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6a Andrew Carverhill

Numerical methods

The aim of this paper is to review and compare the standard approaches to
the numerical evaluation of options. We will pay particular attention to
accuracy and efficiency, and to dividends and the early eXxercise oppor-
tunity in the case of American options. This report can be regarded as an
introduction to Chapter 6b, and it leans heavily on Geske and Shastri
(1985).

We will make the usual assumptions about market behaviour, namely
that continuous trading is possible with no transaction costs, and that there
is no penalty for selling short, and no taxes. Also, we will assume that
the risk-free continuously compounded interest rate is a constant, . Our
standing assumption about the stock price s, on which the option is written
is that it has constant proportional drift (expected rate of return), u, and
constant proportional volatility, o.

I European options

These values obey the celebrated Black—Scholes equation:

0¢,(x) 0¢,(x) _ lxzazaz(pr(x) _ (1) :
ot ox 2 ox* ‘:

= rp/(x) — x

where ¢,(x) is the option value at time ¢ if the stock price is then x. Thisis a
diffusion equation in reverse time, and its solution is determined by the §
initial (final!) condition:

_ Jmax{(c — x), 0} for a put
pr(x) = {max{(x —¢),0}  for acall @

where T is the maturity time of the option, and c is its strike price. The fol- {
lowing four subsections all present ways of solving equation (1) numerically.
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The analytic formula
This is the most efficient solution of equation (1), and was actually given by
Black and Scholes (1973). For a call it is

¢ (x) = xN(d,) — exp(=r(T — 1)) -c- N(d>),

In(x/c) + (r + o /2)(T - t)
oVT

d2=d1_O'VT"‘t,

and N(-) is the cumulative normal function (with variance equal to 1). The
disadvantage of this formula is that it is not easily adapted to dealing with
options on stocks which pay dividends or where exercise before maturity is
possible. These issues are discussed below.

where d, =

The explicit finite difference method
For this method it is appropriate first to make a logarithmic transformation
of equation (1), so that it becomes:

Oy, (x)

15\ 0we(x) 1 ,0%w(x)
Bt G) ()

2 ox 20 dx?

where y,(x) is the option value at time ¢ if the stock price is exp(x).

The explicit finite difference method then proceeds as follows. First,

replace the space axis for equation (3) by the grid {x_,,,, X_,..s1, ..., X0s

. X} such that the distance between neighbouring points is a constant
h. and exp(x,) = c (strike price). (We discuss the choice of 4 and m below.)
Also replace the time axis by the grid (labelled backwards for convenience)
{.... t, 1, to} such that the distance between neighbouring points is a
constant k£, and ¢t, = T.

Then write y, (x;) as w; for each i and j, so that the option value at any
time ¢ (as a function of the logarithmic stock price) is represented by the
vector of values (W', ..., w',,). (This vector represents the values of the
option for prices exp(x_,,), ..., exp(x,,).)

Next, replace the derivative expressions in equation (3) using the fol-
lowing finite difference approximations:

= i) - (7 -

9 . . .
ngx’) = (Wi — Wik + Ok) (4a)

o, (x; . .

—'”(;)(C 2 (Wie1 = Wi_))I2h + O(K?) (4b)

azw,(x,-)

axlz = (W;+1 2W + W 1)/2/1 + O(hz) (4C)
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to yield the approximation to equation (3):
witl=pTwi_| + pwi + ptwi,, (5)
where
p~ = k(c?2h* — (r — 102)12h)
p=1—ka?lh®>— rk
p* = k(c*2h* + (r — L62)/2h)

The solution is obtained by evolving backwards in time: if the solution at

time ¢ is known (that is, the vector (w",,, ..., W',n)), then we calculate
(Whhel, ... . Wi ly) explicitly using equation (5); and we calculate the
side values w'¥,, and w'}} using the equations
witl o witl — g
—m+ -m
il il for a call,
Wim = Wim—1 = exp(x,,) — exp(X,,,—) )
Wi—-+-rrlz+l - Wi:-nlr = exp(x—m) - exp(x—m+l)
el el for a put.
Wm — Wy = 0

(These equations for w,} come from the derivative conditions

8. (x) _ {1 if x is large

O0x 0 if x is small

for a call, and

04, (x) {0 if x is large

ax | —1if x is small

for a put.)

