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1 Introduction

Macroeconomists are increasingly concerned with the impact that “uncertainty”has on the econ-

omy, including its putative negative effects on business investment, consumption and aggregate

output. Indeed, Bloom (2014) emphasises how uncertainty is linked to business cycle phases,

rising in recessions and falling in booms. Empirical uncertainty measures typically include stock

market volatility, macroeconomic forecasting uncertainty, disagreement among professional fore-

casters and economic policy uncertainty (Bachman, Elstener and Sims, 2013; Jurado, Ludvigson

and Ng, 2015; Baker, Bloom and Davis, 2016; Rossi, Sekhposyan and Soupre, 2016; Sekkel and

Soojin, 2018). But as these uncertainty measures have been found to differ, both in their histor-

ical behaviour and their impact on the macroeconomy (Rossi and Sekhposyan, 2015), attempts

to distinguish between them are made. This has involved making the Knightian distinction be-

tween risk (ex ante uncertainty, “known unknowns”) and uncertainty (“unknown unknowns”)

(Rossi et al., 2016), and between macroeconomic and specific, such as financial, uncertainties

(Ludvigson, Ma and Ng, 2018). This paper complements these developments by measuring

(realised) data uncertainty as the ex post mistakes a forecaster makes in her ex ante probabili-

tistic assessments of the historical data. Unforecastable uncertainty is defined as the difference

between the ex post (or realised) and ex ante (or expected) values of the loss function chosen

by the user of the forecast.

Data uncertainty arises when economic statistics from offi cial surveys are subject to sampling

and non-sampling errors.1 Manski (2015) re-interprets this uncertainty as comprising both

“transitory”and “permanent” statistical uncertainty. Transitory statistical uncertainty stems

from publication of early data releases that are revised over time as new information arrives.

Permanent statistical uncertainty arises due to data incompleteness (e.g. non-response) or the

inadequacy of data collection (e.g. sampling uncertainty due to a finite sample) which does not

diminish over time.

Offi cial measures of variables like GDP, from national statistical offi ces, are revised as new

information is received and methodological improvements are made.2 For example, over the

1 In offi cial statistics, "data uncertainty”, as defined here, is commonly captured by
"accuracy and reliability" as in Principle 12 of Eurostat’s European Code of Practice
(https://ec.europa.eu/eurostat/web/quality/principle12). Accuracy is defined by the error that arises
when estimates differ from the underlying exact or true value - due to sampling and non-sampling errors.
Reliability relates to assessment and validation of the source data and statistical processes, with data revisions
occurring as a result of improvements to these processes.

2McKenzie (2006) delineates seven reasons for “revisions”including updated sample information, correction of
errors, replacement of first estimates derived from incomplete surveys/judgements/statistical techniques, bench-
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period of the study in this paper, the Offi ce for National Statistics (ONS) in the UK published

its first - so-called “preliminary”- quarterly GDP estimates around 27 days after the end of the

quarter. Because this timeliness is achieved by basing their estimate on 44% of the sample, it

is (and should be) no surprise to see the ONS subsequently revise these preliminary estimates

as more sampling information subsequently becomes available to them.3 As a consequence,

many authors have proposed models of data revisions to model and forecast this “transitory”

GDP data uncertainty (e.g. see Jacobs and van Norden (2011), Cunningham, Eklund, Jeffery,

Kapetanios and Labhard (2012), Kishor and Koenig (2012) and Galvao (2017)).

But while the ONS do discuss data revisions, and emphasise in their press releases and on

their website that preliminary estimates of GDP will be revised, their headline estimates of GDP

remain point estimates - with no accompanying quantitative measures of uncertainty. Manski

(2015; 2018) has emphasised how this practice of acknowledging potential data uncertainties at

best qualitatively or verbally, rather than quantitatively, is common practice across statistical

offi ces; and has called for more transparent communication of data uncertainties. This paper

picks up Manski’s call to measure and communicate data uncertainties, focusing on GDP as a

key measure of the macroeconomy.4

Data revisions have been found to affect assessments of the current state of the economy

and the monetary policy stance (e.g. see Orphanides (2001) and Croushore (2011)). The

Deputy Governor for Monetary Policy at the Bank of England (Bean (2007)), quoting former

US Secretary of Defence Donald Rumsfeld, has emphasised how monetary policy faces both

data risk (Rumsfeld’s “known unknowns”) and data uncertainty (his “unknown unknowns”).

An important example, and rare illustration, of how (historical) data uncertainty is both

communicated and affects policy making is provided by the Monetary Policy Committee (MPC)

at the Bank of England. As well as forecasting the future, the MPC provide direct estimates

of data risk, of ex ante uncertainty, for past values of GDP growth via their well-known fan

charts. These fan charts have been published each quarter since November 2007 in the Bank

marking, updated seasonal factors, updated base period for constant price estimates and changes in statistical
methodology.

3 In the summer of 2018 the ONS changed its publication model. The first estimate of quarterly GDP is now
available at around 40 days; and it has a higher data content than the “preliminary”estimate considered for the
period analysed in this paper. In due course the modelling exercise in this paper can be repeated using these
new data, as data accumulate post summer 2018.

4We confine attention to measurement of data uncertainties stemming from data revisions, i.e. to “transitory”
statistical uncertainty as defined by Manski (2015). Broader uncertainties, including methodological or conceptual
uncertainty, are not considered. For a more general classification of uncertainties see van der Bles, van der Linden,
Freeman, Mitchell, Galvao, Zaval and Spiegelhalter (2019).
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of England’s Inflation Report. The charts should be interpreted as “the MPC’s best collective

judgement of the most likely path for the mature estimate of GDP growth, and the uncertainty

around it, both over the past and into the future.”(Bank of England (2007), p.39).5

Figure 1 provides an example of what these fan charts look like, taken from the May 2017

Inflation Report. In Figure 1, “(t)o the left of the first vertical dashed line, the centre of the

darkest band of the fan chart gives the Committee’s best collective judgement of the most

likely path for GDP growth once the revisions’process is complete.”(November 2007; Inflation

Report, p. 39). Figure 1 shows that the fan becomes progressively narrower as one looks further

back into the past (from the perspective of May 2017). This is to be expected, as the data

revisions’process is more complete and fewer revisions are expected to be made in the future

(in Figure 1, post May 2017) to these older, more historical estimates that date back to 2013.

The ONS’s latest (as of May 2017) estimate of GDP growth is shown in Figure 1 by the solid

black line. Cunningham and Jeffery (2007) provide an explanation of the data revisions’model,

used by Bank staff, that along with MPC judgment helps shape the form of these backcast

fan charts. Their model exploits historical patterns in ONS revisions and information from

qualitative business surveys.

Extracted from successive quarterly issues of the Inflation Report, Figure 2 presents, in its

top panel, the MPC’s characterisations from 2007Q3 to 2017Q1 of the ex ante or expected

revision to each first (or “preliminary”) estimate of GDP growth (formally defined as b = 1,

below) that was published by the ONS. And in its bottom panel, Figure 2 presents the MPC’s

expectation of the uncertainty (as measured by the standard deviation) associated with this.

It should be borne in mind that, due to timings, the MPC has sight of the ONS’s latest

“preliminary”estimate for GDP growth when it forms its probabilistic expectations of this first

(historical) estimate. Figure 2 shows that the MPC has always expected revisions to be positive -

they consistently expected the ONS to subsequently revise upwards their “preliminary”estimate

of GDP growth. But the expected size of this revision has varied over time. By contrast,

looking at the bottom panel of Figure 2, the MPC has made changes to its expectations of

revision uncertainty in a more discrete manner. Changes tend to occur for the Q3 value of GDP

growth (as published by the Bank of England in November) following publication of the Blue

Book by the ONS; as the Blue Book typically involves extensive annual revisions to the national

5Strictly, the fan charts in the Inflation Report reflect the (collective) view of the (nine members of the) MPC
not necessarily the views of the Bank of England.
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accounts. It is also evident from Figure 2 that the MPC has become more uncertain about GDP

revisions over time: expected uncertainty doubled between 2007 and 2017.

To appreciate the size of these ex ante uncertainty estimates consider the following back-of-

the-envelope calculation. If the latest estimate of GDP growth (year-on-year) were 2% and the

expected revision was zero, the 2017 level of ex ante uncertainty would suggest that the MPC

is expecting the ‘mature’value of GDP growth to fall, with a 90% probability, between 0% and

4%. Arguably, this is a considerable degree of uncertainty as the MPC are neither ruling out

no growth nor strong (above trend) growth.

Simply eye-balling the width of the fan chart to the left and right of the vertical dashed

line in Figure 1 also suggests that data uncertainty matters. If (historical) data uncertainties

were small relative to future macroeconomic uncertainties, we should expect the width of the

fan chart to widen appreciably, perhaps even sharply, as we move to the right of the vertical

dashed line. But inspection of Figure 1 (and we observe a similar picture from other Inflation

Reports at other forecast origins) reveals only a smooth and modest increase in the width of

the fan chart as it moves to the right of the vertical dashed line: data uncertainty appears to

matter to the MPC.

The remainder of this paper is structured as follows. Section 2 first establishes the his-

torical characteristics of GDP growth data revisions. As changes over time to data/sampling

methods and methodology at the ONS lead us to expect temporal changes to the nature of the

observed revisions’process, and this likely affects policymakers’ ability to forecast revisions,

the characteristics of data revisions are summarised over different sub-samples. A parsimonious

Unobserved Components-Stochastic Volatility (UC-SV) model, that allows for time-variation

both in the revision mean and in the volatilities of the measurement error and revision mean

innovations, is also used to provide a flexible representation of how the data revisions’process

has evolved over the last 35 years.

In Section 3 we propose a new measure of uncertainty that captures the unforecastable

component to forecasts (in our context, these forecasts are of data revisions). This involves

distinguishing between the ex ante (expected) and ex post (or realised) values of the loss function

that are relevant to the economic agent who is seeking to make decisions based on forecasts

(in our context, uncertain data). We discuss how this new measure both generalises existing

popular uncertainty measures, that assume specific loss functions, and relates to extant density

forecast calibration tests. To better understand our uncertainty measure we decompose it into
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interpretable components.

Section 4 then uses the MPC’s fan charts to measure ex ante uncertainty as this serves as the

basis for us producing quantitative estimates of (unforecastable) data uncertainty. In so-doing,

we provide the first evaluation of the accuracy and calibration of the MPC’s predictive densities

for historical GDP growth values. While there have been numerous studies evaluating the

MPC’s forecasts for future GDP (Clements, 2004; Mitchell and Hall, 2005; Groen, Kapetanios

and Price, 2009; Galbraith and van Norden, 2012; Independent Evaluation Offi ce, 2015), we

are not aware of an evaluation of their probabilistic backcasts. We find that the MPC’s point

predictions better anticipate mature ONS growth estimates than the ONS’s own first releases;

and that their density estimates are, on average, well-calibrated except for the oldest data - to

the extreme left of the fan chart as seen in Figure 1.

