only limited support to the use of mixed frequency models, which

exploit current quarter information on monthly series, to improve nowcasts of output growth. The

reason is that there is large cross-country variation on nowcasting performance of mixed frequency

models. The results also suggest changes in the relative forecasting performance of forecasting models.

The relative performance of reduced-form multivariate models is at its peak in the 1993-1997 period

for inflation and in the 2008-2011 period for output growth.

We describe the classes of forecasting models in Section 2. Section 3 provides a summary of the

datasets we employed, which are fully reported in our online appendix. Section 4 describes the key

elements of the design of our forecasting exercises, including statistical tests employed. In section

5, we explore the key determinants of point and density macroeconomic forecasting performance

of multivariate statistical models to AR models using meta-analysis regressions and the empirical

distribution of equal-accuracy t-statistics. An evaluation of the point and density forecasting accuracy

of structural models in comparison to reduced-from models is discussed in section 6. Section 7

concludes.

2 Forecasting Methods

In this section, we describe the forecasting methods compared in this paper. In contrast to the recent

evaluations on forecasting output and inflation by, respectively, Chauvet and Potter (2013) and Faust

and Wright (2013) we use the same set of forecasting model classes for predicting output growth

and inflation. The advantage of this approach is that we can evaluate whether we need different

forecasting models for output and inflation. The disadvantage is that we do not evaluate forecasting

methods that were designed for some specific features of each variables, such as the UCSV models

for inflation (Stock and Watson, 2007) and Markov-Switching models for output (Chauvet, 1998).

Another important feature of our forecasting exercise is that we consider both point and density

forecasts. Density forecasting evaluation provides us with insights on the accuracy of forecasting

models for the whole predictive distribution. The advantage of considering both point and density

forecasts is that we can assess whether the choice of loss function has an impact on model rankings.

In the remainder of this section we describe how we compute density forecasts of three reduced-
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form forecasting models: Factor models, Bayesian VAR models and MIDAS models. We also describe

how we obtain density forecasts using a structural DSGE model, and simple univariate models.

In the text bellow, we use the following notation. Qt for t = 1, ..., T denotes the raw data;

and qt = log(Qt) denotes the time series in log-levels. The variable in first differences is ∆qt =

100 ∗ (qt − qt−1). A forecast horizon is h, and the maximum forecast horizon is hmax.

2.1 Univariate Models

We compute forecasts from univariate autoregressive (AR(p)) models. The autoregressive order

is selected using the Schwarz (SIC) information criterion and assuming maximum order of 4. We

compute the predictive density by bootstrap as in Clements and Taylor (2001). First, we get a full

bootstrapped time series ∆q∗p+1, ...,∆q
∗
T by using the OLS estimates, initial values ∆q1, ...,∆qp and a

T−p bootstrapped time series from the residuals. Using the bootstrapped time series, we estimate an
AR(p) model with the same autoregressive order as the original model. Then we compute forecasts

by iteration for h = 1, .., hmax including a bootstrap draw from the residuals for each horizon. This

bootstrap procedure will deliver sequential draws as ∆q̂
(i)
T+1, ...,∆q̂

(i)
T+hmax

for each time we reestimate

the model on a new bootstrapped sample.

2.2 Factor Models

We forecast with factors using the following FADL(p,k) equation for each horizon h:

∆qt = β0 +

p−1∑
i=0

βi+1∆qt−h−i +
r∑
j=1

k−1∑
i=0

γj,i+1fj,t−h−i + εt, (1)

where r counts the number of factors f .

Factors are estimated by principal components applied to either a medium (around 14 variables)

or large (around 100 variables) dataset of predictors of qt. Before the factor estimation, we decide on

whether transforming raw data to log-levels as described in the "log vs level" column in Tables B2 and

B3 in the online appendix. Then we apply ADF unit root tests to define the order of differentiation

of each variables. Principal components is then applied to standardized data to compute the factors.

