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1. Introduction

Among models of the term structure of interest rates we distinguish two classes,
which we will refer to collectively as the "Equilibrium Model" and the "Evolutionary Model".
The Equilibrium Model is represented by the papers [CIR 1985] (Cox, Ingersoll and Ross),
[Vasicek 1977], [Courtadon 1982]. It seeks to characterise the term structure by assuming that
it is in economic equilibrium, and is determined (‘driven') by a given set of parameters. This
set of parameters might typically comprise the long and short interest rates, or just the short
rate, and being in economic equilibrium means that there are not arbitrage opportunities among
the interest rate instruments whose prices make up the term structure. The Evolutionary
Model is represented by the papers [HL 1986] (Ho and Lee), [HIM 1987] (Heath, Jarrow and
Morton), [Carverhill 1989a], [Carverhill 1989b], [Babbs 1990]. It concentrates on the
evolution of the term structure, rather than the term structure itself, from an empirically given
initial shape. Again, it assumes that these are no arbitrage opportunities among the interest
rate instruments. These fundamental differences give rise to the contrasting strengths and
weaknesses of the two models: the Equilibrium Model predicts a shape for the term structure
which may not accurately match the actual term structure at a given time, but which one
expects to be a reasonable match for any time; the Evolutionary Model predicts a term

structure which decreases in accuracy as it is pushed further into the future.

Our aim in this paper is first to present the two models and the pricing procedures
for contingent claims which they entail, from a unified perspective. This enables us to
discover the similarities, differences, and conflicts between these models. Also we discuss the
work of some other authors (notably [Dybvig 1989], [Dybvig Ingersoll Ross 1989],[Hull White
1990a], [Jamshidian 1989]) and its relationship to the ideas of this paper. Finally, our
perspective allows us to clarify and extend much of the work to which we make reference.
This paper includes the material of the two preprints [Carverhill 1989a] and [Carverhill
1989b].



A plan of the paper is as follows:

In Section 2, we establish some notation and basic assumptions concerning the term
structure of interest rates. In Sections 3 and 4 we present the equilibrium and Evolutionary
Models from our perspective. For the sake of clarity and simplicity, we restrict our attention
in these sections (and throughout the paper until Section 9) to the single factor versions of the

models, ie, to the case where there is just one factor of randomness driving the model.

In Section 4 the Evolutionary Model is formulated in terms of the dynamics of the
bond prices. However, other formulations are also needed in subsequent sections of the paper,
namely in terms of spot interest rates and (instantancous) forward rates, and these are
presented in Section 5. The instantaneous forward rate formulation is the same as that of
[HIM 1987] and [Babbs 1990]. In all of these formulations the model is presented in terms of
the drift and volatility as a function of term to maturity, of the prices or rates. In the
Evolutionary Model these functions are the 'basic ingredients', to be determined or chosen

exogenously, but in the Equilibrium Model they are determined by the model itself.

In Section 6 we discuss the conflicts and possible reconciliations between the
models. We see that the Evolutionary Model can be regarded as a generalisation of the
Equilibrium Model; any version of the Equilibrium Model can be 'differentiated’ to give a
version of the Evolutionary Model. However, the converse does not hold; not all Evolutionary

Models are ‘integrable’.

In Section 7 we discuss the stability of the Evolutionary Model. The criteria for this
is the attenuation of the volatility as term to maturity increases. This criterion also implies
that the long rate is constant. The paper [Webber 1990] discusses related questions; in

particular it discusses the implications of this criterion for the short rate.



Section 8 deals with the valuation of term structure contingent claims (options) in
the Evolutionary Model. In view of Section 6, this also gives the valuation of options in the
Equilibrium Model, in terms of the drift and volatility of the term structure as functions of
term to maturity. In the Evolutionary Model we cannot use a Black—Scholes type equation for
general option valuation; rather, we use the risk—neutral expectation approach for this. Also
we use the ideas of [Margrabe 1978] for valuing the option to exchange one asset for another.

However, our option valuations are often surprisingly close to what one obtains in the

Equilibrium Model.

In Section 9 we discuss some empirical aspects of the behaviour of the term
structure, and the desirability and technique for introducing more factors of randomness into

the models and associated option valuations.

Finally, in Section 10 we summarise our conclusions. In this section we argue that
-the extra generality that the Evolutionary Model has over the Equilibrium Model, does make it

more realistic as a vehicle for describing the behaviour of the term structure.