In Section 5, we consider the time variation in our measure of data uncertainty. We use

a decomposition of our proposed uncertainty measure to understand better what contributes

to the observed time-variations in uncertainty. We find that rises in uncertainty are linked

to unexpected deteriorations in the reliability of the MPC’s backcasts. We also compare our

measure of data uncertainty with popular measures of macroeconomic uncertainty, as computed

for the UK by Redl (2017) and Bank of England (2016). We find that data uncertainty is highly

correlated with measures of macroeconomic uncertainty, and increases dramatically at the onset

of the 2008 recession. Section 6 concludes.

2 Historical Characteristics of GDP Growth Data Revisions

To quote the ONS: “The estimate of GDP . . . is currently constructed from a wide variety of

data sources, some of which are not based on random samples or do not have published sampling

and non-sampling errors available. As such it is very diffi cult to measure both error aspects and

their impact on GDP. While development work continues in this area, like all other G7 national

statistical institutes, we don’t publish a measure of the sampling error or non-sampling error

associated with GDP”.6

It is, however, possible to provide an indication of “transitory” statistical uncertainties

associated with GDP estimates by analysing historical revisions. And national statistical offi ces

and central banks accordingly often now publish real-time data vintages and analyse the implied

6See https://www.ons.gov.uk/economy/grossdomesticproductgdp/methodologies/grossdomesticproductgdpqmi
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revisions (e.g. see Croushore and Stark (2001)). Other sources of uncertainty, for example due

to limitations of the survey methodology, are not represented; and methodological work on

measuring non-sampling errors continues (e.g. see Manski (2016)).7

Our focus turns first to an examination of these real-time data vintages, before returning

to the MPC’s assessment of ex ante data uncertainties. In part subjectively formed, these may

well seek to capture uncertainties beyond “transitory”statistical ones.

2.1 Real-time Data

We use the real-time dataset of UK real GDP published by the ONS.8 From this dataset we

extract quarterly vintage estimates, denoted yt+bt , of year-on-year GDP growth for the reference

quarter t, (t = 1, ..., T ); with the superscript denoting the vintage date or publication date in

quarters (b = 1, 2, ...).9 So, for example, yt+1t denotes the ONS’s so-called “preliminary” (or

first) estimate of year-on-year GDP growth for the reference quarter t published during quarter

(t + 1). Revisions between the “mature” data, yt+lt (where l > b), and an earlier b-th data

release are then given as (yt+lt − yt+bt ). We focus our analysis on data revisions from 1983, since

earlier data vintages were based on a release calendar that differs from the subsequent one.10

For an analysis of UK data revisions over earlier sample periods see Garratt and Vahey (2006)

and references therein.

We identify, and subsequently seek to discriminate between, two measures of “mature”data.

This is to acknowledge that there is always debate about what defines a “mature”estimate. Data

revisions are an ongoing process, so there is understandably uncertainty about the appropriate

value of l; in turn, there is uncertainty about what types of revision (cf. McKenzie (2006))

should be modelled and quantified.

Our first candidate measure of “mature”data is yt+13t (l = 13), i.e. the GDP growth estimate

for quarter t published by the ONS three years after the preliminary release. By this time GDP

growth estimates in the UK have gone through at least three annual (Blue Book) revisions.

7 In measuring data uncertainty we focus on epistemic uncertainty, that is, uncertainty due to lack of knowledge
about current and past data. Unlike aleatory uncertainty, more relevant for forecasts when there is stochastic
uncertainty about future shocks than for backcasts, epistemic uncertainty is expected to reduce. Specifically, in
our application, epistemic uncertainty is expected to diminish over time as additional data are collected and both
corrections and improvements to these data are made by the statistics offi ce.

8See https://www.ons.gov.uk/economy/grossdomesticproductgdp/datasets/realtimedatabaseforukgdpabmi
9As with the fan chart, the yt are computed as 100((Yt/Yt−4)−1) where Yt is the level of real GDP in quarter

t. We compute growth rates within each vintage, before obtaining the time series of first releases, to avoid jumps
due to changes in the chain-linking base year.
10The ONS made significant changes to its GDP publication model and release calendars in the summer of

2018. Our latest vintage is July 2017, so that our analysis is not affected by these recent changes.
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We classify yt+13t as the 13th quarterly release of UK growth, even though revised values may

have not have been incorporated into all intermediate quarterly data releases, i.e. there may

have been fewer than 13 revisions. Aruoba (2008) and Clements and Galvão (2012) adopt

similar approaches when studying US GDP growth data revisions, making the assumption that

after three annual revisions, revisions to growth are mainly benchmark revisions. Benchmark

revisions, in general, are not modelled in data revision models based on the view that they are

unpredictable; see Croushore (2011).

Our second candidate measure of “mature”data is data-based, and reflects the time-series

properties of historical data revisions. Anticipating the results in Table 1, the mean of ONS

revisions to their GDP growth estimates after the third round of annual revisions is still statis-

tically different from zero; but after four years these revisions have a mean that is statistically

insignificant from zero. As a consequence we consider yt+17t , i.e. GDP growth as published by

the ONS four years after their preliminary release.

Figure 3 plots the first (preliminary) release, yt+1t , and the 17th release, yt+17t , for quarters

t = 1982Q2 − 2013Q1 and shows that while the first estimate is highly correlated with the

later estimate, there are important gaps between the two. These gaps appear bigger, and more

persistent, at certain points in time.

2.2 Split-Sample Summary Statistics for Data Revisions

To draw out these apparent temporal changes to the revisions’ process seen in Figure 3 we

first analyse data revisions over different sub-samples. To understand the characteristics of

the revisions’ process (yt+17t − yt+1t ) over these, we analyse not just the total revision, i.e.

(yt+17t − yt+1t ), but that sub-component of the revision, (yt+17t − yt+13t ), that lets us assess

our earlier claim that important revisions happen even after three years. This matters as it

has a bearing on what measure of “mature” data we choose empirically. Faust, Rogers and

Wright (2005) and Aruoba (2008) explain that an elementary condition for a GDP estimate

to be effi cient is that there is no predictable revision bias. As a consequence, we also analyse

revisions made between the 17th release and the (currently available) latest release, denoted

(ylatestt − yt+17t ). The latest quarterly data vintage that we use in this paper is y2017Q2t .

Table 1 presents the mean, standard deviation and mean absolute error of each of these

three revision processes. Statistics are computed for three sub-samples starting in 1983Q2,

1993Q2 and 2007Q3, cognisant that the revisions’process may exhibit temporal instabilities.
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Our samples end in t = 2013Q1, to reflect the fact we have to wait four years to observe yt+17t .

We note that our last sub-sample, 2007Q3-2013Q1, coincides with the period over which we

evaluate the MPC’s backcasts in Section 3 below. And the second sub-sample is determined

by an apparent break in the volatility of the UK revision measurement error, as shown by the

model we estimate in the next sub-section. Sample mean statistics in bold indicate that the

null hypothesis, that the revision mean is zero, is rejected at a 10% significance level. Robust

(Newey-West) standard errors are used to compute these t-statistics.

The statistics in Table 1 suggest that revisions between the “mature”GDP estimate, yt+17t ,

and the preliminary estimate, yt+1t , have a statistically significant and positive mean over both

the 1983Q2-2013Q1 and 1993Q2-2013Q1 samples. The average revision remains positive, at

0.3 p.p., over the more recent 2007Q3-2013Q1 sample; but due to heightened volatility in the

revisions’process, evidenced by an elevated standard deviation, this is no longer statistically

significant from zero. Moreover, over the 1993Q2-2013Q1 period the revision mean between

yt+13t and yt+17t is statistically different from zero. This result, along with the finding that there

is little evidence that revisions made after yt+17t have a non-zero mean (i.e. that the mean

of (ylatestt − yt+17t ) is statistically insignificant from zero), serves to motivate empirically our

decision to define the “mature”estimate as yt+17t .

In the online appendix we show analogous statistics for US GDP data. If we measure revision

size by the mean absolute error, then UK and US data revisions to GDP growth are similarly

sized in the 20-year period between 1993 and 2013.

Additional information on the nature of UK data revisions is provided in Table 2, which

presents t-statistics for whether revisions are news or noise. These tests are based on the

forecast effi ciency regressions:

(
yt+lt − yt+bt

)
= βnews0 + βnews1 yt+bt + εt (1)(

yt+lt − yt+bt

)
= βnoise0 + βnoise1 yt+lt + εt. (2)

The null hypothesis that data revisions add information (they contain news) implies βnews1 =

0. If data revisions remove the measurement error (noise) in the initial release then βnoise1 = 0.

For additional details on the application of these tests see Clements and Galvão (2010) and

references therein. The t-statistics in Table 2 suggests that revisions to the preliminary estimate,

yt+1t , or the 13th release, yt+13t , are in general a result of the ONS adding new information. In

8



contrast, revisions made after the 17th release are mainly noise, i.e. data revisions are negatively

correlated with the earlier estimates in yt+17t . This supports the view that earlier rounds of

data revisions mainly contain new information. This reinforces our decision to use yt+17t as our

measure of “mature”UK GDP growth.

In summary, ONS preliminary estimates of GDP growth tend to be significantly lower than

the values they release four years later. The MPC appear to have been aware of this in real-time

too, as seen by the positive expected revision in Figure 2. The statistical evidence that revisions

contain news, and of temporal changes to the revisions’process, indicates that data revisions

are likely hard to predict ex ante. This, in turn, suggests that unforecastable uncertainties

may be important, and that users of data like the MPC perhaps need to be alert to Knightian

uncertainty (unknown unknowns).

2.3 A UC-SV Model of Changes in the Data Revisions’Process

We let the “mature”data, yt+lt (where l > b), relate to the earlier b-th data release as follows:

yt+lt = yt+bt + µt + e.5(h0+$gh̃t)ζε,t (3)

µt = µt−1 + e.5(g0+$hg̃t)ζη,t

h̃t = h̃t−1 + ζh,t

g̃t = g̃t−1 + ζg,t

ζε,t, ζη,t, ζg,t, ζh,t are all N(0, 1)

implying data revisions, (yt+lt − yt+bt ) = rev
(l−b)
t , comprise two unobserved components: (i)

a time-varying mean, µt; and (ii) a mean-zero measurement error, ζε,t. Cunningham et al.

(2012) also decompose data revisions into bias and measurement error components.11 But our

model differs by using a model that allows for changes both in the mean and volatility of these

components, of the sort popularised by Stock and Watson (2007) when modelling US inflation.

An alternative interpretation is that rev(l−b)t is the (l− b)-step-ahead forecasting error using the

earlier release yt+bt to predict the later release, yt+lt . By fitting a SV model to data revisions,

and allowing for possible shifts in data uncertainty over time, we mimic how SV models are used

to improve measures of forecast uncertainty; e.g. see Clark, McCracken and Mertens (2019).

11Other data revisions models, such as Jacobs and van Norden (2011) and Cunningham et al. (2012), model
successive rounds of data revisions. By focusing on a specific revision, rev(l−b)t , we model changes to the revisions
process more parsimoniously.
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The model in (3) allows for time-varying effects of permanent and transitory shocks to the

revisions’ process. It implies that ∆rev
(l−b)
t has a first-order time-varying Moving Average,

MA(1), representation; with the size of the MA coeffi cient θt increasing as the variance of the

transitory shocks increases relative to the variance of the permanent shocks. Higher values of

θt imply less predictability for the true but unobserved process generating rev
(l−b)
t , relative to

this univariate model; see Mitchell, Robertson and Wright (2018).

