The Ho and Lee Term Structure Theory:

A Continuous Time Version

A P Carverhill

Research Fellow
Financial Options Research Centre
University of Warwick

June 1989

Financial Options Research Centre
School of Industrial and Busines Studies
University of Warwick

Coventry

CV47AL

Phone: 0203 523606

FORC Preprint: 88/5
(Revised)



THE HO AND LEE TERM STRUCTURE THEORY; A CONTINUOUS TIME VERSION

1. AIMS

In their paper [HL], Ho and Lee present an innovatory theory of the term structure
of interest rates. Their theory differs from those of their predecessors (notably [V], and
[CIR]) is concentrating on the evolution of the term structure from its initial shape, rather than
on an equilibrium characterisation of what the shape of the term structure should be. It works
in discrete time, and with the simplifying (though apparently naive) assumption that the term
structure evolves binomially, i.e. given the structure at a certain time point, then the structure
at the next time point can be one of only two alternatives. However, upon this basis, and

using some very reasonable arguments, they are able to characterise completely the evolution

of the term structure.

Ho and Lee's assumption of binomial evolution is not as naive as it might seem; it is
equivalenf to the assumption that the random input to the evolution is a binomial random walk,
and since a random walk is a good approximation to a Brownian Motion when the discrete
time increments are small, the binomial assumption is close to the assumption that the term

structure is driven by a single Brownian Motion as its random input.

Our aim is to present a continuous time analogue of the arguments and conclusions of
the Ho and Lee Theory. This article is meant to stand in relation to that of Ho and Lee in the
same way as the usual treatment of the Black-Scholes formula for equity options (see [BS])
stands in relation to the binomial approach to option valuation of [CRR]. Our motivation and
conclusions are similar to those of [HIM], and our debt to [HIM] is clear. However, our

techniques are different, being directly based on those of [HL].

A plan of this article is as follows:



Sections 2 and 3 are parallel to one another, Section 2 dealing with the original Ho and
Lee Theory, and Section 3 with the continuous version. In each we present first the
framework, and then the conclusions, and then the techniques of the arguments, which are

based on considerations of "arbitrage across maturities", and "time homogeneity".

The work presented here has benefited greatly from discussions with my colleagues

Nick Webber and Stewart Hodges, and our MBA student Chew Cheah Boon.

2. THE HO AND LEE THEORY

Here we briefly review the Ho and Lee Theory ([HL]), adapted to our notation.

2.1 Assumptions and Notation

2.1.1. The set of discrete times with which the model deals is denoted by (o, t1, t2 , ...).

The time interval between each time is arbitrarily chosen but it should be a small quantity.
2.1.2. The model also assumes that the market clears at the times of t,, t] and so on.
2.1.3. Foreach t;< tj , there exists a pure discount bond at time t; which matures at time .
The price of this bond is denoted by P(t; tj) so thatif one lends £ P(tj tj) attime t; until
time tj, one gets back £1 at maturity.

The term structure at time t; then is simply the set of prices

(P(t, ti + 1), P(ti, +2) »...).

Equivalently, it may also be expressed as the set of "yields" or "rates"



@t i), Tt ti42) 5. -

where
r(ti tj) = -1/ (ti - tj) log P(t;, t)) .
The rate 1 is the interest rate provided by the bond.

The term structure may also be thought of as being the discount function P(t;, -) or yield

I‘(ti, -).

2.1.4. The term structure evolves randomly and is assumed to evolve such that given the term
structure at time tj, that at time tj;1 can only be one of two alternatives namely the "upstate"
and the "downstate". It is further assumed that as the model evolves over successive time
increments, the effect of an "up" followed by a "down" is the same as that of a "down"
followed by an "up". It follows from this that the random aspect of the evolution can be

characterised simply by a random walk which might step up or down by equal amounts as

time moves from t; to tjy] .

2.1.5. The proportional deviation of the discount function at time tj4] from the forward
discount function from time t; to ti+; (.e. P(tj,-)/P(tj, tj+1)) is time homogenous and
independent of the term structure. Thus, the evolution from time t; to ;41 can be

represented by the functions H(tj, tj+1,-) and H*(tj, tiz1,-), such that
P(tisg, tq) = (Pt » to)/ P(t;, tir1)) H(ti , tina, tg) (1)

for all q > i, if the increment from tjto tj+] sees "up", and

P(ti+1’ tq) = (P(tl > tq)/P(ti, ti+1))H*(ti > tit1, tq) (1%)



if the increment sees "down".