2. The Term Structure of Interest Rates

Broadly speaking, the term structure of interest rates at any given time is the
collection of rates that are available for borrowing or lending at that time, as a function of the
various terms to maturity over which the loan can be taken. In our technical work, we will

take the term structure at time t to be any of the functions {P(tl}

(D gelts
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of q, where

Pct1 is the price of time t of the pure discount bond which pays 1 at time q;

pctl is the spot rate associated with this bond, ie,
q_-1 q.
Pr == log P

f(t1 is the instantaneous forward rate associated with the term structure at time t, ie

opd q
_ ot _ —0 (log P} 2.2)
t =3 t/pq-dq ° 2.
oqg 'P ;
Note also that
{ q
pl= q—_fj t dp (2.3)
p=t

In order to make these alternative characterisations work, we must assume that P(tl is

appropriately smooth in the q variable. Also, we define the short rate I, by

=29 pd (2.4)



Of course, such a continuum of pure discount bonds does not exist in the market,
and so the first task in any empirical work must be to estimate the term structure, ie, to
estimate the virtual prices {P(tl} qelto) from the prices of the bonds that we actually observe in
the market. This estimation is itself the subject of many research articles, for instance
[Schaefer 1981], [Steeley 1991], which generally show (at least for UK and US Government

Bonds) that the market is efficient, and behaves as though the pure discount bonds do exist.

This paper will confine itself to discussing only the broad aspects of the empirical
issue. This discussion will be based largely on the UK term structure as estimated by the
technique of [Steeley 1991]. Steeley first expresses the pure discount bond price function in
terms of cubic B—splines, and then adjusts the spline coefficients so as to minimise the sum of
the squared errors when the actual coupon bond prices are reconstructed from this function.

He restricts himself to high coupon bonds in order to avoid tax effects on the prices.

The following 3—dimensional graph shows the evolution of the term structure
according to Steeley's procedure; the slice of the graph for fixed t gives the rate—based term

structure {p‘t1 in terms of the 'term/, ie, (q—t).
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3. The Equilibrium Model

As we have said, in this section (and up till Section 8) we confine our selves to the

single factor version of the Equilibrium Model. The assumptions are:

(EQ1)  The short rate I, is driven by the autonomous stochastic equation

drt = E’;(rt)dt ¥ 1’1(r,£)dBt (3.1

in which dBt is the increment of the standard Brownian motion. We do not want to be
specific here about the form of the coefficients § and 1, except to say that they are functions
of the short rate (and possibly the current time t) alone; this is what we mean when we say

that the equation is 'autonomous'. The notation &, M is chosen to prevent a clash later in the

paper.

(EQ2) The entire term structure at any time is determined by the short rate at that time.
Thus we can express the term structure as a function P%(r); this represents the value at time t
of the g—maturity bond, if the short rate at time t is r. We assume that the function P is

appropriately smooth in r, so that we can apply the Ito formula to give

q oPl 9Pl aZP‘tl
apl= gt tar +j—t - <drt,drt>

= ((using Equation (3.1))

aP‘tl aP‘tl a2P‘t1 aP‘t1
=|—+&—+In2—|dt+ In— dB, (3.2)
ot or or2 or



(EQ3)  There are no arbitrage opportunities among the bonds. This is the Economic
Equilibrium condition, and given Assumption (EQ2), it is easily shown to be equivalent to the
risk premium thl defined below being independent of q (although it can depend on the short
rate). If we write

dp = (v‘t1 +1)dt + u‘tl dB, (3.3)

i

q
Pt
then the risk premium y‘g is defined by

q (3.4)
t

9_.4
Te=Vey
7}
Thus 'yct1 is the expected short term return that the bond offers, in excess of the short rate I for
each unit of the risk u(tl that the bond entails. (NB. We often suppress the r dependence in our

notation p(tl, &, My V(tl’ uq, Y%.)

The 'basic ingredients' of the Equilibrium Model are thus the functions &, 1 and 7y
discussed above; these must be estimated or chosen in some way when applying the model.
Most generally they can be functions of current time t and short rate t, though we will
emphasise the time homogeneous situation where there is no t dependence. Choosing the basic
ingredients so that they vary with t amounts to including a change in the nature of the term
structure dynamic into the model. This is appropriate for instance if one expects the market to

become more risk averse at some given time in the future.