We follow Groen and Kapetanios (2013) to choose the number of factors. We first choose the

autoregressive order p in a univariate regression using the SIC, then we set k = 1 to choose the

number factors using Groen and Kapetanios (2013) modified SIC assuming a maximum number of

factors of 4. We have also tried to jointly choose r and k using the modified SIC, and normally

k = 1 is the choice indicated, and even when q should be larger, the impact on average forecasting

performance is negligible.
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We compute density forecasts from the FADL model by fixed regressor bootstrap. We choose this

specific approach because it takes into account both parameter and forecasting uncertainties when

computing density forecasts, and because we will apply a similar approach, based on Aastveit, Foroni

and Ravazzolo (2016), to compute density forecasts with MIDAS models. This implies that we fix the

variables in the right-hand side (RHS) of the regression to their data values, and use bootstrapped

values from the residuals to get a full bootstrapped time series ∆q∗p+1, ...,∆q
∗
T for the left-hand side

(LHS).7 Then we re-estimate the ADL regression using the bootstrapped LHS values and the fixed

RHS values. Using bootstrapped coeffi cients, we compute a forecast draw ∆q̂
(i)
T+h,conditional on

observed values for ...,∆qT−1,∆qT , and using a bootstrap draw from the reestimated regression

residuals. Note that this bootstrapping procedure will deliver the density for one specific forecasting

horizon. Our factor modelling approach requires the estimation of a forecasting model for each

horizon.

2.3 MIDAS Models

The economic predictors in our dataset, summarized in Table 2, are sampled monthly. The factor

approach described above requires the aggregation of monthly data into quarters. We directly exploit

monthly information employing an ADL-MIDAS model. The model is written as:

∆qt = β0 +

p−1∑
i=0

βi+1∆qt−h−i + γ
km−1∑
i=0

w(θ, i)xt−mh−i+l + εt,

where m is the difference in sampling frequency between qt and xt, and w(θ, i) are the weights for

each high frequency lag, which are a function of the parameters θ. In our applications m = 3 since

xt is sampled monthly while qt is sampled quarterly. The autoregressive order in quarters is denoted

by k, and km is the autoregressive order in months such that lags of x are counted in months. The

number of lead months is represented by l (named as in Andreou et al. (2013), but first employed

for macroeconomic forecasting by Clements and Galvão (2008)). The intuition on the use of leads

is that forecasts for current and future quarters are computed conditional on monthly observations

of economic indicators during the current quarter. In the forecasting exercise, we set l = 2 for all h.

This implies that we are considering typical nowcasting horizons if h = 1. This utilization of monthly

data is the main advantage of the MIDAS approach for macroeconomic forecasting (Clements and

Galvão, 2008; Kuzin et al., 2013; Andreou et al., 2013).

To measure the impact of the high frequency xt on the low frequency qt we first apply the weights

w(θ, i) to all monthly lags, then we multiply by an intercept γ, which is identified because the weights

7As a consequence, this approach does not take into account the uncertainty on the estimation of the factors, but

only on the βs and γs.
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sum up to one. We use the beta function to obtain the weights, that is,

w (θ; i) =
f(θ; i)∑K
j=1 f(θ; j)

f(θ; i) =
(j)θ1−1(1− j)θ2−1Γ(θ1 + θ2)

Γ(θ1)Γ(θ2)
; j = i/km.

The two parameters in θ are jointly estimated with the other parameters by nonlinear least squares.

Note that, as in the case of the factor approach, we need to estimate a MIDAS regression for each

forecasting horizon.

We compute density forecasts by fixed regressor bootstrapped as in Aastveit et al. (2016) and

as described in section 2.2. Our application of the fixed regressor bootstrap to MIDAS models

implies that we also fix θ, that is, take θ = θ̂ from the estimation with observed data, and we obtain

different values of βi and γ for each bootstrapped sample. This has a large beneficial impact on

our computational burden. Our density computation strategy is still able to capture the impact of

parameter uncertainty on a set of parameters while computing forecasts. Note that, as in the case

of factor models, the last step to compute ∆q̂
(i)
T+h requires also a draw from the residuals of the

re-estimated MIDAS regression.

We consider two different types of MIDAS specifications that are able to deal with large datasets.

The first one assumes that x is an individual predictor. Because we plan to employ sizeable datasets,

we estimate a single regressor MIDAS models for each predictor, then we combine their predictive

densities using equal weights. We call this model the combination MIDAS (C-MIDAS) model. In this

specification, we decide beforehand whether we will be using log, log-levels or quarterly differences

for each one of the indicators when using our medium dataset. Our choice of data transformation is

indicated in Tables B2 and B3 in the online appendix.

The second specification estimates factors with monthly data by principal components applying

the data transformation based on unit root tests described for FADL models. Then we set the

number of factors to one in the case of medium datasets and to two in the case of large datasets

following Andreou et al. (2013). We call this specification the F-MIDAS model, and the regressors

xt are factors estimated in a previous step by principal components

2.4 BVAR Models

Our BVAR approach is the benchmark model of Carriero et al. (2015), who provide a summary the

literature on the application of BVARs for forecasting. Define the vector: yt = (q1t, q2t, ..., qNt)
′, then

8



a VAR(p) is:

yt = A0 +A1yt−1 + ...+Apyt−p + εt (2)

εt ∼ N(0,Σ)

for t = p+ 1, ..., T .