Estimation of the four parameters in (3), i.e. g0, $g, h0 and $h, proceeds as in Chan

(2018). We use 35 years of full-sample revisions data, rev(l−b)t , from 1983. Further details and

statistical evidence to support time variation (i.e. $g 6= 0 and $h 6= 0) are provided in the

online appendix; this includes robustness checks showing that our results are little changed if

we allow either for serial correlation in the transitory component or for t-distributed innovations

to accommodate outliers.

2.3.1 Dating Changes in the Revisions’Process: Results from the UC-SV Model

We show here results having estimated the UC-SV model on revisions between the ONS ‘prelim-

inary’estimate (b = 1) and their 17th release (l = 17). Figure 4 plots the smoothed (posterior

mean) estimates of the revision mean µt, the measurement error and revision mean volatilities

and the implied θt, alongside 90% credible intervals.

The top panel of Figure 4 shows that the revision mean has fluctuated over time, varying

between -3% and +3%. But µt is generally positive or statistically equal to zero, except from

1989Q4-1990Q2, 2004Q3-2005Q1, 2006Q4-2007Q1 and 2008Q2-2009Q2. Recall Table 1 showed

the revision mean to be positive. But Figure 4 suggests that underlying this are sizeable

swings. Interestingly, at the time (late 2007) that the MPC started publishing its backcasts

in the Inflation Report, the revision mean switched from positive to negative. This period, of

course, also coincides with the onset of the Great Recession.

Figure 4 also plots both volatility estimates. Measurement error volatility declines signif-

icantly over time, from 0.7 in 1983 to 0.1 in 2012. We might interpret this as evidence that

the ONS have improved their estimates of early GDP releases over time. Or that it is easier

to produce good estimates when growth is relatively stable. The fact that most of the decline

in volatility is over by 1993 explains why we present the statistics in Table 1 over a sub-sample

beginning in 1993Q2. Table 1 indicates a declining revision mean if earlier observations are

ignored.
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Revision mean volatility is seen, in Figure 4, to increase during the 2008/2009 recession and

also at the onset of the recession in 1990. Data revisions increase in recessions.

When combining both volatilities to backout θt, we see that θt increases over time - as

transitory shocks increase in size relative to permanent shocks. The posterior mean estimates for

θt peak at the onset of the 2008 recession, suggesting a very low degree of revision predictability

during the recession.

In summary, we find evidence of temporal changes to the GDP growth data revisions’

process. The revision mean has increased in size, and changed sign, with the onset of the

2008/2009 recession. Measurement error volatility declined rapidly between 1983 and 1993; but

revision mean volatility increased during the turbulent 2007/2009 period. A possible reason for

these changes, as suggested by Offi ce for National Statistics (2017), is that the statistical offi ce’s

models do not perform as well around turning points. Interestingly, as described in Appendix

A (Table A1 and Figure A1), we also find evidence of an increase in revision mean volatility in

the US during the Great Recession.

2.3.2 The impact of different data maturities

To examine whether revisions’ behaviour is similar for data of different maturities, we re-

estimate the UC-SV model, (3), for b = 4, 8 and 12. We continue to set l = 17. From Figure 5

we see that the revision mean volatility increases during the recessionary period for all values

of b. The decline in the trend seen for the measurement error volatility is also observed when

b = 4, but there are increases later in the sample when b = 8 and b = 12. An interesting result

from Figure 5 is that the revision mean and revision mean volatility have experienced large

increases in the 2007-2009 period at b = 12: i.e. late data revisions are proportionally larger in

the 2006-2013 period than in the 1983-2005 period.

3 A Measure of Uncertainty

Having found, based on the summary in-sample analysis above, that there have been marked

temporal changes to the ONS data revisions’process, we turn to consider the real-time impli-

cations. In so doing, we propose a measure of uncertainty that is based on an underlying full

predictive density. We distinguish between ex ante (expected) and ex post (or realised) values of

the loss function (or scoring rule) that are relevant to the economic agent who is seeking to make
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decisions under uncertainty. Section 4 then considers empirical measures of data uncertainty,

using the probabilistic backcasts provided by the MPC.

3.1 Measuring (unforecastable) Uncertainty

We aim to measure uncertainty by the lack of knowledge about the future realisation. We

quantify this lack of knowledge by the difference between the ex post (or realised) and the

ex ante (or expected) values of the loss function (or scoring rule) chosen by the user of the

forecast.12 In other words, extending the logic of Jurado et al. (2015) from quadratic loss

and point forecasts to a generic loss function and to density forecasts, we propose that when

measuring uncertainty what matters is what is unforecastable, as stressed by Jurado et al.

(2015), but also relevant. Relevance is defined by the user’s loss function.

Let ft|t−h denote the density forecast formed in period (t−h) for the realisation for period

t. If, as in the case of backcasts, predictions for the revised values for period t, realised at time

(t+ l) where l > b, are made at time (t+ b) then h = −b, and the density is ft|t+b, as the user

is uncertain about the past rather than the future.

In generic terms, we propose to measure uncertainty, Unct|t−h, as:

Unct|t−h = L(ft|t−h, yt)− Eft|t−h
[
L(ft|t−h, Yt)

]
(4)

(t = 1, ..., T ), where L(ft|t−h, yt) is the realised, ex post value of the chosen loss function or

scoring rule (defined to have negative orientation, so that the lower the score the better) whose

arguments are the density forecast ft|t−h (with associated cumulative distribution function,

Ft|t−h) of the random observation Yt with subsequent realisation yt.

The (ex ante) unconditional expectation, Eft|t−h
[
L(ft|t−h, Yt)

]
, with respect to the forecast,

ft|t−h, is formed by the user at time t− h, so is made before the realisation, yt, is subsequently

observed. There is always a question about how economic agents form their expectations.

We assume - in the context of measuring unforecastable uncertainty - that they are computed

optimally so as to minimise loss; i.e. Eft|t−h
[
L(ft|t−h, Yt)

]
= arg min

ft|t−h(.)
E[L(ft|t−h, Yt)]; this

implies

Eft|t−h
[
L(ft|t−h, Yt)

]
=

∫
ft|t−h(y)L(ft|t−h, yt)dyt ≤

∫
ft|t−h(y)L(f∗t|t−h, yt)dyt = Eft|t−h

[
L(f∗t|t−h, Yt)

]
(5)

12This user need not be the producer of the forecast.
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for any alternative density forecast, f∗t|t−h 6= ft|t−h. These ex ante forecasts are in effect

computed by (honest and loss-minimising) agents who assume (ex ante) that their forecast is

as good as it can be. But there is no presumption that this forecast is well-calibrated ex post

(see section 3.2 below). For (5) to hold, we restrict L(ft|t−h, Yt) to the class of “proper”scoring

rules (see Gneiting and Raftery (2007)).13

The expected loss, Eft|t−h
[
L(ft|t−h, Yt)

]
, can also be interpreted as the “risk” of the fore-

cast; e.g. see Elliott and Timmermann (2016). Gneiting and Raftery (2007) call this ex-

pected loss (or score) the entropy function. See equation (9) below for further discussion of

entropy; below we also see that for Gaussian predictive densities and some specific loss func-

tions Eft|t−h
[
L(ft|t−h, Yt)

]
relates directly to the ex ante predicted variance. Loss is minimised

when ft|t−h = gt, where Yt ∼ gt.

3.2 Testing calibration for a given loss function

A scoring rule or loss function summarises the calibration and sharpness of the predictive density

ft|t−h; see Gneiting and Raftery (2007). Here we explain how calibration can be tested for a

specific scoring rule; and relate to calibration tests that are robust to the chosen scoring rule.

Given the loss function L(ft|t−h, yt), correct unconditional average calibration of the forecast

ft|t−h with respect to the realisation yt, is defined as when

HU
0 : E

(
Unct|t−h

)
= 0; (6)

in other words, when the values of the ex ante and ex post loss functions are equal in expectation.

Following Giacomini and White (2006), a conditional calibration test can also be defined

with respect to a k-vector of “test functions”, wt−h, representing the information set assumed

known at the time the forecast, ft|t−h, was made:

HC
0 : E

(
Unct|t−h | wt−h

)
= 0. (7)

Noting that wt−h = 1 in (6), Wald-type test statistics

GWT = T

(
T−1

∑T

t=1
wt−hUnct|t−h

)′
Σ̂−1

(
T−1

∑T

t=1
wt−hUnct|t−h

)
(8)

13Our focus on strictly proper scoring rules means that ‘truth telling’(namely quoting the true density as the
forecast density) is the optimal strategy in expectation; see Gneiting and Raftery (2007).
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can then be used to test HC
0 and HU

0 , where Σ̂ is a consistent estimator for the asymptotic

variance of (wt−hUnct|t−h) and GWT
d→ χ2k.

As we elaborate on in the following sub-section, non-zero values for Unct|t−h - indicating

that the forecaster is found ex post to have been unable to characterise the ex ante probability

distribution correctly - can be interpreted as measures of (realised) Knightian uncertainty.14 If

Unct|t−h 6= 0 the forecaster has made forecasting errors or ‘mistakes’, albeit perhaps probabilistic

ones. These errors indicate that unknown (or unexpected) unknowns - Knightian uncertainty

- have impacted yt beyond both any ex ante uncertainty, or risk, that was anticipated at time

(t−h) and any inability or reluctance of the agent to quantify probabilistic forecasts for certain

states. Movements in Unct|t−h may be caused by shocks to confidence or risk, the definition of

ambiguity in Ilut and Schneider (2014).

We emphasise the importance of our assumption that the ex ante forecasts are computed

optimally - so as to minimise ex ante loss, (5). One can, of course, always imagine another infe-

rior forecaster, who perhaps uses a misspecified forecasting model, who makes more forecasting

errors than ft|t−h: for this forecaster, Unct|t−h confounds Knightian uncertainty (unknown un-

knowns) with mistakes that were in principle avoidable ex ante (known unknowns); or at least

they were known by a better forecaster - see Example 1 below. In other words, one forecaster’s

unknown unknowns are always a superior forecaster’s known unknowns. In trying to provide

quantitative measures of unforecastable uncertainty it is therefore important empirically to

select a good forecaster.

3.3 Understanding Uncertainty: A Decomposition

To understand better what Unct|t−h measures note that, in principle (as computation can be

diffi cult), ex post one can decompose any loss function into interpretable components. With

gt continuing to denote the ideal density, we can decompose L(ft|t−h, yt) into reliability and

entropy components:

L(ft|t−h, yt) = L(ft|t−h, yt)− L(gt, yt)︸ ︷︷ ︸
reliability

+ L(gt, yt)︸ ︷︷ ︸
entropy

(9)

where the entropy, L(gt, yt), is the minimal achievable ex post loss under L(.). Entropy is a

feature of the data, and the chosen loss function, not of the forecasts themselves. Given L(gt, yt)

14One can, of course, never measure unrealised (over the sample, T ) unknown unknowns using our approach.
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is the minimum ex post loss, reliability ≥ 0.