To solve the Equilibrium Model proceed as follows:



First, compare Equations (3.2) and (3.3) to yield

ad q 2pd
aPt E)Pt 0 Pt

q._ 2

ViTlar tear AW | g T

t
(3.5)

op4

q_ t
He=Nar / pq
t

Now substitute into Equation (3.4) using Equation (3.5) to obtain the Black—Scholes Equation

aP‘tl aZPCt1 aPCtl q
I = _%nZE + (M-8 5 + 1P} (3.6)

The price P(t1 is then the solution to this equation with initial (final!) condition
Pd =1 3.7
q (3.7

It seems that this Black—Scholes Equation cannot, in its full generality, be solved
analytically. However, it can be solved using standard numerical procedures for diffusion
equations, with time t evolving backwards from the final condition at time q. Also, the papers
[Vasicek 1977] and [CIR 1985] make reasonable choices of the basic ingredients &, 1 and ¥,
and for these they are able to find analytic solutions. These solutions are important because
they easily lend themselves to studying comparative statics and other aspects of the

Equilibrium Model.

The choices of [Vasicek] and [CIR] for Equation (3.1) and the risk premium v are

respectively

dr, = ay — r)dt + 5dBt, Y=g, ([Vasicek] choice) (3.8)

-9_



dr, =% -1)dt+5y 1, dB, ¥ =X/ / » ([CIR] choice) (3.9)
(0

where the symbols with tildas are all positive constants, and we have added the tildas to their
notations to prevent clashes with our own. These choices for the short rate equation both give
mean reverting processes, which is empirically reasonable, and the CIR choice has the

advantage that the short rate can never become negative. Their solutions of the model are

respectively

Pl(r) = exp 1’& (1—exp{—6‘c (q—t)}) (R(oo)—r) — (g—t) R(») l

- s (1 —exp (-8 @) ]
- ([Vasiad) (3.10)

where

~ ~~

R(») =¥ + p g/o. — } p%/a2, (= long rate)

-10_



and

Ay = A4 R4
Pt(r)—At exp { rBt}

where

2 exp (R + %+ ) (@ / 2} (2K8/@
Al= {[CIR]} (3.11)
t ~ ~ ~
(F++%) (exp (X (-0} -1) + 2¥

2 (exp (¥ @) }-1)
G+ &+ %) (exp (Y@0) 1) + 27

q_
Bt_

7:((E+X)2+282)11!

In the sequel we will base ourselves heavily on volatility functions related to the
function [ as defined in Equation (3.3). For the CIR and Vasicek models, 1 can be calculated
explicitly using formula (3.5). If we do this, then we see that, just as for the short rate

volatility, i depends only on the term to maturity (q—t) in the Vasicek model, but it also has a

factor ﬁ in the CIR model. We will find it convenient in the sequel to have our volatility
functions independent of the term structure, despite the fact that this makes negative rates
possible, and therefore we will refer back to the Vasicek model rather than the CIR model.

The Vasicek volatility is the simple function

nl=—5, - (1-ea), (3.12)

_11_



Actually, we do not regard the non—zero probability of negative interest rates as a
strong reason for rejecting the Vasicek model in favour of the CIR model, because for
reasonable choices of the parameters, this probability will be small and will have only a small
effect on contingent claim values. In fact the estimates & = 0.1531, p = 0.1449 can be found
in [Dybvig 1989], and for these and for current interest rates 5%, 7%, 9%, then [Babbs 1990,
Chap 8] values the 10 year cap struck at zero, to be respectively 7.19, 0.45, 0.02 basis points.
The cap valuation procedure that he uses is the same as we will present in Section 8 below for
the Vasicek volatility; it will be clear then how this relates to the valuation based on the
Vasicek model and why it does not require knowledge of the parameters ¥, q. Also he
assumes that the current term structure is flat. NB, the expression in terms of basis points

means units per 10000 units of notional principal.

Apart from the possibility of negative interest rates, it is difficult to argue on
empirical grounds in favour of either the CIR or the Vasicek model over the other. See

[Brown Schaefer 1988], [Steeley 1989a], [Hull White 1990b].

The Vasicek and CIR models give similar predictions for the possible shapes of the
term structure. These are 1 parameter families which are parameterised by the short rate (as
they must be according to the general Equilibrium Model), and which converge to a long rate
as term to maturity increases. This long rate is constant and independent of the short rate; it is
given explicitly in formula (3.10) and implicitly in formula (3.11). However, the empirically
derived figure (2.5) indicates that there is more than a 1 parameter family of possible term
structures, and the long rate is not constant. This leads us to the development of the

Evolutionary Model, and to the higher factor models which we discuss in Section 8.