We elicit a conjugate Normal-Inverse Wishart prior:

α|Σ ∼ N(α0,Σ⊗ Ω0)

Σ ∼ IW (S0, v0),

where α = vec([Ac, A1, ..., Ap]
′
), so the posterior distributions are

α|Σ, data ∼ N(α,Σ⊗ Ω)

Σ|data ∼ IW (S̄, v̄).

Carriero et al. (2015) describe the close form solutions for the posterior means and variances, and

the prior mean and variances under the assumption that they follow a Minnesota-style prior as in

Bańbura et al. (2010). We consider prior means for the first-order autoregressive coeffi cients equal

to one if the endogenous variables, yt, are in log-levels as described above. We also consider a

specification in differences, using ∆yt, with the prior mean equal to zero.

We also impose -in the case of VAR in levels- the sum of coeffi cients prior, which expresses the

belief that the average of the past values of a given variable provides a good forecast for that variable.

The fact that, in the limit, the sum-of-coeffi cients prior is not consistent with cointegration motivates

the use of an additional prior, known as the ‘dummy initial observation’prior. This was proposed

by Sims (1993) and avoids giving an unreasonably high explanatory power to the initial conditions,

a pathology which is typical in nearly nonstationary models (Sims, 2000). These last two priors

together tend to improve forecasts when dealing with data in levels. Hyperparameters governing

priors are set as the baseline case in Carriero et al. (2015). The overall prior tightness λ1 is selected

to maximise the marginal likelihood:

λ1 = arg max
λ1

ln(p(Y )),

where p(Y ) is computed in close form as in Carriero et al. (2015). The grid has 15 elements [0.01,

0.025, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.75, 1, 2, 5]. In an out-of-sample forecasting

exercise, we compute λ1 at each time we re-estimate the model with a longer sample period.

Forecasts are computed by simulation. We use posterior draws of α and Σ to obtain a implied

path for ŷT+1, ..., ŷT+h. Assume that A = [Ac, A1, ..., Ap]
′
that is a N × Np + 1 matrix , then we
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obtain a draw j for all autoregressive coeffi cients using:

(A(j)) = (A) + chol(Ω
(j)

) ∗ V (j) ∗ chol(Σ(j))′,

where V (j) is (Np+1)×N matrix obtained from a standard normal distribution. Then for a draw of

A(j) and Σ(j), we draw a sequence of h draws from the N(0,Σ(j)) to compute by iteration a sequence

of forecasts ŷT+1, ..., ŷT+h for model (2). We use a total 5000 draws, and the procedure is split such

that we use a few number of draws of A(j) and Σ(j), and then for each parameter draw, we generate

many sequences of forecasts. The point forecast is the median over all draws for each horizon.

We consider specifications in levels, and we call L-BVAR, and in differences, called D-BVAR.

We set p = 4. When the target forecasting variable is the quarterly growth rate, we transform

accordingly the forecasts for the model in levels.

2.5 DSGE Models

The literature provides evidence of accuracy of the medium-sized Smets and Wouters (2007) model

(Christoffel, Coenen and Warne, 2010; Edge and Gurkaynak, 2011; Del Negro and Schorftheide, 2013;

Woulters, 2015). We employ the Smets-Wouters DSGE model with seven observables, including

output and inflation as our structural model. We use the specification in Smets and Wouters (2007)

and Herbst and Schorftheide (2012), which assume a deterministic trend to productivity.

We use the priors as in Smets and Wouters (2007) and Herbst and Schorftheide (2012). The

posterior distribution of the structural parameters is obtained by the Random Walk Metropolis

Algorithm described in Del Negro and Schorftheide (2011), and we calibrate the spread parameter

such that the acceptance rate is in the 20-40% range for each country dataset. We use 5000 equally-

spaced draws from the kept posterior parameters draws generated by the MCMC procedure to

compute the predictive density. For each parameter draw, we also draw from the normal distribution

of the disturbances (structural shocks) to get a sequence of forecasts from h = 1,...,hmax for each

observed variable.