The functions H and H* are time homogeneous (i.e. H(ti, tirg, tq) = Htisj, tis1j> tgr)

for any j, and similarly for H*) and independent of P(t;, -).
2.1.6. Finally, the model assumes that there are no taxes or transaction costs.
2.2 Conclusions

These can be summarised as:

exp Altq - tis1)
T+ (1-m) exp Altq - tis1) (2)

H(t;, tiy1, tg) =

H*(ti7 ti+1, tq) = 1 ’
T+ (1-m) exp At - tis1)

where = and A are parameters to be determined empirically. These parameters are difficult
to interpret intuitively. The parameter A must be negative, and is related to "volatility",
A =0 corresponding to certainty. The parameter 7 is the "implied" binomial "up"

probability, and we have

P(ti, tg) = [TP(ti+1, tg) + (1-m)P*(tis1, tg)] P(8;, tis1), (3)

where P(tj4+1 tq) corresponds to "up" and P*(ti+1 tg) corresponds to "down" in the interval
[ti tix1] . Equation (3) tells us that the price at ime tj of the bond to mature at time tq is
the expected and discounted price of the same bond at time tj41, if 7 is actually the "up"
probability. Thus, © would be the up probability if there were no risk premia, though the

Ho and Lee Theory does not depend on there being no risk premia, and the actual "up"

probability might be bigger than @ .



2.3 Arbitrage Across Maturities (see [HL], Appendix A)

This argument is commonly used in 1-factor term structure theories (see [V], [CIR],
[HL], [HIM]), and it involves constructing a hedged portfolio of two pure discount bonds of
different maturities. So suppose such a portfolio contains quantities &; and &, of

maturity ty, and tg, bonds. Then its value at time t; is
E1P(ti, tq,) + E2P(t, tg,) (4)
and its value at time tj; is

glp(ti-f-la tq1) + éZP(tiﬂa tqz)

in the upstate, and similarly in the downstate, with H replaced by H* and P(t1,-)

replaced by P*(tjyq, -) .

If & and & are chosen such that the portfolio is hedged (i.e. the value (5) at time
ti+1 1s independent of "up” or "down"), then the return must be that of the maturity t;41

bond, i.e. we have the equation.

E1P(tis1, tg) + EaP(tiv1, tg,) _ 1
E1P(t;, tg,) + E2P(ti, tgy) P(ti, tis1) (6)

and a similar equation (which we will call (6*)), with P(ti4; , -) replaced by P*(tq,-) .
From (6) and (6*) with substitutions from (5) involving H and H*, we can determine &;

and &;, and conclude that



1- H*(tiv ti+19tq1) _ 1- H*(ti’ ti+l ,tq7)
H(t, ti+1, tqy) - H*(t, ti41, tqy) H(t;, tiv1, tgp) - H*(G, tivistgy)

Q)

Denoting the value of (7) by © we conclude that

TH(t1, tiv1, tq) + (1 - ) H¥*(t, tiv1, tg) = 1
for any tq and hence equation (3).

It is instructive to rewrite (3) as

P(t1, tg) = P(ty, ti1) E[P(ti1, t)] (8)
where E is the expectation corresponding to the "risk neutral probability".

2.4  Time Homogeneity (see [HL] section 2C)

Our version of [HL] equation (12) is:

P(tia tq) H(ti’ ti+19tq) H*(ti+l3 ti+23tq)
P(t;, tiy2) H(t;, tiv1, ti+2) ' )

P(t142, tg) =

(This is obtained by iterating (1), and gives P(tj;2, -) in terms of P(t;, -), if [t;, tj+1] sees
"up" and [tj41, tit2] sees "down"). The R.H.S. of (9) is unchanged if H and H* are
swopped ("up-down" replaced by "down-up" - see Assumption 2.1.4), and so we have the

following, also using H(ti+1, tj+2, tg) = H(ti, ti+1, tq-1) (time homogeneity):

H(t, tivnste) B*(W tivntg1)  _ H*(E tivaste) Ht tivntg )
H(t;, ti+1, tis2) H(ti, tiv1, tis2) (10)




From (10) and (3) we finally obtain formula (2) for H and H*.

3. THE HO AND LEE THEORY IN CONTINUOUS TIME

3.1 The Set Up

Now we assume that for any times t<q there is a pure discount bond at time t
which matures at time q , and whose value we will denote by P(t, q). We take the set-up as

in [HIM] and write this as

q

P(t,q) =exp[- I f(t, ©)dtl,
(11)

where the "forward rate" f(p, t) (defined for p < 17) satisfies

df(p, T) = a(p, ©)dp + o(p, 1)dB, . (12)

We assume that in equation (12) the coefficient o and ¢ are non-random, i.e. they do not

depend on the behaviour of the term structure.