The numerical stability of this method is ensured by the condition [p~| +
[Pl + |p*| < 1; without numerical stability the errors associated with the
method may become amplified as it evolves through time, so that the
solution becomes useless. Note that since p~ + p+pT =1-—kr whichis
very close to 1, the stability condition is almost equivalent to the condition
that p~, p, p™ are all non-negative. In fact this latter condition also ensures
stability. Having chosen the space step 4, this stability condition dictates
that the time step k cannot be too big, and in fact that k = O(h?).

Here we explain why the condition |[p~| + |p| + |p*| < 1 ensures
numerical stability. Suppose that at time ¢, the numerical procedure intro-
duces the error (eL,,, ..., &),) to the solution (W', ..., w',). As time
evolves, this error is perpetrated through the system via equation (9) itself,
and so its effect at time ¢, is (., ..., &,), where
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& =pTeo +pe + pea < (Ip7] + pl + [p7]) max{el,, .. ).

From this we see that if the condition is satisfied, then |&| < max{|e_,,|.
..., |e%]}. and so the error is not amplified.

To implement this method, first choose 4 to give a sufficiently detailed
table of results (a value of 0.01 or 0.02 might be appropriate — this makes
the result sensitive to a 1 or 2 per cent change in stock price). Also choose
m to give a sufficiently wide spread of results — it is appropriate to go
perhaps two standard deviations beyond any stock price for which the
option value is required, in order to minimise the effect of the approxi-
mation equations (6). Then choose k to give numerical stability; for h =
0.02 (and r = 0.7, ¢ = 0.3, stability will be achieved for & = 1/300 years.
With these values, and for time to a maturity of 0.5 years, the method will
solve equation (1) to within 0.1 per cent.

The explicit method is simplest among finite difference methods, and
Geske and Shastri (1985) conclude that for our problem it is the most
efficient. '

The implicit finite difference method

For this method it is also sensible to work in logarithmic transformation,
that is with equation (3) rather than equation (1) (see Geske and Shastri,
1985). The essential difference from the explicit method is that equation
(4a) is replaced by '

GL(;(tx_,) = (w;:—.l — wi)lk + O(k),
to yield the following approximation to equation (3):
p Wi+ pwi+ ptwi = wi! (7)
where now
p~ = —k(a*12h* — (r — 30°)/2h),
p =1+ ka?h® + rk,
pt = —k(a*2h* + (r — 3?)12h).
From the option values (w',,, ..., w',,) we can calculate the values
(wihe, ..., whh) as before but using equation (7) (with i replaced by

i + 1), and the side conditions in equations (6) above. However, equations
(7) and (6) together now do not give each answer explicitly, they give us a
simultaneous equation for the values (w7}, ..., w,.). In matrix notation
this equation is
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[ . ar ! i ] ] B i
p +p.p w n|+lw W+ 0
p.p.p"
p.p.p’
_ p.ptp] 0
_Wf:—ll _ _W:n-l _ ;_expxm - expxm»l__

for a call, and the same for a put, but with the last term replaced by

EXPX_py — EXPX—pm+1
0
0
(Having solved this, the side values w',, w;; ' are obtained using equa-
tions (6).) This matrix equation is tridiagonal and so it is quite easy to solve
numerically — it can be solved in two passes through the matrix, one to
eliminate the lower diagonal, and one to back-substitute for the answers.
To implement this method, choose h and m as before, and choose £ to
ensure the accuracy of the method. Note that there are now no constraints
imposed on k by numerical stability.
The implicit method is more difficult to understand and to implement
than the explicit, and it requires the solution of a tridiagonal matrix equa-

tion at each time step. On the other hand a longer time step (and hence
fewer iterations) is allowed than for the explicit method.