We compute forecasts with DSGE models for only three countries in our dataset: US, UK and

Euro Area. The reason is that the assumption in the model that the central bank that sets interest

rates based on a Taylor rule, which depends on domestic inflation, is not adequate to countries which

are part of the Euro Area. We also choose not apply to Japan, again because the Taylor rule may

be a very poor approximation of Bank of Japan monetary policy in the last 20 years. To apply the

model to Euro area data, we add an equation linking employment to hours such that we can use the

employment time series instead of hours, following the modification proposed by Christoffel, Coenen

and Warne (2008).
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3 Data Description

We employ data from seven developed economies: US, UK, Euro Area, Germany, France, Italy and

Japan. Our target variables are the quarterly change in log real GDP and the quarterly change

in seasonally-adjusted log CPI with data sources described in Table B1 in the online appendix.

Seasonally-adjusted CPI data is not available for European countries and Japan. As a consequence,

we seasonally adjusted data using the X12 filter.

For each country, we build a medium and a large dataset of economic indicators sampled monthly.

The datasets are summarized in Table 2 and described in detail in Tables B2 and B3 of the online

appendix. When quarterly data are required, we use the average over quarter for factor models, so

F-MIDAS nest FADL models8, and the end of the quarter value for the BVAR as it is popular in

the BVAR literature. When possible, we follow the series included in Kuzin et al. (2013) datasets.

The medium dataset includes 11-14 variables per country. They are a mix of measures of economic

activity, including survey data, prices and financial variables. Similar set of variables have been

employed by Carriero et al. (2015). These datasets include oil prices as a common variable.

The number of variables included in the large dataset varies across countries due to data avail-

ability as recorded in Table 2. It varies between 57 (Japan, France) and 155 (US). The large dataset

includes also all variables in the medium dataset. Because of the international transmission of

business cycles shocks, we include some key US variables in the large dataset of the 6 remaining

economies, including financial variables such as equity prices and Treasury bond rates. We pro-

vide the description of all variables including their datastream code in the Table B3 in the online

appendix.9

Because of the lack of availability of real-time dataset for the monthly indicators for all our seven

countries, we use only data from the currently available vintage as it is generally the case when

evaluating forecasts with models for large datasets (as, for example, Smets and Wouters (2007) and

Kuzin et al. (2013)).

DSGE models are estimated using quarterly changes in output per capita. They also use inflation

measured by the GDP deflator. As consequence, when evaluating forecasts of DSGE models, we

change the target variable to growth in output per capita and quarterly GDP deflator inflation. We

reestimate forecasting models for these modified target variables for a subset of our reduced-form

models to be able to compare predictions of structural and reduced-form models. Table B4 in the

online appendix describes the variables employed in the DSGE estimation, including their required

8This implies that F-MIDAS specification nests the FADL if the MIDAS weighting function is flat, that is, θ1 =

θ2 = 1.
9Some variables were seasonally adjusted by the X12 filter before estimation, and they have SA indicated in Table

B3.
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transformation.

The last observation employed in our forecasting exercise is 2013M9. For US, Japan and UK, we

use data from 1975M1 (with exception of UK CPI inflation which is only available from 1980M1), but

for other countries, data is only available later as described in Table 2. Data for DSGE estimation

is from 1984Q1 for the US, UK and the Euro Area.

4 Evaluation Design

Our first forecast origin is 1993Q1 for US, UK, Japan and France; for Germany and Italy is 1998Q1,

and for the Euro Area is 2003Q1. We set the maximum forecast horizon to 8, so we are able to

compute measures of forecast accuracy for forecasts up to 2011Q3, that is, we have 75 observations

in our out-of-sample period for US, UK, Japan and France; 55 observations for Germany and Italy,

and 35 observations for the Euro Area. For some of our results, we split the out-of-sample period in

windows of 5 years (20 observations) based on the forecast origin date to verify whether the relative

forecasting performance varies over the out-of-sample period. The literature provides evidence that

predictive ability may change over time (Giacomini and Rossi, 2010). In addition, changes in the

underlying structure of the economy and data characteristics may affect the relative forecasting

performance of models.

We compute forecasts from models estimated with expanding samples over the out-of-sample

period, that is, at each forecast origin we re-estimate each model and we use all observations available

up to the forecasting origin.

We use two measures of forecasting performance. The accuracy of point forecasts is measured by

Root Mean Squared Forecast Errors (RMSFE), and the log predictive score measures the accuracy

of density forecasts. The advantage of using log scores to compare density forecasts is that the

maximization of the logscore is equivalent to minimize the Kullback-Leibler distance between the

model and the true density. To compute log scores, we first fit a Gaussian kernel density to the 5000

predictive density draws over a grid between -15 and 15. Then we compute the log score by finding

the probability at the outturn.