If we define the function H(t, s, q) for t < s < q by

PGs, @) = Pt D/p(; o) Ht, s, Q)

(13)
(Cf. equation (1)), then we see that
q
H(t,s,q) = exp [- I [f(s, T) - f(t, T)]d7]
o= (14)



q s
= exp [-j j [o(p, T)dp + o(p, T)dB] dt] ,
p=t

b (15)

and so H(t, s, q) depends on the random input dB, for p ¢ [t, s] . Note that our
assumption that o and ¢ are non-random implies that H does not depend on the previous
behaviour of the term structure. We also assume that o(p, t) and o(p, T) depend only on
T— P, and this corresponds to time homogeneity in our model. Thus, our set-up is truely a
continuous time version of the Ho and Lee set-up. Our technical assumptions about o(p, T)
and o(p, T) are just that they are bounded and Lipschitz right-continuous in p (this does

- allow them to jump in value as p increases, and with time homoegneity implies that they are

left continuous in 7), and that G is greater than zero.

3.2 Conclusions and Comparison with the Model of [HIM]

The conclusions are simply that o(p, T) is constant and that we have
alt,q) = -yo + o%(q-t) , (16)

where the constant 7y is the risk premium. These conclusions look the same as those of
[HIM] Section 7, though we argue more fully for the constancy of ¢, and we do not try to
avoid the presence of the risk premium in our answer (Our y corresponds to ¢ of [HIM]

Section 7. Note that time homogeneity would force ¢ to be constant.)

As [HIM] explain, the "equivalent risk neutral probability” (Cf. [HL]) is obtained by

replacing B, by §p , where

dBp = dB, - ydp ,



N
and if E; denotes the expectation at time t with respect to By, then we can write for

t<s<gq
P(t, q) = E; [(/B(t, s)) P(s, )] (17)

where the discount factor B(t, s) is the value at ime s of £1 invested at time t, at the short

rate of interest. (Compare (8) and (17)).

As [HIM] also explain, the conclusions of the Ho and Lee model in continuous time
are as they stand unsatisfactory, because they lead to predicting that the abort interest rate
eventually becomes negative or unbounded, with high probability. (To obtain the short

interest rate 1(s) note first that r(s) = f(s,s), and hence using (12) that for s >t we have

S

1(s) = f(s, s) = 1f(t,s) + f [a(p, s) ds + o(p, s)dB,] .

s=t
Then substituting for o and ¢ using (16) yields
1(s) = £(t, ) - 6. Y. (s - 1) + 07, (s - ) + 6(Bs - By) .

To prevent this unsatisfactory conclusion, [HIM] allow the "volatility" o to be attenuated
when the short rate is small, but then they have to allow o to be random (see [HIM] Section
8). In [C] we present another formulation for the evolution of the term structure, which

captures the features of the models of [HL] and [HIM], and in which we try to make the

dependence of the coefficients on the term structure more intuitively clear.



3.3 Arbitrage Across Maturities

Attime t form a portfolio of &; of maturity g; bonds (i = 1,2). Then its value at

time t is
élP(t, ql) + §2P(ts q2) ’ (18)
and at time t+e¢ is

C,P(t+¢e,q1) + EP(t+e,qy)

&P, qu)

E2P(t, q2)
= e ————— H{, t+E,qg) .

H(t, t +€, +
( Qv P(t,t+¢€) (19)

Now take an approximation H to H given by

H(t, t+¢,q) =

q q q
1-¢ f aut, t)d*t-Afo o(t, )dt + %e(j o(t, 1)dt)?

=t+ T=t+€ T=1+€

(20)

(Note that Hisa Taylor expansion of H to order (AfB)3 which is o(g) in expectation.

By AfB we mean By - B;.)

If & and &; are chosen such that

q1 Q

o(t, T)dt + &2P(t, q2) f o(t,T)dt=0 ,

E.’lp(t’ ql)j
=t 21

=t

10



then over the time [t, t + €] the portfolio is hedged to o(g) in expectation. To see this note

that if we substitute H for H in (19) with this choice of &; and &, then the term in

AfB cancels. Since it is hedged, then in the absence of arbitrage opportunities, we have
E1P(t + &, q1) + EP(t +€, q0) 1

= +0(€) .
E1P(t,q1) + ExP(t,q0) P(t, t+¢€) 22)

Substituting into (22) using the formula (20) for H and (21) for &, &, and cancelling, we

obtain

147 q1 qi
f o(t,t)d [ f ot, r)d«.--;—( f o(t, 7)d1)?]

=t =t V=t

Q @ @
. f o(t, )d1[ f ot, T)dt -;— ( f o(t, ©)dt)?]

<) ql
j o(t, T)dt - j o(t, T)dt
=t =t (23)

Also, since the denominator of (22) is not zero (since o is greater than zero), we conclude

that

q q
[j o(t, T)dt - % (f o(t, 1)dt)?]
=t =t /

q
f o(t, t)dt
=t (24)

is the same for q =q; and q =q, and hence is independent of q . If we denote the value

of (23) by -y, then we have

11



q q q
f ot, T)dt = -y [f o(t, T)dt +;—(f o(t, T)dt)? .
=t 1=t =t (25)

In the following section we show that G is constant. For the moment note that ¢ constant

and (25) yield (16).