The binomial method
In this method the stock price process is approximated by a random walk
with discrete time steps, and with the same drift and variance. (Actually we
work with the logarithm of the stock price, and the drift and variance are
required to match only in the limit of small time steps of the random walk.)
Then the option value is calculated simply as the mean (expected) payoff
or(x) (given by equation (2)) at time T (and discounted back to the
present time), given by this random walk. The binomial method is very
elegant, but the reasons for its success are rather subtle. In fact we must
pretend that the drift of the stock price is 7 rather than u for the method to
succeed (see Chapter 6b; Smith, 1979).

Let us denote the parameters of the random walk as follows: the discrete
time step is k, and as time increases by k the log-price might jump up by h*
or down by 4™, with probabilities p* and p~, respectively. There is some
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leeway in choosing these parameters: having chosen &, then common choices
for the others are the following:

R= p*
Cox. Ross and Rubinstein +oVk 3t (r— 50—3) V2o
Jarrow and Rudd (r—i0®)k+ o Vk L

(See Omberg, 1987.)

To implement the binomial method, suppose that the current logarithm
of the stock price is x, and that there are n time steps to go until the maturity
of the option. After k time steps the logarithmic stock price process will be
at the point x + ih* — (k — i)h™, where i is the number of up steps
performed by the process. This point is represented as bf in Figure 6a.1.

To obtain the option value for the current logarithmic stock price x (i.e.

Figure 6a.1
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the point by on the lattice) we work recursively back from time 7, as we did
for the finite difference methods: the values at b, ..., b” are known from
the final condition (2); to obtain the values b§™", ..., bl!Z| we simply use
the explicit equations

byt = exp(=rk)(p b + p*bii)

fori =0, ..., n — 1, then continue inductively backwards.

This method is accurate to within 0.1 per cent if we take k = 1/100 years,
and the Jarrow—Rudd parameters from the table above (which seem pre-
ferable to the other parameters). For this value of k, A + A~ is about 0.07.
This helps explain why the binomial method is much more efficient than
the explicit finite difference method, although the procedures look similar:
the binomial method can work with a much coarser space mesh. Geske and
Shastri (1985) report that for a single evaluation the binomial method is
more efficient by a factor of about 10.

The main disadvantages of the binomial method over the finite difference
method are that it must be implemented separately for each option evalu-
ation, and that it is not easily adapted to dealing with a stock which pays a
constant dividend (see below).

II American options

The value of an American option is theoretically rather difficult to derive
and to express; it is the solution to a free boundary problem associated with
equation (1) (see Chapter 6b; Karatzas, 1988). However, it is not difficult
to adapt the iterative procedures in Subsections 1.2, 1.3 and [.4 above to
dealing with the early exercise opportunity; just replace the calculated
value ¢,(x) at each step by max{¢,(x), X(x)}, where X(x) is the payoff
from immediate exercise (thus X(x) is given by equation (2)). If we have
¢,(x) < X(x) and x is the current stock price, then exercise the option
immediately. This adaptation 1s in standard use, and it is theoretically
justified In Chapter 6b.

The analytic formula (Subsection 1.1) is more difficult to adapt, but it
has been done by Geske (1979), Geske and Johnson (1979) and Selby
and Hodges (1987), and a description of this adaptation is given in Chapter
6b. The adaptation evaluates the option with exercise opportunities re-
stricted to a small collection of, say, n times (with perhaps n = 3 or 4), and
thus only gives an approximation to the option value. However, this ap-
proximation is surprisingly accurate, perhaps within 2 per cent of the strike
price; this accuracy is justified in Chapter 6b. The procedure requires the
evaluation of cumulative normal distributions of dimension n, which makes
it much more time-consuming than that of Subsection I.1.
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[II Dividends

To value an option when the underlying stock pays dividends it is necessary
to assume in advance the terms of the dividends, and how they affect the
stock-price process. It is usual to assume that the dividends are fixed and
constant (say, equal to d), and are paid at fixed times. This is usually how
the firm issuing the stock is expected to behave. On payment of the dividend
the price of the stock falls by d; it is usual to assume that the proportional
drift, «, and volatility, o, of the stock remain constant across dividend
dates.