In turn, (9) implies that our uncertainty measure comprises both an (ex post) reliability

component and, what we call, expected (ex ante) reliability, reliabilitye:

Unct|t−h =
[
L(ft|t−h, yt)− L(gt, yt)

]︸ ︷︷ ︸
reliabilityt

−
[
Eft|t−h

[
L(ft|t−h, Yt)

]
− L(gt, yt)

]
︸ ︷︷ ︸

reliabilityet

. (10)

Specific values for reliability t and some of the decomposition components depend on the loss

function.15 Some analytical expressions are available for the Briers score (Yates, 1982), Mean

Squared Error (MSE) loss (Murphy and Winkler, 1987), the Kullback-Leibler divergence (Weijs,

van Nooijen and van de Giesen, 2010), the quantile score (Bentzien and Friederichs, 2014) and

Continuous Ranked Probability Score (CRPS) loss (Rossi et al., 2016).

We can draw out properties of these generic decompositions for well-calibrated densities, as

defined under HU
0 . If reliability = 0, given that ft|t−h is formed optimally, then reliabilitye = 0

and Unct|t−h = 0 implying no (realised) Knightian uncertainty. When reliability = 0 no

alternative forecast can achieve lower ex post loss.

However, when reliability ≥ 0 it is still possible that Unct|t−h = 0 if reliability = reliabilitye,

i.e. if forecasters offset ex post errors, that explain positive values for reliability, by ex ante ex-

pecting a greater loss than if they did know the ideal density, gt.16 In this situation it is

arguably a matter of semantics whether there is Knightian uncertainty or not. On one hand,

Unct|t−h = 0 tells us that ft|t−h is well-calibrated which indicates that unknown unknowns have

not led to forecast errors. But on the other hand, since another forecast gt exists which would

deliver a lower ex post loss, there are unquantified unknown unknowns. And if these shocks

were anticipated ex ante, i.e. if gt were used instead of ft|t−h, reliability = 0 and the user would

have made lower loss decisions. We use an example to illustrate this point.

15Further intuition might be gained by decomposing entropy around a benchmark unconditional density fore-
cast, bt (often called the climatological forecast), whose moments match those of the data, yt, ex post :

Unct|t−h =
[
L(ft|t−h, yt)− L(gt, yt)

]︸ ︷︷ ︸
reliability

+ { L(bt, yt)︸ ︷︷ ︸
realised variance

− [L(bt, yt)− L(gt, yt)]︸ ︷︷ ︸
resolution

− Eft|t−h
[
L(ft|t−h, Yt)

]
}︸ ︷︷ ︸

expected loss

} (11)

so that uncertainty now comprises reliability, L(bt, yt) which can be interpreted as a measure of realised variance,
resolution and expected loss. Resolution or sharpness measures the informational content of the unconditional
forecast and equals zero when bt = gt.
16When the conditional and unconditional data densities differ, such that resolution > 0,

Eft|t−h
[
L(ft|t−h, Yt)

]
< L(bt, yt), and the expected loss of forecasting using ft|t−h is lower (better) than if

bt were used. For a well-calibrated density, expected loss should equal the realised variance only if no resolution
is required to fit the true density.
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Example 1 Following Gneiting, Balabdaoui and Raftery (2007), consider the true density

gt = N(µt, 1) where µt = N(0, 1); and let L(ft|t−h, yt) be the logarithmic scoring rule.17 The

unconditional or so-called climatological forecaster bt = N(0, 2) is such that Unct|t−h = 0. This

is because reliabilityet > 0 as this forecaster in a sense deliberately but optimally overstates the

variance relative to the conditional truth, to compensate for missing µt. Ignoring constants, this

is seen as follows:

Unct|t−h =
[
L(ft|t−h, yt)− L(gt, yt)

]︸ ︷︷ ︸
reliability

− {[L(bt, yt)− L(gt, yt)]︸ ︷︷ ︸
resolution

− L(bt, yt)︸ ︷︷ ︸
realised variance

+ Eft|t−h
[
L(ft|t−h, Yt)

]
−}︸ ︷︷ ︸

expected loss

0 =
[
ln(
√

2)− ln(1)
]

︸ ︷︷ ︸
reliability

−
[
ln(
√

2)− ln(1)
]

︸ ︷︷ ︸
resolution

− ln(
√

2)︸ ︷︷ ︸
realised variance

+ ln(
√

2)︸ ︷︷ ︸
expected loss︸ ︷︷ ︸

reliabilitye

(12)

3.4 Uncertainty for Four Loss Functions

By defining uncertainty in terms of a generic loss function we both nest special cases from the

existing literature, such as Jurado et al. (2015) considered further below, and also directly link

our measures of uncertainty to tests in the tradition of Dawid (1984) and Diebold, Gunther and

Tay (1998) for the absolute calibration of ft|t−h.

Here we consider four choices of L(ft|t−h, yt). Conveniently, as it aids interpretation, we show

below that for Gaussian predictive densities with predicted mean, ŷt|t−h, and predicted variance,

σ̂2t|t−h, analytical expressions for Unct|t−h can be defined for each of these four loss functions.

Let Φ denote the CDF of a standardised Gaussian distribution, φ denote the associated PDF

and zt =
(yt−ŷt|t−h)
σ̂t|t−h

denote the standardised point forecasting error.

The first loss function is MSE loss, defined as LMSE(ft|t−h, yt) = (yt− ŷt|t−h)2. Under LMSE ,

uncertainty is:

UncMSE
t|t−h = (yt − ŷt|t−h)2 − σ̂2t|t−h (13)

since Eft|t−h(yt − ŷt|t−h)2 = σ̂2t|t−h for the optimal forecaster. Jurado et al. (2015) emphasise

the importance of removing the forecastable component (in their case for the conditional mean)

when measuring uncertainty (about the mean). Their uncertainty measure is the ex ante ex-

pectation of the MSE loss function, i.e. Eft|t−h(yt− ŷt|t−h)2 = σ̂2t|t−h. What Jurado et al. (2015)

do not address is how ‘good’a forecast this was of ex post uncertainty, measured under MSE

loss as (yt − ŷt|t−h)2. By contrast, our measure of uncertainty, UncMSE
t|t−h , under MSE loss as

17See (16) for a definition of the logarithmic score.
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assumed by Jurado et al. (2015), isolates this ‘error’. As it is this ‘error’, deviation between the

ex ante and ex post values of the loss function, that captures (realised) Knightian uncertainty

for the optimal forecaster. Under the null E(UncMSE
t|t−h ) = 0, our test using GWT is similar to

the test proposed in Clements (2014) to compare ex ante and ex post forecasting uncertainty

measures.

The second loss function scores the coverage for (1−α), 0 < α < 1 prediction intervals. The

lower and upper limits of these intervals are the predicted quantiles ŷ(α/2)t|t−h and ŷ
1−(α/2)
t|t−h ; and the

loss function is:

LInt(ft|t−h, yt) = 1− (I(yt < ŷ
(α/2)
t|t−h ) + I(yt > ŷ

1−(α/2)
t|t−h )), (14)

where I(.) is an indicator function. Under LInt, uncertainty is:

UncIntt|t−h = α− (I(yt < ŷ
(α/2)
t|t−h ) + I(yt > ŷ

1−(α/2)
t|t−h )) (15)

since Eft|t−h(LInt(ft|t−h, Yt)) = 1−α for the optimal forecaster. UncIntt|t−h will be positive when

the observed coverage of the prediction interval is larger than the nominal rate, and negative

when there is under-coverage. We could also compute uncertainty for value-at-risk forecasts,

since they also normally require the computation of a quantile forecast ŷ(α)t|t−h implying that

UncIntt|t−h = I(yt < ŷ
(α)
t|t−h)− α.

The third loss function is the logarithmic score loss function:

LlogS(ft|t−h, yt) = log(σ̂t|t−h) + 0.5 log(2π) + 0.5

(
(yt − ŷt|t−h)

σ̂t|t−h

)2
, (16)

implying that:

UnclogSt|t−h = 0.5z2t − 0.5 (17)

since

Eft|t−h

[
LlogS(ft|t−h, Yt)

]
= 0.5(1 + log 2π) + log

(
σ̂t|t−h

)
(18)

as the optimal forecaster sets Eft|t−h
(
yt − ŷt|t−h

)2
= σ̂2t .
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The fourth loss function is CRPS loss:

LCRPS(ft|t−h, yt) = σ̂t|t−h
[
zt(2Φ (zt)− 1) + 2φ (zt)− (1/

√
π)
]

=
(
(yt − ŷt|t−h)

)
(2Φ (zt)− 1) + 2σ̂t|t−hφ (zt)− (σ̂t|t−h/

√
π), (19)

such that:

UncCRPSt|t−h =
(
(yt − ŷt|t−h)

)
(2Φ (zt)− 1) + 2σ̂t|t−hφ (zt)− 2(σ̂t|t−h/

√
π), (20)

since Eft|t−h(LCRPS(ft|t−h, Yt)) = (σ̂t|t−h/
√
π) for the optimal forecaster.

Similarly to (20), Rossi et al. (2016) also measure uncertainty using LCRPS(ft|t−h, yt). Our

point of departure is to strip out ex ante uncertainty by subtracting Eft(L
CRPS(ft|t−h, yt)) from

LCRPS(ft|t−h, yt). As well as facilitating a comparison with measures of uncertainty for other

loss functions, this lets us directly relate UncCRPSt to tests for the absolute calibration of the

density forecast.

For UnclogSt|t−h and Unc
CRPS
t|t−h we can relate the Wald test to tests for absolute calibration as

commonly deployed on density forecasts. These test whether the probability integral transforms

(pits), Ft|t−h(yt), are uniformly distributed, or equivalently (see Berkowitz (2001)), whether zt

follows a standard normal distribution. When the predictive densities are well calibrated and

zt ∼ N(0, 1), E
(
UnclogSt|t−h

)
= 0 since z2t ∼ χ21 with a mean of 1. Similarly, E

(
UncCRPSt|t−h

)
= 0

when zt ∼ N(0, 1). Moreover, when zt ∼ N(0, 1), E
(
Unct|t−h

)
= 0 for all strictly proper loss

functions, L(ft|t−h, Yt). This is analogous to the result in Diebold et al. (1998) that when a

forecast coincides with the true data generating process, it will be preferred by all forecast users,

regardless of their loss function.

4 Empirical Measures of Data Uncertainty using the MPC’s

Fan Chart

Operationally, our measure of uncertainty in (4) and the accompanying test for calibration, as

set out in (6), require ex ante (density) probabilistic forecasts, ft|t−h - from the optimal fore-

caster. The ONS do emphasise data revisions in their communications. But, as discussed in

the Introduction, it is the MPC at the Bank of England that, to our knowledge uniquely in

an international context, provide direct quantitative estimates of the likely ex ante uncertainty
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around past GDP values. We describe these backcasts in the next section; and while hesitant to

classify the MPC as the optimal forecaster, we do believe their forecasts provide a competitive

and an appropriate benchmark to measure unforecastable data uncertainty. This is because of

international evidence that judgment-based forecasts, from institutional and professional fore-

casters like the MPC, typically outperform model-based forecasts, especially at short horizons

(e.g. see Sekkel and Soojin (2018) and references therein). We therefore use the MPC’s ex ante

density forecasts to measure unforecastable data uncertainty for each of the four loss functions

considered in section 3.4. And we provide the first evaluation of the accuracy of the MPC’s

predictive densities for historical GDP growth. We do so via both absolute and relative tests

for calibration. Sample sizes are small, as the MPC have produced their forecasts quarterly for

only twenty years; and this should be borne in mind when interpreting our statistical tests for

calibration. Nevertheless, we do believe there is now a suffi cient track-record to render these

statistical tests meaningful.