We use the Diebold and Mariano (1995) t-statistic to test for equal accuracy. The variance is

computed with the Newey-West estimator with maximum order increasing with the horizon.

Table 1 provides a short description of all forecasting models we employ in this evaluation.

Similarly to Bańbura et al. (2010), we consider BVAR models of three sizes: small, medium and

large. We use medium and large datasets for the FADL and MIDAS models, but our only small

model is the BVAR. The model has only three variables: real GDP, CPI, and the short-term interest

rate.
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5 Explaining forecasting performance of statistical models

We provide acronyms for all forecasting models included in this evaluation in Table 1. They comprise

13 reduced-form models, including an univariate model (AR), and one structural model (DSGE). In

this section we explore the relative forecasting performance of the 12 multivariate reduced-form

models, listed as models 2 to 13 in Table 1. Forecasting comparisons that include the DSGE model

are discussed in section 6. We measure the impact of model class, forecasting horizon, dataset size

and data source (country) on point and density forecasting performance.

5.1 A Meta Analysis

Our aim is to investigate how the relative (to the AR model) forecasting performance of each sta-

tistical model class (MIDAS, FADL and BVAR) varies with the number of predictors (medium vs

large dataset), the forecasting horizon (nowcasting, short-horizon (h = 2, .., 4) and medium-horizon

(h = 5, ..., 8), the 5-year subperiod evaluated, and the geographical source of the dataset.

The dependent variable in our meta analysis regression is a measure of the relative forecasting

performance of a specific forecasting model to the autoregressive model when predicting one of the

target variables (output growth and inflation) for a specific country, horizon and forecasting origin

period. The measures of forecasting performance are based on root mean squared forecast errors

(RMSFE) and the median logscore (MLS)10 computed for a specific target variable varying across

country, forecasting model, period and horizon. The measures for point and density forecasting

performance are:

rMSFEm,p,c,h =
RMSFEAR,p,c,h
RMSFEm,p,c,h

;

rMLSm,p,c,h = 1 + [(−MLSar,p,c,h)− (−MLSm,p,c,h)].

where m = 2, ..., 13, which are the statistical models numbered 2 up to 13 in Table 1. Each measure

varies with the set of forecasting origins employed in the computation p =93Q1-97Q4, 98Q1-02Q4,

03Q1-07Q4, 08Q1-11Q3, 93Q1-11Q3; with the source country c =US, UK, EU, FR, IT, GER, JP,

and the forecasting horizon h = 1, ..., 8.

As consequence, the total number of relative performance observations (considering that the fore-

casting period availability varies across countries as noted in Table 2) is 2,976. By exploiting a large

set of forecasting comparisons, we aim to find sources of performance improvements in macroeco-

nomic forecasting that are not constrained by model class, forecast horizon, country and evaluation

period.

10We use the median instead of the mean logscore to minimize the impact of outliers in our analysis. Outlier values

are more frequent with logscores than with squared forecast errors.
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The first characteristic we explore is the country where data is sourced. We use two dummy

variables to split the country set in Table 2 into three: DEU = 1 for Euro Area countries (c =EU,

FR, IT, GER) (and DEU = 0 otherwise), and DJP = 1 if c =JP. The benchmark countries are then

US and UK.

The second characteristic is the forecasting horizon. We split the set of forecast horizons into

three groups by defining Dsh = 1 if h = 2, ..., 4 and Dmh = 1 if h = 5, ..., 8. Accordingly, differences in

performance over short and medium horizons are assessed against the nowcasting (h = 1) benchmark.

We are also interested in finding differences between the three model classes. We setDMIDAS=1 if

m = 4, 5, 6, 7 and DBV AR = 1 if m = 8, 9, 10, 11, 12, 13 based on Table 1 description. The benchmark

model class is the FADL (m = 2, 3). The impact of the number of predictors is evaluated using

Dsmall = 1 if m = 8, 9 and Dl arg e = 1 if m = 3, 5, 7, 12, 13, implying that the benchmark dataset

size is the medium one.

Finally, the impact of the evaluation period is assessed by creating one dummy variable for each

one of the four five-year out-of-sample subperiods. As a consequence, performance improvements are

relative to the full out-of-sample (p =93Q1-11Q3).