~12_



4. The Evolutionary Model

We formulate the 1 factor version of the Evolutionary Model via the following

assumptions:
(EV1)  The term structure evolves via the stochastic equation

dpl /9= Vl+1)de+ ug dB, 4.1)

(EV2)  There are not arbitrage opportunities among the pure discount bonds. As before, this

translates to the risk premium yctl defined by

q 4.2)

q _ 4
Yi=v
t t/ut

being independent of q.

The 'basic ingredients' of the Evolutionary Model are the functions v9, u(tl, Yy these
must be estimated or chosen in some way when applying the model. Notice that equations
(4.1) and (3.3) look the same. However, this equation plays a different role in each model; in
the Equilibrium Model it merely defines the functions v and p in terms of the model, whereas
in the Evolutionary Model it is the basic equation. Comparing assumption (EV1) here with
assumption (EQ2) for the Equilibrium Model reveals the basic difference between the models;
the latter characterises the term structure itself, whereas the former characterises its evolution.
Note that there is no Evolutionary Model analogue to assumption (EQ1) for the Equilibrium
Model; in the Evolutionary Model the behaviour of the short rate is derived from the model

(see Section 5 below).

= A



In the most general formulation of the model, for given t these basic ingredients will
be allowed to depend on the term structure at time t, and it would actually be admissible to
allow them to depend also on previous term structures. As before, we will emphasise the time
homogeneous situation, which is characterised as follows; the 'shape' of the term structure, ie

expressed in terms of term to maturity, as the function {T — PEH

}, determines the shape of
. 3 : s . t+T 4T . . L
the basic ingredients, ie, the functions {t A AR Yt} (in particular, y is time
independent given the shape of the term structure). In fact we will often specialise even
further, to the case when the basic ingredients are time homogeneous and independent of the
term structure, so that v‘tl and u(tl are simply functions of q—t, and Yy is a constant. This
assumptions corresponds to the Vasicek model in Section 3, and without it the empirical
estimation of v, W, vy is more difficult. This assumption also theoretically allows rates to

become negative, but we have argued in Section 3, we do not regard this fact as a serious

+T
t

t+7

shortcoming of the assumption. Also, under this assumption we can write v ¢

and U
simply as v(t) and ().

To 'solve' the Evolutionary Model we would like to write down the term structure at
a future time s, given the current time t term structure and the random input {B p: t<p<sh
We will do this in Section 8 (Proposition 8.6) as part of our treatment of contingent claim

valuation. This cannot be done using the Black—Scholes technique of Section 3.

_14_



5. Alternative Formulations of the Evolutionary Model

In this section we present a number of equivalent alternatives to the formulation of
Section 4 for the Evolutionary Model. These different formulations are useful in different
contexts, and they serve to put the Model into the framework of [HL 1986], [HIM 1987],
[Babbs 1990].

REFORMULATION 5.1 (in terms of rates rather than prices)
For this we replace the basic evolution Equation (4.1) by
=1 (9_ q q
apl= (pt rt) dt+ %3 dt + w3 dB, (.1)

in which the coefficients xctl and ‘I‘Ctl play the same role as v(t1 and p.q, and are related via

VE =@t x{ + 3 (q0? (¥,

(5.2)

ui = a0 ¥}

Simply transform between rates and prices via the Ito Formula, and using

equation (2.1). o

REFORMULATION 5.2 (in terms of differences over a time increment, rather than a time

differential)

_15_



Replace equation (4.1) by

t+ t+
Plie = Eipe * X 4[ ¢+ ¥IACB, 53)

in which
X(tl and ‘I‘(tl are given by equation (5.2);

9 -1 10069 g9 = p9
Ets = T log Gt,s’ Gis = Pt/Ps fortSeEq, 54
t

so that Gct1 § is the forward price of the g—maturity bond at time t, to be purchased at time s,

2

and gct1 s is the associated forward rate. NB, this forward rate must not be confused with the

instantaneous forward rate f‘tl, defined in Section 2. Note that f‘tl =lim g(tl ¢
s—>t ’

A:"'e represents the appropriate difference over the time increment [t,t+€],

so that

A:J’S t=(t+e) —t =&,

A:+8 B = Bt e Bt ~ normal (mean 0, standard deviation J_e )-

Proof

This is immediate from Reformulation 5.1 and the observation that

t+€

q = -t q _ €
Ettte = q—%t+85pt q—t+e) Pt

-16 _



q g q_ _t+e
Pt"'qjm; (Pt b; )

9, 1 d_
Pyt g (P —Tp + o).