4.1 The MPC’s Probabilistic Expectations of Future Data Revisions

The MPC have published probabilistic backcasts for “mature”GDP growth on a quarterly basis

since November 2007.18 These backcasts take the form of Gaussian densities that represent the

MPC’s view, formed in quarter t, of revised growth ending in quarter b = t − 1, ..., t − B. In

practice the MPC have looked B ≥ 16 quarters back into the past.

The MPC’s probabilistic backcasts are represented as symmetric Gaussian densities. They

are typically published near the beginning of the second month of quarter t. This means that

the MPC were, in principle, able to observe the ONS’s “preliminary”GDP estimate for the

previous quarter ytt−1, along with the ONS’s (perhaps revised) estimates for historical growth

ytt−2, ..., y
t
t−B, before they published their own estimates, ŷ

t
t−1, ..., ŷ

t
t−B and σ̂

t
t−1, ..., σ̂

t
t−B, in the

quarter t Inflation Report. This means, to give a concrete example, that when during quarter

(t+ 4) the MPC publish their (fourth) density backcast for mature growth for reference quarter

t, given as N(ŷt+4t , σ̂2,t+4t ), they do so conditioning on the ONS’s (fourth) estimate, yt+4t .

The MPC’s sequence of probabilistic backcasts for future revisions to GDP growth for ref-

erence quarter t are therefore characterised as

ft|t+b = N(ŷt+bt , σ̂2,t+bt ), (21)

18The spreadsheet that contains the parameters used are downloadable at
https://www.bankofengland.co.uk/inflation-report/2017/november-2017
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where t + b (b = 1, ..., B) denotes the quarter when the backcast is computed. As discussed

in Section 2, we assume the “mature” estimate, yt+lt , is observed at l = 17. This implies the

“forecast horizon”is (l − b).

To illustrate, Figure 6 plots the 90% prediction intervals for “mature” GDP growth im-

plied by the MPC’s estimates of ŷt+1t and σ̂t+1t , as seen in Figure 2 previously, for t =

2007Q3, ..., 2017Q1. In anticipation both of measuring unforecastable data uncertainty, Unct|t+b,

and the calibration tests, we superimpose on Figure 6 the ONS’s “mature”estimate, yt+17t . Fig-

ure 6 indicates that the MPC’s 90% intervals have widened appreciably since 2011; and that the

actual ONS values fell outside these predictive intervals during the recessionary period. Over

the sample as a whole, 17% of the ONS outturns fell outside the 90% bands. Under correct

calibration, we should of course expect 10%. Figure 6 also reminds us why our evaluation tests

and our measures of data uncertainty (reported below) end in 2013Q1: the ex post realisations

arrive 17 quarters later.

To draw out further features of the MPC’s probabilistic backcasts, the top panel of Figure 7

presents, for b = 1, ..., 16, their ex ante revision uncertainty (standard deviation) averaged over

the T = 23 observations in the t = 2007Q3, ..., 2013Q1 sample: σ̂
t+b

= 1
T

∑
t σ̂

t+b
t . This shows

that average ex ante revision uncertainty tends to decrease as b increases - in other words as the

forecast horizon decreases. The MPC became less uncertain about mature GDP as intermediate

ONS estimates became available to them. Expected uncertainty, however, does still appear to

be large - at 0.75 p.p. - even at b = 16.

4.2 Measuring Uncertainty: Comparing ex ante and ex post Loss

In the absence of direct knowledge of the MPC’s or indeed others users’ loss functions, that

they use to interpret the fan chart, we provide empirical measures of uncertainty:

Unct|t+b = L(ft|t+b, y
t+17
t )− Eft|t+b

[
L(ft|t+b, Y

t+17
t )

]
, (22)

for each of the four loss functions seen in Section 3.4.

The bottom panel of Figure 7 presents uncertainty estimates averaged across time, Unct+b =

1
T

∑
t Unct|t+b (T = 23), for the MSE, Int, logS and CRPS loss functions for b = 1, ..., 16. For

the interval loss function we set α = 0.10, as in Figure 6, and multiply values by −1. This

means that values Unct+b > 0 (< 0) imply the MPC under (over) estimated uncertainty, as the
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expected values for the loss function were lower (higher) than the realised values.

Looking at the bottom panel of Figure 7 we see that uncertainty, albeit with some ups

and downs, declines steadily as the forecasting horizon (17 − b) shortens for both the MSE

and logS loss function. The more discrete, step declines observed after b = 4, and then again

after b = 12, appear to time with ONS’s publication of the Blue Book. But these declines

are flatter for the interval and the CRPS loss functions. For example, MSE data uncertainty

at b = 8 is half that at b = 1. In contrast, for the interval loss function, Unct+b is highest

at b = 10 and 11 instead of at b = 1. These differences might be explained by how extreme

outturns (or surprises) are less heavily penalised by the interval and CRPS than MSE and logS

loss functions. Nevertheless, all four uncertainty measures agree that, conditional on reasonably

mature ONS data (b = 15, 16), the MPC ex ante tended to over-estimate loss. They anticipated

a wider variety of GDP revision outcomes than actually happened. As a result, average data

uncertainty is negative at the shortest forecast horizons.

4.3 Testing Calibration of the MPC’s Probabilistic Backcasts

Under HU
0 : E

(
Unct|t+b

)
= 0 the MPC’s predictive densities ft|t+b are well calibrated. Table 3

presents GWT type test statistics of HU
0 for each of the four loss functions. The test statistics

reported are robust t-statistics, except for the interval-based loss function, where p-values for

the asymptotically equivalent unconditional coverage test of Christoffersen (1998) are reported

instead at (1− α) = 0.90, 0.75, 0.50. Test statistics or p-values in bold indicate rejection of HU
0

at the 10% level.

Table 3 shows that according to both the MSE and CRPS loss functions the MPC’s predictive

densities appear well-calibrated, except at b = 16. At b = 16 we again see evidence that, ex ante,

the MPC over-estimated the likely mean square or CRPS ‘errors’. Under the logS loss function,

there is evidence of mis-calibration not just at b = 16, but also b = 8, 9, 10, 11. The interval loss

function results echo this, with evidence against calibration at b = 16 (for (1− α) = 0.75, 0.50)

and for b = 8, ..., 12 for (1 − α) = 0.90. But overall, of 96 tests (undertaken independently)

calibration is rejected, at 10%, only on 15 occasions.

As discussed in the Introduction, the Bank of England have stated that they consult, inter

alia, timely data from qualitative business surveys to predict data revisions better. Given this

we also undertake conditional calibration tests, of HC
0 , using the average value over the reference

quarter of the PMI Services survey published by Markit; these data are used as conditioning
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information, wt+b, to test (7). We use the PMI Services survey, as services comprise around

80% of UK GDP. Table 4 presents analogous results to Table 3 for this conditional test for the

MSE, CRPS and logS loss functions. The evidence for mis-calibration is in fact even weaker

than in Table 3. HC
0 is rejected only at b = 16 and twice at b = 6.

Overall, our tests for absolute calibration of the Bank’s probabilistic backcasts suggest that,

on average since their introduction in 1997, the Bank has produced well-calibrated probabilistic

backcasts relative to the ONS’s mature GDP growth estimates. This is so except at the shortest

horizons, when the Bank appears ex ante to over-estimate their likely losses consistently.

4.4 Relative Performance of the MPC’s backcasts

Having tested absolute calibration of the MPC’s density backcasts, for four loss functions, we

now test their relative performance. This is important in lending credibility to our claim that

the MPC’s forecasts are optimal, as defined in (5). We compare the MPC against both an

unconditional predictive benchmark and, for the point forecasts only (as ONS do not publish

probabilistic estimates of GDP growth), against the ONS’s own early estimates.

4.4.1 Benchmark Probabilistic Backcasts

To evaluate the relative performance of the MPC’s backcasts we use an “unconditional”bench-

mark. Clements (2018) has similarly argued for the use of unconditional benchmark densities.

We chose to use an unconditional model rather than the UC-SV model considered above, in

(3). This is because although SV models have been found to be useful to measure, in real-time,

the volatility around ‘reasonably’unbiased forecasts, as seen in Clark et al. (2019), in our ap-

plication experimentation (see Table A3 in the online appendix) revealed that when estimated

recursively the UC-SV model generated excessively volatile ex ante predictions for yt+lt . This

is as at time t − b the UC-SV model’s long horizon predictions (l − b steps ahead) set the re-

vision mean, at all horizons, equal to the last observed value. Comparing Table A3 with Table

5 (below), we see strong evidence that the UC-SV model’s forecasts are outperformed by the

“unconditional”benchmark model that we now introduce.

The “unconditional” (nonparametric) benchmark model is motivated as follows. Because

time-series models of stationary data converge to the unconditional mean and variance at long

horizons, we recursively estimate (as if in real-time) the unconditional mean and standard

deviation of historical revisions. The probabilistic backcasts for quarter t, using information up
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to t+ b, exploiting ONS revisions between the lth data release and the bth release up to t− l+ 1,

are then defined as funct|t+b = N(ŷt+b,unt , σ̂2,t+b,unt ), where

ŷt+b,unt = yt+bt + µ̂t+b,unt for t = 2007Q3, ..., 2013Q1 (23)

µ̂t+b,unt =
1

t− l

τ=t−l+1∑
τ=1983Q2

rev(l−b)τ (24)

σ̂t+b,unt =

√√√√ 1

t− l

τ=t−l+1∑
τ=1983Q2

(
rev

(l−b)
τ − µ̂t+b,unt

)2
(25)

rev(l−b)τ = yτ+lτ − yτ+bτ . (26)

That is, at each prediction origin t + b, this benchmark model uses a sample of revisions

between the ONS’s mature estimate and the ONS’s b-th estimate, as available in real-time for

observations up t− l+ 1. This sample is then used to compute a data-based predictive density

for the b-quarter backcast. Recall, as b increases we are in effect shortening the backcasting

horizon. Note that our sample of revisions dates back to 1983Q2, and that the evaluation

sample increases with b.

4.4.2 MPC vs. Unconditional Benchmark

Table 5 evaluates the relative accuracy of the MPC and benchmark model probabilistic backcasts

using both point and density forecast evaluation statistics. We use two measures of point

forecast accuracy. The first is the bias: the sample average of (yt+lt − ŷt+bt ). If the MPC or

the “unconditional”model improves over ONS, we should expect their bias to be smaller than

the revision mean. This revision mean is the average value of (yt+lt − yt+bt ) and is denoted

“ONS”in Table 5. We also look at whether the root mean squared error (RMSE) is lower than

the standard deviation of the ONS revision (yt+lt − yt+bt ), again denoted “ONS”in the RMSE

column. We also compute the ratio of the unconditional or MPC RMSE to the ONS RMSE.