3.4 Time Homogeneity

First we present this argument in an intuitive form, and then in Section 3.5 we show

how to make it rigorous.

Note first that

H(t, t+&, @) H(t+e,t+2¢€,q)
H(t+e, t+2 €) = Hiptaaa 26)

(cf. Equation (9) above), and put

q q
hg (t,q) = € f oft, T)dt +u j o(t, T)dt .

T=t+g T=t+g 27

Note that hg(t, q) is a Taylor expansion of - log H(t, t+€, q) if we put u= AfB ,and the
the error is order u3, which is o(g) in expectation. Now put d = AfﬂB and substitute (27)

into (26) to obtain
4(t, ) + hd(t, g-€) - hi(t, 2€) = h3i(t, q) . 28)

(Note that (28) is only an approximate equality, with error o(e) in expectation. The
second term in (28) is obtained using time homogeneity. Of course, u and d correspond to

Ho and Lee's "up" and "down".)
12



Now note that the R.H.S. of (28) is unchanged if we swop u and d, and put

d =-u, to deduce from (28) that

[he(t, @) - hg'(t, @] - [hg(t, g-€) - he(t, g-€)]
= [hg(t, 2€) - h§'(t, 2¢)] . (29)

Now substitute for h in (29) using (27) to conclude that

q q-€
2u j o(t,t)dt - 2u f o(t, T)dt
T

=t+€ T=t+€

t+2¢€
= 2u f o(t, T)dt = 2ue o(t, t)
T=t4€ (30)

and hence that

q
i = =
i j o(t, T)dt = o(t, q) o(t,t),

ie. o(p, T) is constant. (Note that in the last approximate in equality of (30) we are using

the Lipschitz right - continuity of o(t,y) in 7y).

Of course this analysis is not rigorous because we have been negligent about the
orders of the approxmiations, and the fact that A{B etc. are random. We deal with these

difficulties in the final section.

3.5 Making our Arguments Technically Rigorous

Our technique for this is to got to a discrete approximation to the model of [HIM],

which corresponds to the approximation in terms of which the Ito integral itself is defined. To

13



s

understand this note that the Ito integral f g(p) dBp is defined as the limit of the "Euler sum"

p=t
n-1

Z g(si) [Bg,,; - Bs] asmesh (m) tender to zero, where T is the partition
i=0
{t=s,<si<.. <sp =8}, and by mesh (r) we mean {(pi+1-pi): i =0,..,n-1} .

Thus, for small mesh the Euler sum is a good approximation to the Ito integral.

Our approximation to the model is that we work with the discrete time grid
{0, €, 2¢, ...}, and that our integrals are replaced by the corresponding Euler sums. Thus,

the times t, s, q of Section 3.1 are chosen from this time grid, and for example equations

(14) and (15) are replaced by

H(t 5, q) = exp [- 2, [f(si ) - £(t, )] €]

{vi =s, s+¢,.... , q-€}

=exp [- 3, > [opj, e + o(p; w)ApBl el ,
j i

{ti = s,s+e, ..., q-€}

{pj = t, t+g, ..., s-€}

where the terms Ang for the various j's are iid random variables, which are each normal

with mean 0 and variance €, and represent the increments Bp;i - Bp; - Note that this discretised

reformulation of [HIM] is not just equivalent to the Ho and Lee theory!

It is easy to recast Section 3.4 for this discretinised formulation, and the conclusion is
the same, namely that G is constant. To recast Section 3.3 is also easy, and the conclusion is

an analogue of equation (25) given by

14



2 o(t, T)e

{ti =t, t+e, ..., g€}

m
+

YD, o(t, %) LY ot 1e)?

{1, =t, t+€, ..., g-€) {ti =t,t+e, ..., q-€}

]

y L oy 02
yo(q-t) + ) c(q -t) 31)

(Since © is constant).

On "differencing" equation (31) (i.e. subtracting from it the alteration of itself with

q - € substituted for q ), we obtain

= . 2(q-t-&
at,q) = -yo + o%(q-t 2)- (32)

Our conclusion for the discretised system is that G being constant and o being as in

(32) uniquely give time homogeneity and prevent arbitrage across maturities.

To draw the corresponding conclusion for the continuous system (with (16) instead of

(32)) note that for small €, (32) is a good approximation to (16), and the Euler sums are

good approximations to the Ito integrals; therefore for the continuous system the conclusion

holds as closely as we please. But the continuous system does not involve € , therefore the

conclusion must hold without approximation.

15
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