Technical purists will note that equation (5.3) actually holds only approximately, with error of

small order in € in the L2 norm. 0O

This formulation is useful for empirically estimating the Evolutionary Model, which

we discuss in Section 9 below.

Our final reformulation of the Evolutionary Model is just that of [HIM 1987]; also
of [HL 1986] and [Babbs 1990]. This formulation works with the instantaneous forward rates,
and can easily be integrated over time, so that is does not just deal with a small time increment

[t,t+€], but a possibly large one [t,s].

REFORMULATION 5.3 (the HIM Model)

The Evolutionary Model can be formulated simply as
df* = o’ dp + 0" dB (5.5)

p p PP

where

(5.6)

-17 _



If we recall that

P(t1 = exp —Jq f: dzt,
T=t

then we can integrate equation (5.5) to obtain

q _ pd q
2% _.Pt/PS Ht,s for t<s<q,
t

where

s
q _ _ T T
Ht,s —exp{ l'c=s Jp=t [ap dp +op dB

p} dt}’

5.7

(5.8)

The reformulation is given by either of equations (5.5) or (5.8), together with equation (5.6).

First invert equation (5.6) to obtain

q _ IJq T
X = — o, dr,
t gt ot

1 T
‘Pq=—Jq oF dt
= R

(3.9)

(The lower limit of integration in equation (5.9) is determined by the requirement that xctl and

‘I’(t1 be finite.) Now, multiplying equation (5.3) by (q—t) yields

=18 -



q
log P4, =1log [ t/P:+e‘ — @ xI AT t— (gt ¥l ATEB

and then substituting with equation (5.9) yields

p4d

log P4 =log | /yt+e —Jq JHE [a* dp+ 0 " dB ] de (5.10)
t4€ Pt =t Jp=t p P p

(and these last two equations have error of small order in € in the L2 norm). Now, using

equation (5.7) we can rewrite (5.10) as

Jq £ a Jq £ Jq JHE[ Tdp + 0¥ dB _|d (5.11)
T= T+ o dp + 0 ] T, !
t=t+e € T=t+e ¢ t=t+e Jp=t L P PP

and this yields equation (5.5), as long as ff is continuous in 1. (NB, equation (5.11) holds with
o(g) error, and replacing t by t+€ in the lower limit of the T integral in the last term only

introduces a further o(€) error). 0o

This instantaneous forward rate (HJM) formulation has a number of technical
advantages, which arise from the fact that it can abe integrated over time. For instance it is
clear from equations (5.5) and (5.7) that bond prices go to par as they mature. Also equation

(5.5) yields the following equation for the short rate:

= t‘(ll = t‘tl + Jq=t [ocq dp + o4 dBp] (5.12)

T
q p p P

=19 =



Differentiating equation (5.12), we have

ofl aag aog
dry = g da + Jz—t[dq dp + 5 dBp] dq

9dq +c%dB
+aq q O'q q (5.13)

and note by equation (5.9) that

(5.14)

The following section will be devoted to comparisons and reconciliation between the
Equilibrium and Evolutionary Models. We will see that any version of the Equilibrium Model
(ie, any choice of the basic ingredients (€, 1, 7)) gives rise to a version of the Evolutionary
Model, but not vice—versa. For this Evolutionary Model. equation (5.13) can be reconciled
with equation (3.1). The essential difference between these equations is that equation (5.13)
gives the behaviour of the short rate r q as time g evolves beyond t, and 'conditional on' (ie,
given knowledge of) the entire term structure at time t; whereas equation (3.1) (with t replaced

by q) gives the behaviour of r q conditional on r q itself.

For the moment, we show how to reconcile equation (5.13) and equation (5.1),
which gives the spot rate formulation of the Evolutionary Model. From equation (5.1) we

easily obtain that

3 pt+‘c
t+T _ °t 1 t+T t+1 t+T
dp =g dt+ /,c(p —rt)dt+xt dt+W;"* dB

t t,

-20_



and putting t=0, that

t+T
Jdr, = 2 %Py dt + vt dt + ¥t dB 5.15
't~ ot Xt t O (.15)

=0

(NB, our notation dt here means the differential with respect to t, with the other variable

constant.)

Equation (5.13) with t=q is reconciled with equation (5.15) using the easily verified fact that

af(t1 5 opd
w| =la (5.16)

Note that substituting q for t in equation (5.15) does not yield equation (5.13). The reason for
this is that (5.13) gives dr q given the term structure at time t, whereas (5.15) with q instead of

t gives dr q given the term structure at time q.