If this ratio is less than 1, then the MPC or unconditional benchmark produces more accurate

estimates of ONS “mature”growth than the ONS’s own estimates.

The statistics in Table 5 suggest that, for all values of b, the MPC provide more accurate

point estimates of mature ONS data than the ONS’s own earlier estimates. The RMSE gains

are between 3% and 7%. The average bias of the MPC is small for all b (between −0.07 and

0.09). This suggests that the MPC are good at anticipating ONS revisions. The bias of the

“unconditional”model is larger at −0.2 when b = 1.
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Comparing the probabilistic performance of the MPC and benchmark forecasts using the

interval loss function we see from Table 5 that the MPC provide better nominal coverage in the

majority of cases. But at b = 16 the MPC is beaten by the unconditional model. At b = 16,

the MPC’s confidence intervals are too wide such that, for example, 91% of outturns fall inside

their 50% prediction interval.

Looking next in Table 5 at the logarithmic score results, we see the relative performance

of the “unconditional”model also worsens with b. But in terms of the CRPS, the benchmark

model actually improves over the MPC at b = 12, 16. This is as for these older data the point

backcasts perform similarly. In this case, the CRPS prefers predictions with smaller predicted

variance which is the case for the unconditional model that embeds the assumption that mature

data are released by the ONS at t+ l.

Overall, we find that the MPC provides more accurate point estimates of revised GDP

values than the comparably timed estimates published by the ONS themselves. The MPC’s

probabilistic estimates are also more accurate, except at b = 16, than those from a benchmark

model that, in effect, bias-corrects the latest ONS estimates.

5 Historical Characteristics of Data Uncertainty

Having found that - except at the shortest horizon (b = 16) - the Bank’s probabilistic backcasts

appear, on average, both well calibrated (importantly across a range of loss functions), such

that E(Unct|t+b) = 0, and that they are accurate relative to a benchmark, we consider the

evolution of Unct|t+b over time.

We focus here on measuring Unct|t+b using the CRPS loss function. Equation (4), of course,

provides a measure of uncertainty for a generic loss function, L(ft|t−h, yt). But in the absence

of knowledge of a given user’s specific loss function, we choose here to follow Rossi et al. (2016)

and focus exclusively on the CRPS. An attraction of the CRPS is arguably its intuitive appeal:

the CRPS cumulates the forecast errors for each possible predicted event in the forecast density:

LCRPS(ft|t−h, yt) =

∫ ∞
−∞

(
ut|t−h(r)

)2
dr (27)

where ut|t−h(r) =
(
Ft|t−h(r)− I(yt ≤ r)

)2 is the mean squared forecast error or Briers score,
i.e. the squared difference between the probability forecast of the binary event (yt ≤ r) at the

threshold r ∈ R, the cumulative predictive density Ft|t−h(r), and the binary outcome, I(yt ≤ r).
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In the spirit of Rossi et al. (2016), we have argued that we can interpret Unct|t+b as (realised)

mistakes the MPC made when measuring risk (ex ante uncertainty). Unct|t+b thereby provides,

for the MPC, a measure of unforecastable (or Knightian) uncertainty.

Figure 8 plots UncCRPSt|t+b for b = 1, ..., 7 in the top panel (Figure 8A) and for b = 8, ..., 16 in

the bottom panel (Figure 8B). We indicate the line of correct calibration, UncCRPSt|t+b = 0, via a

thick black line. Arguably, data uncertainty at b = 1, ..., 7 has more impact on policy making

than uncertainty about older observations.

Looking at Figure 8A first, we observe a large positive spike in UncCRPSt|t+b at the onset

of the 2008/2009 recession. Recall, in section 2 we also found that the data revision mean

switched from positive to negative, and that revision mean volatility increased, with the onset

of this recession. These instabilities in the revisions’process support the view that this spike

in data uncertainty is explained by unexpected or unknown unknowns (Knightian uncertainty)

surprising the MPC. That is, from 2008 to 2009 in real-time, ex ante, the MPC were unable to

assess correctly probabilities for all revised GDP growth states of nature. So while the onset

of the global financial crisis was no doubt making the future economic outlook more uncertain,

Figure 8A shows how the MPC were also battling elevated uncertainty about where the economy

was currently and indeed where it had been in the recent past. But from late 2009 UncCRPSt|t+b falls

and thereafter fluctuates around zero. This is consistent with how, on average, the calibration

tests in Table 3 find these deviations from 0 to be statistically insignificant.

Turning to the older historical data (b = 8, ..., 16) in Figure 8B, we see data uncertainty,

UncCRPSt|t+b , as we might hope for older data, is smaller. Unc
CRPS
t|t+b is mainly positive from 2007 to

2010 and negative from 2010. So since the recession the MPC have, in general, over-estimated

the degree of data uncertainty for these older (b > 8) data. This may reflect diffi culties in

predicting benchmark revisions (recall in section 2 we found that the size of these later revisions

changed) and a reluctance of the MPC to downsize ex ante data uncertainty as the recession

ended.

5.1 Decomposing Data Uncertainty

Figure 9 decomposes UncCRPSt|t+b into reliability t and reliabilityet components using (10). These

components are plotted for b = 1, 4, 8. In practice, computation requires pooled estimation over

a sample of data. We use four quarter rolling windows; the dates in Figure 9 refer to the last

observation in these rolling windows.
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Figure 9 reveals the rapid increase in unforecastable data uncertainty, UncCRPSt|t+b , at the onset

of the 2008/2009 recession to have been associated with both an increase in ex post reliability

(i.e. an increase in unreliability, as the MPC’s ex ante predictions proved less accurate) and

falling levels of expected reliability. The fact that reliabilityet became increasingly negative in

the initial stages of the recession contributed to, rather than detracted from, overall uncertainty

as measured by UncCRPSt|t+b . But from 2009, as also reflected in Figure 2, the MPC did begin to

anticipate, ex ante, more data uncertainty. Accordingly we see reliabilityet begin to rise, and

then stabilise above zero at around 0.5, for all three values of b (b = 1, 4, 8). This suggests,

as in Example 1, that the MPC were wisely compensating for expected forecasting errors by

raising the ex ante variance of their density backcasts; this action helped deliver better cali-

brated densities, as seen by UncCRPSt|t+b falling from its peaks in 2008 to values closer to zero.

The relatively small, but negative, values of UncCRPSt|t+b observed for all b in the immediate af-

termath of the recession reflect the fact that the MPC began to over-estimate data uncertainty

(reliabilityet > reliabilityt). Nevertheless, since 2010 reliabilityt and reliabilityet do track each

other fairly closely. But as they do so at positive values there is scope for the MPC to improve

their forecasts further.

5.2 Data Uncertainty and Macroeconomic Uncertainty

It is helpful to contrast our estimates of (historical) data uncertainty with established existing

estimates of uncertainty, notwithstanding that methodologically these macroeconomic measures,

for a specific loss function, tend to focus either on ex ante uncertainty, as in Jurado et al. (2015),

or ex post uncertainty, as in Rossi et al. (2016), rather than the difference between the two - as

captured by Unct|t−h.

We compare our data uncertainty estimates with two alternative estimates of macroeconomic

uncertainty. The first, seen in Redl (2017), estimates uncertainty in the UK using the approach

of Jurado et al. (2015). More specifically, Redl (2017) uses 33 monthly series to compute an

aggregate ex ante uncertainty measure under MSE loss (cf. (13)). The second measure is

from Bank of England (2016). It is computed by extracting a principal component from a set of

uncertainty measures. These measures include the standard deviation of GDP growth consensus

forecasts, the number of newspaper reports citing uncertainty, a survey measure of household

confidence, and the implied volatilities of options’contracts on the FTSE 100 and the sterling

effective exchange rate. Both the Redl (2017) and Bank of England estimates of uncertainty
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are available monthly, but for comparative purposes are presented in Figure 10 averaged over

the quarter.19

Figure 10 indicates that these two measures of macroeconomic uncertainty are positively

correlated with our estimates of data uncertainty, UncCRPSt|t+b , at both b = 1, 4. To investigate

this apparent correlation further, we look at their dynamic correlations in Table 6. Specifically

we look at the correlations between macroeconomic uncertainty in quarter t and data uncertainty

at lags (t − 1, t − 2) and leads (t + 1, t + 2). We report these correlation coeffi cients against

the Redl (2017) macroeconomic uncertainty measure (in Table 6A) and the Bank of England

(2016) uncertainty measure (in Table 6B) for b = 1, 4, 8, 12. Coeffi cients in bold indicate that

the correlation is statistically different from zero (using asymptotic bounds).

As anticipated, data uncertainty for more mature (b = 8, 12) GDP growth values is not

so strongly correlated with macroeconomic uncertainty. But data uncertainty for earlier GDP

estimates (b = 1, 4) has a high correlation with macroeconomic uncertainty. The strongest

correlation, of between 76% and 82%, is at lag 1. On the face of it this suggests that data

uncertainty leads macroeconomic uncertainty by one quarter. Note, however, that our data

uncertainty measure is organised by reference quarter date, and the “preliminary”ONS GDP

estimate and the initial backcasts from the MPC are available with a one quarter delay. So this

implies that data uncertainty and macroeconomic uncertainty are coincident indicators.

6 Conclusion

This paper provides and emphasises the importance of quantitative estimates of unforecastable

data uncertainty for UK GDP growth. We find that data uncertainty does, as suggested by

Bean (2007), contribute to a more uncertain economic environment for policymakers. We show

that data uncertainty rises at the onset of recessions. It is also positively correlated with popular

measures of macroeconomic uncertainty.

Methodologically we define unforecastable uncertainty as a lack of knowledge about the

future or the past; we quantify this lack of knowledge by the difference between the ex post (or

realised) and the ex ante (or expected) values of the loss function (or scoring rule) relevant to

the user of the underlying density forecast. We show how our uncertainty measures can be used

as the basis for the construction of tests for calibration of probabilistic forecasts. In so-doing, we

19We are grateful to Chris Redl for his help and providing these measures of UK macroeconomic uncertainty.
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link scoring rules commonly used to evaluate relative density forecast performance to absolute

density forecast evaluation tests.

We commend the MPC at the Bank of England for quantifying ex ante GDP data uncertainty

in their quarterly fan charts; and, echoing Manski (2015; 2018), we encourage statistical offi ces to

do more to measure and communicate uncertainties associated with their earlier GDP estimates

by providing quantitative measures of the “accuracy and reliability”of these estimates.20 We

do believe, however, that the MPC would itself improve communication further if they stated

explicitly what data vintage they seek to forecast rather than leaving it as the latent “mature”

GDP estimate, which precludes ex post evaluation without making some assumption.

We hope that our approach to measuring data uncertainty, that relies on ex ante prob-

abilistic expectations for historical GDP data, can be applied in other countries. While the

MPC at the Bank of England is, we believe, unique in providing direct judgement-based ex

ante estimates of data uncertainty, other countries could and, we believe, should follow. Our

preliminary analysis of US GDP growth data revisions (in the online appendix) suggests that

data uncertainty also matters in the US; and that the challenge, for forecasters of data revisions,

will be accommodating temporal changes to the mean and variance of data revisions especially

at business cycle turning points. But direct, quantitative estimates of data uncertainty will help

policy and other decision makers better understand the macroeconomic uncertainties they face

when making decisions.