In principle, it is easy to adapt the recursive procedures of Subsections
[.2, .3 and I.4 to deal with dividends under these assumptions, simply by
altering the value function ¢, as we evolve backwards through the divi-
dend date. This alteration is just given by

(x) = {max{w, + (x —d), (x —¢)} fora call
Or or-(x — d) for a put.

(Exercise the call immediately antedividend if (x — ¢) > ¢,-(x — d); never
exercise a put immediately antedividend.) However, this procedure is a
little awkward when applied to the finite difference methods because the
option value function, ¢,, is stored in the computer as a table of its values
at the grid points {exp(x_,,), ..., exp(x+m,)}; to find ¢,-(exp(x;)) we must
estimate ¢,-(exp(x;) — d) by interpolation because exp(x;) — d is in gen-
eral not a grid point. Moving the grid to the points {exp(x_,,) + d, ...,
exp(x.,,) + d} leads to other difficulties because this grid is not equally
spaced when it is logarithmically transformed.

To adapt the binomial method to dealing with dividends with the above
assumptions is also difficult for the same reasons, and the difficulty cannot
be overcome by interpolation because the binomial methods uses a much
coarser mesh than the finite difference method in order to gain an efficiency
advantage over it. Geske and Shastri (1985) explain the problem in terms
of the triangular lattice of Figure 6a.1 failing to fit together when the grid is
moved to {exp(x_,,) + d, ....exp(x+,,) + d} — they refer to it as the
‘exploding tree problem’.

Dividends are easier to handle if we make the simplifying assumption
that the amount of the dividend is a constant proportion (say, d) of the
stock price. This allows us to move the grid to (exp(x_,,) (1 + d), ...,
exp(x+,,) - (1 + d)), which has the same regular spacing as the original grid
when it is logarithmically transformed. Thus we can continue backwards
from the new grid with the same parameters in our finite difference or
binomial procedure as before, and we can calculate ¢,-(exp(x;)(1 + d)) as
¢.-(expx;) for a put or max{g,-(exp(x;)), (exp(x;) — ¢)} for a call.

A further simplifying assumption is that the dividend is a constan. ‘ropor-
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tion of the share price and is paid continuously at a rate of, say, d*s,. To
model this. one would use the following equation by Garman and Kolhagen
(1983), rather than our equation (1):

9¢p,(x)

1 2 262(/’r(x)
—x0 T ——.
ot

oy ¢ 200 _
= rp(x) = (r = dM)x 5 = 2P0

The Garman-Kolhagen equation was originally developed to value foreign
exchange options, and for such an application d* is the foreign interest
rate. Note that an American call will not be exercised between dividend
dates if these are discrete, but for a continuous dividend the option might
be exercised prematurely if d* > r.

IV  Summary and conclusions

We have described in detail and compared some standard methods for
valuing stock options, namely the analytic formula, the explicit and implicit
finite difference methods, and the binomial method.

The analytic formula is most efficient for the basic valuation, but it is
very inflexible, and cannot easily be adapted to dealing with early exercise
or stocks which pay dividends. The finite difference methods are very
flexible and can deal with these factors, though they are rather cumber-
some and inefficient. The explicit method is simpler and more efficient
than the implicit. The binomial method is readily adapted to dealing with
early exercise, and is much more efficient than the explicit finite difference
method. However, it is only easily adapted to constant proportional divi-
dends and not the more usual constant absolute dividends.
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