We also consider interactions between the dummy variables described above. We consider inter-

actions between horizon and model class dummies, between Dl arg e and model class dummies, and

between Dl arg e and evaluation period dummies.

The meta-analysis regression is then:

rLossm,p,c,h = β0 + β1D
JP + β2D

EU (3)

+ β3D
9397 + β4D

9802 + β5D
0307 + β6D

0811

+ β7D
sh + β8D

lh + β9D
MIDAS + β10D

BV AR

+ β11D
MIDAS ∗Dsh + β12D

MIDAS ∗Dlh + β12D
BV AR ∗Dsh + β14D

BV AR ∗Dlh

+ β15D
small + β16D

l arg e + β17D
l arg e ∗DBV AR + β18D

l arg e ∗DMIDAS

+ β19D
l arg e ∗D9397 + β20D

l arg e ∗D9802 + β21D
l arg e ∗D0307 + β22D

l arg e ∗D0811 + εm,p,c,h.

for m = 2, ..., 13; p = 93-97,98-02,03-07,08-11,93-11;h = 1, ..., 8; c = US,UK, JP, FR, IT,GER,EU

rLossm,p,c,h is either rMSFEm,p,c,h or rMLSm,p,c,h.

Note that β0 measures the relative (to the AR model) performance of the the FADL medium model

(m = 2) for h = 1 over the full sample period (p =93-11) with US and UK data (c = 1, 2). As

consequence, all other coeffi cient estimates are measures of gains/losses against this benchmark.
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5.2 Meta-Analysis Results

Table 3 presents estimates of the regression in (3) with standard errors clustered by country, implying

that we consider country-specific effects. The table columns describe results for each performance

measure (rMSFE and rMLS) and target variable (output growth, inflation). Cases where the null

hypothesis that the coeffi cient is equal to zero is rejected are indicated with stars for 10%, 5% and

1% significance levels. Values in bold show estimates are statistically significant at 10% when using

heteroscedasticity-robust standard errors instead of the country-clustered standard errors displayed

in Table 3.

The characteristics considered in regression (3) explain between 13% and 20% of the forecasting

performance depending on the target and the type of performance measure. As a consequence,

idiosyncratic variation has an important role in explaining forecasting performance across this large

number of forecasting exercises. The following analysis will consider characteristics with statistically

significant role in explaining forecasting performance, as indicated in Table 3.

The estimates of the regressions’intercepts are all larger than 1, implying that on average the

FADL_M improves over the AR when nowcasting US and UK variables. Gains are larger for output

growth and imply a 4% improvement in RMSFE. Estimates for β1 and β2 suggest that benefits of

employing multivariate models instead of AR models for predicting output growth are larger with

Japanese data but smaller with European data.

The estimated coeffi cients on the evaluation period dummies point to changes in statistical per-

formance over time, but the estimates are statistically significant with country-clustered standard

errors only when evaluating output growth point forecasts. During the turbulent 08Q1-11Q3 period,

we find that multivariate models perform relatively better for output growth, but they do relatively

worse in the 98Q1-11Q3 period.

The estimated coeffi cients on the forecasting horizon dummies are all negative, implying that the

relative performance of multivariate models to the AR model deteriorates with the horizon. This

deterioration is statistically significant for point forecasting output growth and inflation when horizon

is iterated with the MIDAS model dummy variable. This declining MIDAS forecasting performance

with horizon is partially compensated by the fact that MIDAS models improve RMSFEs over the

benchmark in 3% on average when nowcasting output growth, albeit the estimate of β9 is not

statistically significant. For predicting output growth, BVAR models do relatively better at medium

horizons (h = 5, ..., 8) and are significantly better at h = 2, 3, 4. These results suggest that although

MIDAS models may deliver accurate nowcasts of output growth for some countries, this class of

models performance deteriorates rapidly with the forecast horizon and a BVAR specification may be

a more accurate choice in some cases.

The estimated coeffi cients on the dataset-size dummies indicate that BVARs with only three
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variables, including both targets, are significantly worse than models with a moderate number of

indicators in predicting output growth. For predicting inflation, either a small or a medium set of

indicators perform significantly better than large datasets.

The interactions between dataset size and model class clearly indicate that large BVAR models

deteriorate forecasting performance. These results suggest that if the aim is to exploit information in

a large number of predictors (more than 55 indicators) for forecasting output growth and inflation,

then the use of models with factors (FADL and F-MIDAS) or forecasting combinations (C-MIDAS)

are more adequate than BVAR models. However, there is no evidence that the use of a large

number of predictors instead of a dozen picked variables (medium dataset) improves macroeconomic

forecasting. By evaluating the estimates for the iterations between Dl arg e and the sample period, we

find that a large set of predictors worsens output growth point forecasting performance in the earlier

periods when sample sizes employed in the estimation are shorter (recall that we increase sample

size when estimating models at each forecasting origin).