20Note that here “accuracy and reliability”are defined as in Eurostat’s European Code of Practice, Principle
12. They refer to sampling and non-sampling errors and the measurement of data revisions.
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Table 1: Summary Statistics for GDP Growth Data Revisions (source: ONS, real-time database) 
 

 𝑦17 − 𝑦1 𝑦17 − 𝑦13 𝑦𝑙𝑎𝑡𝑒𝑠𝑡 − 𝑦17 

Obs Period:  mean std MAE mean std MAE mean std MAE 

1983Q2-2013Q1 0.462 0.906 0.759 0.065 0.451 0.294 0.231 0.709 0.609 

1993Q2-2013Q1 0.358 0.807 0.674 0.112 0.483 0.307 0.066 0.646 0.526 

2007Q3-2013Q1 0.306 1.328 1.131 0.229 0.836 0.696 0.001 0.600 0.420 

 
Notes: Values in bold indicate that the data revision mean is statistically different from zero at a 
10% significance level using robust (Newey-West) standard errors. MAE is the mean absolute error, 
or mean absolute revision. The MPC started releasing their backcasts in 2007Q3. Because we have 
to wait 4 years to observe our measure of “mature” data, the last observation for which we 

observe a 17th release is 2013Q1. We use the July 2017 data vintage to measure 𝑦𝑙𝑎𝑡𝑒𝑠𝑡. 

 
 
 
Table 2: t-statistics for tests for News and Noise   
 

 𝑦17 − 𝑦1 𝑦17 − 𝑦13 𝑦𝑙𝑎𝑡𝑒𝑠𝑡 − 𝑦17 

Obs Period:  H0: news H0: noise H0: news H0: noise H0: news H0: noise 

1983Q2-2013Q1 0.59 3.52 0.45 1.67 -1.84 0.55 

1993Q2-2013Q1 0.63 2.41 0.48 1.30 -2.81 -0.22 

2007Q3-2013Q1 1.66 2.90 1.09 1.78 -3.05 2.58 

 
Notes: t-statistics employ Newey-West standard errors. Values in bold indicate that the null 
hypothesis is rejected at the 10% significance level.  
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Table 3: GW t-statistics testing H0
U for the MSE, CRPS and Logarithmic score loss functions 

and p-values for the Interval loss function at (1-α)=0.9, 0.75 and 0.50 
 

 MSE CRPS LogS Int: 90% Int: 75% Int: 50% 

b=1 1.34 1.38 1.61 0.28 0.30 0.53 

b=2 1.22 1.36 1.47 0.28 0.14 0.53 

b=3 1.29 1.45 1.53 0.10 0.14 0.14 

b=4 1.19 1.31 1.40 0.64 0.14 0.30 

b=5 0.92 0.98 1.20 0.64 0.30 0.83 

b=6 0.75 0.82 1.11 0.64 0.71 0.83 

b=7 0.86 1.12 1.36 0.28 0.90 0.30 

b=8 1.19 1.57 1.90 0.03 0.30 0.14 

b=9 1.20 1.57 1.89 0.03 0.30 0.14 

b=10 1.23 1.60 2.00 0.01 0.30 0.30 

b=11 1.08 1.38 1.80 0.01 0.56 0.30 

b=12 0.74 1.04 1.43 0.03 0.90 0.30 

b=13 0.03 0.41 0.95 0.10 0.71 0.83 

b=14 -0.19 0.09 0.79 0.10 0.71 0.30 

b=15 -1.20 -1.02 0.07 0.64 0.38 0.02 

b=16 -5.49 -4.82 -2.90 0.31 0.04 0.00 

 
Notes: Computed using the 23 observations in the 2007Q3-2013Q1 period. Values in bold imply rejection of 

H0
U at the 10% level. The t-statistics are computed using robust standard errors. The interval coverage test 

used is the Christoffersen (1998) unconditional LR test. 
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Table 4: GW conditional Wald-statistics for H0
C using the PMI data to measure wt+b  

 

 MSE CRPS LogS 

b=1 3.58 4.05 3.25 

b=2 2.95 3.21 2.65 

b=3 2.60 2.88 2.54 

b=4 3.43 3.31 2.58 

b=5 4.16 4.46 3.59 

b=6 4.85 4.80 3.07 

b=7 4.54 3.65 3.06 

b=8 2.03 2.86 3.82 

b=9 1.85 2.72 3.72 

b=10 1.90 2.80 4.16 

b=11 1.43 2.06 3.39 

b=12 0.57 1.15 2.38 

b=13 2.37 1.88 2.84 

b=14 2.65 2.52 3.29 

b=15 3.24 3.34 2.29 

b=16 43.41 36.45 29.10 

 
Notes: Computed using the 23 observations in the 2007Q3-2013Q1 period. Values in bold imply rejection of 

H0
C at the 10% level.  Chi squared statistics computed using robust standard errors, q=2. Thanks to Rafaella 

Giacomini for code to implement the GW test.    

 
Table 5: Performance of the MPC’s backcasts and the unconditional benchmark model: point and 
density forecast evaluation statistics at b=1, 4, 8, 12, 16. Evaluation statistics reported using ONS  
data after 4 years (𝑙 = 17) as the outturn (prediction horizon =l-b) 

 

 
 

 Bias RMSE RMSE Ratio  
to ONS 

LogS 
 

CRPS Int: 90% 
 

Int: 75% 
 

Int: 50% 
 

b=1 ONS 0.306 1.327 - - - - - - 
 MPC -0.046 1.243 0.937 2.070 0.702 83% 65% 43% 
 Uncond. -0.223 1.335 1.006 2.118 0.735 74% 61% 43% 

b=4 ONS 0.266 1.184 - - - - - - 
 MPC -0.024 1.138 0.961 1.898 0.655 87% 61% 39% 
 Uncond. -0.034 1.173 0.990 2.631 0.687 62% 38% 23% 

b=8 ONS 0.145 0.984 - - - - - - 
 MPC -0.070 0.953 0.968 1.513 0.559 74% 65% 35% 
 Uncond. -0.067 0.971 0.987 2.055 0.595 67% 37% 20% 

b=12 ONS 0.186 0.810 - - - - - - 
 MPC 0.092 0.770 0.951 1.215 0.520 74% 74% 39% 
 Uncond 0.139 0.806 0.995 2.533 0.483 62% 44% 29% 

b=16 ONS 0.011 0.286 - - - - - - 
 MPC -0.025 0.283 0.989 0.571 0.196 96% 91% 91% 
 Uncond -0.005 0.283 0.989 1.166 0.110 89% 89% 84% 

Notes: out-of-sample evaluation samples: b=1 backcasts: 2007Q3-2013Q1; b=4 backcasts 2006Q4-
2013Q1; b=8 backcasts 2005Q4-2013Q1; b=12 backcasts 2004Q4-2013Q1; b=16 backcasts 2003Q4-
2013Q1. Unconditional forecasts using data from 1983Q2. Entries for intervals are the empirical 
coverages at each nominal coverage rate (90%, 75% and 50%).  
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Table 6: Dynamic correlations of Unct|t+b

CRPS with the macroeconomic uncertainty estimates of Redl 
(2017) and the Bank of England (Inflation Report, Aug 2016) 
 
Table 6A: Correlations with Macroeconomic Uncertainty as computed by Redl (2017) 

 t-2 t-1 t t+1 t+2 

b=1 0.633 0.815 0.691 0.375 0.085 
b=4 0.664 0.761 0.530 0.272 0.048 
b=8 0.594 0.728 0.453 0.225 0.162 
b=12 0.543 0.400 0.050 0.014 0.270 

 
Table 6B: Correlations with Macroeconomic Uncertainty as published by the Bank of England in the 
Inflation Report, Aug 2016.  

 t-2 t-1 t t+1 t+2 

b=1 0.565 0.769 0.596 0.176 -0.163 
b=4 0.600 0.756 0.426 0.039 -0.202 
b=8 0.471 0.508 0.228 -0.053 -0.088 
b=12 0.238 0.183 -0.160 -0.204 0.073 

 
Notes: values in bold indicate statistically significant correlations using the asymptotic 2-standard deviation 
interval (2/sqrt(T)).  
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Figure 1: The MPC’s Fan Chart for GDP Growth (Inflation Report, May 2017) 

 

 
Notes: Bank of England’s fan chart for GDP growth (from the May 2017 “Inflation Report”). In their notes to 
this chart the Bank write: “The fan chart depicts the probability of various outcomes for GDP growth… To the 
left of the vertical dashed line, the distribution reflects the likelihood of revisions to the data over the past; to 
the right, it reflects uncertainty over the evolution of GDP growth in the future…The fan chart is constructed so 
that outturns are also expected to lie within each pair of the lighter green areas on 30 occasions. In any 
particular quarter of the forecast period, GDP growth is therefore expected to lie somewhere within the fan on 
90 out of 100 occasions.” 
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Figure 2: The expected revision and revision uncertainty for GDP growth one quarter in the past 
(b=1) – using the MPC’s backcasts  

 

 

 
Notes: The expected revision, using notation formally defined below, is𝑦̂𝑡

𝑡+1 − 𝑦𝑡
𝑡+1; 𝑦𝑡

𝑡+1 is the ONS’s 
‘preliminary’ or first estimate of year-on-year growth for quarter t made in quarter (t+1); and 𝑦̂𝑡

𝑡+1 is the 
MPC’s prediction of ‘mature’ GDP growth for quarter t made later in quarter (t+1). Expected uncertainty refers 

to the MPC’s ex ante prediction made in quarter (t+1) of the uncertainty (standard deviation) of (𝑦𝑡
𝑡+𝑙 − 𝑦̂𝑡

𝑡+1), 

where 𝑦𝑡
𝑡+𝑙 denotes the future (l>1) “mature” value of GDP growth.   
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

Figure 3: The ONS’s “Preliminary” (First Release) and “Mature” GDP Growth Estimates  

 

 
 
  

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

Q
2

 1
9

8
3

Q
2

 1
9

8
4

Q
2

 1
9

8
5

Q
2

 1
9

8
6

Q
2

 1
9

8
7

Q
2

 1
9

8
8

Q
2

 1
9

8
9

Q
2

 1
9

9
0

Q
2

 1
9

9
1

Q
2 

1
9

9
2

Q
2

 1
9

9
3

Q
2

 1
9

9
4

Q
2

 1
9

9
5

Q
2

 1
9

9
6

Q
2

 1
9

9
7

Q
2

 1
9

9
8

Q
2

 1
9

9
9

Q
2

 2
0

0
0

Q
2

 2
0

0
1

Q
2 

2
0

0
2

Q
2

 2
0

0
3

Q
2

 2
0

0
4

Q
2

 2
0

0
5

Q
2

 2
0

0
6

Q
2

 2
0

0
7

Q
2

 2
0

0
8

Q
2

 2
0

0
9

Q
2

 2
0

1
0

Q
2

 2
0

1
1

Q
2

 2
0

1
2

First Release After 4 years (17th Release)



 

 41 

Figure 4: UC-SV Results: Estimated Components for GDP Growth Data Revisions, 𝑟𝑒𝑣16 = (𝑦17 − 𝑦1) 
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Figure 5: UC-SV results for data of different maturities: estimated components for GDP growth data 
revisions for b=1 (𝑟𝑒𝑣16 = (𝑦17 − 𝑦1)), b=4 (𝑟𝑒𝑣13 = (𝑦17 − 𝑦4)), b=8 (𝑟𝑒𝑣9 = (𝑦17 − 𝑦8)) and 

b=12 (𝑟𝑒𝑣5 = (𝑦17 − 𝑦12)) 
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Figure 6: MPC backcasts for GDP growth one quarter in the past (b=1): 90% prediction intervals 
alongside subsequent ONS ‘mature’ outturns 
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Figure 7: MPC uncertainty: averaged (over the sample) ex ante uncertainty, 𝜎̂𝑡
𝑡+𝑏, and averaged 

unforecastable uncertainty, 𝑈𝑛𝑐𝑡|𝑡+𝑏
𝑀𝑆𝐸 , 𝑈𝑛𝑐𝑡|𝑡+𝑏

𝐿𝑜𝑔𝑆
, 𝑈𝑛𝑐𝑡|𝑡+𝑏

𝐶𝑅𝑃𝑆 , 𝑈𝑛𝑐𝑡|𝑡+𝑏
90%𝐼𝑛𝑡, at b=1,…,16 (sample includes 

forecasts made in 2007Q3 through to 2013Q1) 

 

 

 
Notes: 𝑈𝑛𝑐𝑡|𝑡+𝑏

90%𝐼𝑛𝑡 is multiplied by -1 so that positive (negative) deviations indicate under (over)-coverage. 

Predictions horizons decline with b as the forecast horizon is (17-b).  
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Figure 8: CRPS-based Data Uncertainty estimates, 𝑈𝑛𝑐𝑡|𝑡+𝑏
𝐶𝑅𝑃𝑆 

Figure 8A: b=1,….,7 

 
 
Figure 8B: b=8,….,16 
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Figure 9: CRPS Uncertainty Decomposition into Realised and Expected Reliability at b=1, 4, 8 

 

 

 
 
Notes: The decomposition uses a window of 4 observations, so reported values are averages of the last three 

quarters and the current quarter. Data uncertainty is defined as 𝑈𝑛𝑐𝑡|𝑡+𝑏
𝐶𝑅𝑃𝑆  as seen in Figure 8. We gratefully 

acknowledge use of code from Tatevik Sekhphosian to decompose the CRPS.   
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Figure 10: Data Uncertainty and Macroeconomic Uncertainty as measured by Redl (2017) and the 
Bank of England (Inflation Report, Aug 2016)  

 
 

 
Notes: Data uncertainty is defined as 𝑈𝑛𝑐𝑡|𝑡+𝑏

𝐶𝑅𝑃𝑆  as seen in Figures 8 and 9; and is reported at both b=1 (for the 

‘preliminary’ estimate) and b=4 (after one annual revision). The uncertainty measures plotted have their own 
units of measurement and so focus should be on correlations not scale. 
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A Online Appendix

A.1 US GDP Data Revisions

In this Appendix we replicate the revisions’analysis in Section 2 using US GDP data. The

US real-time dataset was obtained from the FRB Philadelphia’s Real-Time Dataset for Macro-

economists. Both the UK and the US national statistical offi ces, over our period of study,

provided first releases of quarterly GDP growth around 30 days after the end of the observation

quarter. In earlier research Faust, Rogers and Wright (2005) found that while both UK and US

first estimates of GDP growth are biased, it is harder to predict US data revisions in real-time;

this is also consistent with Aruoba (2008). The apparent (relative to the US) predictability of

UK data revisions may help explain why the MPC chose to provide probabilistic backcasts; we

do not currently see similar expressions of data uncertainty produced in the US.

Table A1 shows the characteristics of the revision process (yt+17t − yt+1t ) for US data. It

matches results in Table 1 in the main text. If we compare the UK statistics in Table 1 with the

US values in Table A1, we find that the UK revision size, as measured by the standard deviation

of (y17t − yt+1t ), is not very different to US values (only 25% larger) when computed over the

longer 30 year period (1983-2013). For the most recent period (2007-2013), however, we find

that UK GDP growth revisions are twice as large as in the US. If instead we measure revision

size using the mean absolute error, as in Offi ce for National Statistics (2016), as indicated in

the third column for each panel in Table 1, we find similar results: UK revisions, measured as

(y17t − yt+1t ), are similar in size to US values over the longer periods. This is consistent with the

results in Offi ce for National Statistics (2016). But they are twice as large if computed between

2007 and 2013.

We also estimate the UC-SV model in (3) using US data, to see if these temporal changes to

the data revision process are specific to UK data. Figure A1 plots the posterior mean estimates

and 90% credible intervals for the time-varying revision mean and both the measurement error

and the revision mean volatilities for l = 17 and b = 1. The plots also include shaded NBER

recession phases; so we can see how the estimated data revision components relate to business

cycle phases. The time-variation is smaller in the US data: the revision mean fluctuates between

1.5% and -2% and its sign exhibits more variability, so it may be harder to predict than in the

UK. An important similarity with the UK is that the data revision mean is also large and

negative during the 2008/2009 recession. This is also associated with an increase in revision
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mean volatility from 0.2 to 0.4. There is no evidence of negative revision mean or increasing

revision mean volatility in the 1990/91 and the 2001 recessions. There is very little evidence of

time-variation in the measurement error volatility.

These results indicate that data revisions were also larger in the US during the Great Re-

cession. Because there is no evidence that data revisions are more sizeable in other recessionary

periods in the sample, we speculate that large data revisions might be more strongly linked

with recessions originating in the financial sector. An alternative possible explanation is that

data revisions are related to the depth of the recession.

A.2 UC-SV Model for Data Revisions: Additional Results

Here, we start by presenting additional details about estimation of the UC-SV model in Section

2.

We estimate the UC-SV model by Gibbs sampling using the algorithm in Chan (2018). In

order to test whether we need both stochastic volatility factors, we consider the Bayes’factor

as in Chan (2018). Table A2 shows the Bayes’factors (with standard deviations over 5 chains

of 100,000 kept draws in parentheses) testing whether each volatility process is time varying.

Positive Bayes’ factors suggest that there is indeed time-variation to the volatility. Bayes’

factors are presented for each volatility process and also imposing the joint restriction that

$g = $h = 0. The results are presented assuming that the 17th release is the final revised

value (l = 17); and making different assumptions about the earlier release: b = 1, 4, 8, 12. The

statistics in Table A2 suggest, for all revision processes considered, that there is time variation

in both the measurement error and local revision mean volatility.

We also considered a specification that allows for serial correlation in the transitory compo-

nent, by writing the first equation of (3) as:

rev
(l−b)
t = µt + ρ(rev

(l−b)
t−1 − µt−1) + e.5(h0+$hh̃t)ζε,t.

After estimating this modified specification for l = 17 and b = 1, we found that ρ is estimated

to be about 0.05 so, qualitatively, the results in Figure 4 are unchanged.

We then allowed the innovations to have a t-distribution, so that the one-step-ahead pre-

dictive density for data revisions could exhibit fat tails. We use the methods described in Chan

and Hsiao (2014) to estimate both stochastic volatility processes with a t-distribution. We find

49



estimates of the t-distribution degrees of freedom around 25, implying that, qualitatively, the

results are again similar to those shown in Figure 4 using the normal distribution.
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Online Appendix: Tables and Figures for Galvao and Mitchell “Measuring Data 
Uncertainty: An Application using the Bank of England's Fan Charts for Historical GDP 
Growth” 
 
Table A1: Summary Statistics for GDP Growth Data Revisions with US Data (BEA, 
Philadelphia Fed real-time database) 
 

 𝑦17 − 𝑦1 𝑦17 − 𝑦13 𝑦𝑙𝑎𝑡𝑒𝑠𝑡 − 𝑦17 

Obs Period:  mean std MAE mean Std MAE mean std MAE 

1983Q2-2013Q1 -0.141 0.740 0.597 0.012 0.188 0.097 0.349 0.402 0.391 

1993Q2-2013Q1 -0.335 0.734 0.644 0.011 0.132 0.076 0.186 0.265 0.230 

2007Q3-2013Q1 -0.504 0.781 0.607 0.019 0.175 0.107 0.020 0.249 0.126 

 
Notes: Values in bold indicate that the data revision mean is statistically different from zero using 
robust (Newey-West) standard errors. MAE is the mean absolute error, or mean absolute revision. 
Because we have to wait 4 years to observe our measure of “mature” data, the last observation for 

which we observe a 17th release is 2013Q1. We use the July 2017 data vintage to measure 𝑦𝑙𝑎𝑡𝑒𝑠𝑡 . 

 
Table A2: Bayes’ factor validating stochastic volatility components 
  

Model for:  𝑦17 − 𝑦1 𝑦17 − 𝑦4 𝑦17 − 𝑦8 𝑦17 − 𝑦12 
Measurement  
Error  

1.55 
(0.06) 

2.60 
(0.13) 

0.8 
(0.09) 

1.60 
(0.14) 

Bias 3.28 
(0.13) 

1.70 
(0.07) 

0.1 
(0.07) 

1.2 
(0.12) 

Both 24.53 
(1.20) 

48.6 
(3.85) 

43.5 
(3.03) 

70.00 
(3.77) 

 
Notes: Entries are averages over 5 chains; standard deviations are in parentheses.  

 
Table A3: Performance of the UC-SV model backcasts: point and density forecast evaluation 
statistics at b=1, 4, 8, 12, 16. Evaluation statistics reported using ONS  data after 4 years (𝑙 =
17) as the outturn (prediction horizon =l-b) 
 
 

 Bias RMSE LogS 
 

CRPS Int: 90% 
 

Int: 75% 
 

Int: 50% 
 

b=1 0.179 1.542 2.103 0.872 74% 52% 30% 

b=4 0.153 1.444 2.567 0.803 77% 65% 31% 
b=8 -0.027 1.098 3.063 0.706 53% 53% 27% 
b=12 -0.012 0.858 2.917 0.428 59% 47% 32% 
b=16 0.005 0.283 3.138 0.129 84% 84% 82% 

Notes: out-of-sample evaluation samples: b=1 backcasts: 2007Q3-2013Q1; b=4 backcasts 2006Q4-
2013Q1; b=8 backcasts 2005Q4-2013Q1; b=12 backcasts 2004Q4-2013Q1; b=16 backcasts 2003Q4-
2013Q1. Model estimated using data from 1983Q2 up to the date available in real-time. We use the 
posterior mean of 𝜇𝑇 to compute h-step-ahead forecasts for revised values assuming a Gaussian 

density with predicted variance of 𝑣𝑎𝑟(𝜀𝑇) ∗ ℎ ∗ exp(𝑤ℎ
2) + 𝑣𝑎𝑟(𝜂𝑇) ∗ ℎ ∗ exp⁡(𝑤𝑔

2), where h is the 

forecast horizon (l-b=h). 
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Figure A1: US Estimated Data Revision Components 𝑟𝑒𝑣16 = (𝑦17 − 𝑦1)
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