In summary, we find some time variation in the relative forecasting performance of multivariate

statistical models to AR models for forecasting output growth across countries: multivariate models

are in particularly useful during the last four year period (2008-2011). We find no evidence that

models with a larger number of predictors improve over the performance of models with smaller set

of predictors. If using a large dataset, FADL and MIDAS models are more adequate than BVAR

models. We find very limited evidence that MIDAS models improve nowcasts.

5.3 Additional Meta-Analysis Comparisons

For MIDAS and BVAR model classes, we consider two main specification types. For MIDAS models,

we compute forecasts by using a factor-augmented version (F-MIDAS) and an equal-weight forecast-

ing combination strategy (C-MIDAS). For BVAR models, we use a specification in levels (L-BVAR)

and another in growth rates (D-BVAR). In this subsection, we use relative performance regressions

to test if there are any statistical differences in performance between these specification types that

hold across countries, horizon, evaluation period and number of predictors.

In Table 4A, we present results for the four measures of performance in Table 3 (output growth

and inflation; rMSFE and rMLS ). These are single regressions estimated with performance measures

computed only for MIDAS models (rLossm,p,c,h for m = 4, ..., 7 with p, h and c variation as in (3)).

We define the dummy variable DCMIDAS as equal to 1 ifm = 6, 7. As a consequence, if the estimated

coeffi cient of DCMIDAS is significantly positive, we can conclude that the equal-weighted forecasting

combination of single regressor MIDAS models is a better way to exploit the information on a set of

predictors than using monthly factors. The coeffi cients are indeed positive and statistically significant

with country-clustered standard errors in all columns of Table 4A, so we conclude in favour of the
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C-MIDAS specifications.

In Table 4B, we compute single regressions with the same performance measures, but for BVAR

models only (rLossm,p,c,h for m = 8, ..., 13 with p, h and c variation as in (3)). We define the dummy

variable DDBV AR as equal to 1 if m = 9, 11, 13 and zero otherwise. The empirical results can inform

us on whether the BVAR-in-differences improves over the BVAR-in-levels. Recall that the main

advantage of using the BVAR-in-levels (L-BVAR) is that the possibility of cointegration is allowed

for. The results in Table 4B suggest that this BVAR specification choice only matters for point

forecasting output growth: L-BVARs perform significantly better than D-BVARs.

5.4 Evaluating the impact of the dataset size with equal accuracy tests

Our previous results suggest that the use of forecasting models with a large set of predictors may have

a negative effect on forecasting performance for both output growth and inflation, in particularly if

using BVAR models with short samples. In this subsection, we evaluate this research question using

the empirical variation of "medium vs large" equal accuracy tests for point and density forecasts as

described in section 4.

Figure 1 presents empirical t-statistics distributions for the following models: FADL, F-MIDAS,

C-MIDAS, L-BVAR and D-BVAR. The Diebold and Mariano (1995) t-statistics are computed with

the specification with a medium dataset under the null and the model with the large dataset under

the alternative using the full out-of-sample period (p =93-11). The box plots are computed for t-

statistics obtained for different horizons (h = 1, ..., 8) and countries. Negative values imply that the

model with a large number of predictors is more accurate than the same model with a medium data

set. Using a two-sided 5% test, statistical differences are found when the absolute value of the t-stat

is larger than 1.96.

In general, the t-statistics are between -1.96 and 1.96, that is, models with large and medium

datasets deliver statistically similar point and density forecasting performances. However, based

on the median t-statistics, we can say that D-BVARs are worse in handling large datasets than

L-BVARs, providing an additional nuance to our results in section 5 discouraging the use of BVARs

with large datasets. These results also support the use of the C-MIDAS specification instead of the

F-MIDAS in particularly when dealing with large datasets for forecasting inflation.

In summary, there is no strong evidence that a large number of predictors improve forecasts

over a moderate ammount, but we can provide evidence to support the use of C-MIDAS and FADL

specifications to deal with large datasets instead of BVAR models.
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6 Comparing structural vs reduced-form forecasting models

In the previous section, we investigate common features that explain relative forecasting performance

of reduced-form statistical models across countries, forecasting horizons, forecasting periods and

model specification. In this section, we use equal accuracy tests computed as described in Section

4 to compare the performance of reduced-form statistical models (FADL, BVAR, MIDAS) with the

DSGE model.

Details of the DSGE model employed including our estimation strategy were discussed in section

2.4. We describe the dataset employed in the estimation of DSGE models in section 3. One should

note that the medium-sized DSGE forecasts are considered only for c = US,UK,EU and they

are estimated with output growth per person and GDP deflator inflation. To measure the relative

performance of DSGE models to the AR benchmark, we recompute AR forecasts using the same

measurements of output growth and inflation employed by the DSGE model.

Figures 2 and 3 present box plots of the Diebold and Mariano (1995) t-statistics. The t-statistics

are computed for the full out-of-sample of period for each country as listed in Table 2. Negative

values mean that the model is more accurate than the AR model. Using an one-sided test we would

reject the null of predictability at 5% if the DM t-statistic is smaller than -1.65. The empirical

distributions vary with the country and are computed for a specific model class (FADL, MIDAS,

BVAR, DSGE). The box plots are presented separately for three horizons (h = 1, 4 and 8). Figure 2

presents results for output growth and inflation using the quadratic loss function (MSFE) to compute

the t-statistics. The plots in Figure 3 instead are based on the differences in logscore.

The results in Figures 2 and 3 help us to indicate which model class, including statistical model

classes (FADL, MIDAS, BVAR) and the structural model class (DSGE), performs best for each

target variable and for a set of forecasting horizons. The median t-statistic in Figures 2 and 3 can be

employed to evaluate how each class of model performs on average across specifications and countries

for each horizon and target variable.

MIDAS models do better at h = 1 for output growth, but the distribution of t-statistics has

a large spread, suggesting that mixed frequency models improve output growth nowcasts for the

median country but does not perform well for some countries. For h = 4, it is clear that BVARs

perform better for forecasting output growth. When forecasting inflation, the clear evidence we have

is that DSGE models do better when predicting inflation at h = 4, 8 for both point and density

forecasts. The results in Figures 2 and 3 suggest that DSGE models are able to significantly improve

AR forecasts of quarterly inflation at h = 4, 8.

These results are supported by detailed Tables by country and forecasting horizon in the online

appendix. Table A1 shows the relative performance of the DSGE model against the AR and the

FADL_M using RMSFEs and Table A2 shows results with the logscore. They indicate that DSGE
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gains for forecasting inflation are mainly for the US and the UK, with disappointing results for the

Euro area in agreement with Smets, Warne and Wouters (2014). The DSGE model performs better

in the earlier period (1993-2002) than in the later period (2003-2011), confirming the literature

that supports DSGE forecasts during the Great Moderation period (1985-2007) (Del Negro and

Schorftheide, 2013).

In summary, we provide evidence that structural (DSGE) models can deliver superior long horizon

forecasts of US and UK inflation.

7 Conclusion

The comprehensive evaluation of macroeconomic forecasting models reported in this paper con-

tributes to the academic literature and the practice of macroeconomic forecasting. By employing

datasets for seven developed economies and considering four classes of multivariate forecasting mod-

els, we provide new empirical findings, extending and enhancing evidence usually available for US

data.

Our multicountry comparison provides a new dimension when comparing structural with reduced-

form models in forecasting. The DSGE model specification we consider (Smets and Wouters, 2007)

provides accurate one and two-year ahead forecasts of inflation not only for the US but also for the

UK.

Our evaluation is designed to look at forecasting horizons from nowcasting up to two-years ahead.

Our contribution is to consider a large set of model specifications over all these horizons so we can

provide evidence that the choice of the best forecasting model class clearly varies with the forecast

horizon. We propose meta-analysis regressions to be able to draw a small set of clear messages from

2,976 relative accuracy comparisons.

We extend results based only on Bayesian VARs (Koop, 2013) by showing that the use of a

large set of predictors instead of a moderate set do not improve forecasts. Our contribution is to

employ five different specifications from three model classes to address whether it is worth to use

large datasets instead of using 10-15 chosen predictors for both point and density forecasting, and

we find that indeed a medium dataset typically suffi ces. When dealing with a large number of

predictors (more than 50) to estimate a forecasting model over a short time period, we find that

factor augmented distributed lag models and equal-weighted combinations of single-predictor mixed-

data sampling regressions perform better than BVARs in predicting key macroeconomic variables

when considering point and density forecasting.
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