Finally in this section, we mention that the model of [Babbs 1990] is just the same
as the HIM formulation of the Evolutionary Model; specifically, a and b of [Babbs] Part 4
correspond to o and ¢ of [HIM 1987]. Also, as is well known (see [HIM 1987], [Carverhill
1988]), the model of [HL 1986] in its continuous time formulation, corresponds to the HIM
Model with ()'ctl (= 0) constant; in our other formulations this corresponds to ‘I"t1 = 0 being

constant by equation (5.9) and uctl = —(q—t) by equation (5.2).

_21_



6. When can the Evolutionary and Equilibrium Models be
reconciled?

The Equilibrium Model is characterised by the set of its basic ingredients (§, 1, ),
which comprise the short rate drift and volatility functions and the risk premium. The
Evolutionary Model is characterised by the set of its basic ingredients (v, WL ), or equivalently
o, ¥, v) or (o, ©, ), which comprise the appropriate form of the term structure drift and
volatility functions and the risk premium; but note that to be strict, the risk premium is
redundant in this characterisation, because it is determined by the other ingredients. Now, any
version of the Equilibrium, ie, any choice of the set (€, m, ) for this model, gives rise to a
version of the Evolutionary Model, for which (v, W, ¥) are determined by equation (3.5) (and in
this equation, P(tl is the solution of the model corresponding to (€, 1, 7)). In this case we will
say that the Evolutionary Model with this (v, 1, ) 'comes from' the Equilibrium Model with
this (€, W, ).

In Proposition 6.1 below, we show that if a version of the Evolutionary Model
comes from an Equilibrium Model in the above sense, then the two models are not in conflict.
However, it will be clear from Proposition 6.3 that not all Evolutionary Models come from an
Equilibrium Model, and hence one can say that the Equilibrium Model is a special case of the

Evolutionary Model.

PROPOSITION 6.1

Suppose the Evolutionary Model characterised by some choice of the set (v, W, )
comes from an Equilibrium Model characterised by (€, m, y). Also, suppose the initial term

structure is admissible with respect to the Equilibrium Model, ie, it satisfies the Black—Scholes

=22



equation (3.6) with (3.7). Then subsequent term structures as dictated by the Evolutionary
Model are also admissible with respect to the Equilibrium Model, and so both models agree in

their term structure predictions.

The evolution according to the Evolutionary Model is dictated by equation (4.1), and
this suffices, together with the initial condition, to determine the evolution. But the evolution
according to the Equilibrium Model must also satisfy equation (3.3), which is the same as

equation (4.1). 0

PROPOSITION 6.2

If the Evolutionary Model (¥, ¥, ¥) came from the Equilibrium Model (&, 1, ), then

we must have

n® = ¥ @) 6.1)
for any t, 1.
Proof

This follows from the fact that equation (5.15) must agree with equation (3.1). The

result of Proposition 6.2 is very natural, but its proof also yields the more obscure fact that

t+T
Bpt

t
237 |t RO =40 (62)
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Lemma 6.4 below will serve to verify this fact directly for a special case of the Equilibrium

Model which includes the Vasicek and CIR models.

PROPOSITION 6.3

Suppose the Evolutionary Model (v, W, ¥) is time homogeneous and comes from the
Equilibrium Model (€, n, ), and the drift and volatility functions v‘tl and p.ctl depend only on
(g—t), ie they are independent of the term structure. Then the Equilibrium Model must
actually be the Vasicek Model (characterised by equation (3.8)), and u(tl must satisfy

equation (3.12)..
Proof

Since we are assuming that the Equilibrium Model applies, we can work with the

equations of Section 3. In particular equation (3.5) (together with (6.1)) yields

- (8, )8 8 - (8, P 6

where the dash indicates the derivative with respect to r and P(tl is the solution of the

Equilibrium Model. Using in the Black—Scholes equation (3.6) yields

opd
3 = [—% D+ v - E..,u) ui+ r] Pl 54)

which is easily integrated to give
Pl=exp —fl [—5 mh?+y-¢ yud+ r] dp (6.5)
t p=t p hy P
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Now, differentiating (6.5) with respect to r yields

pd= | )Jq 9 4o — (g—t)} P4 6.6
t{&,u p=tupp q-t) P} (6.6)

(NB, v =v/u. Thus the only terms in (6.5) that depend on r are & and r itself), and comparing
(6.6) with (6.3) yields

3 Jq wldp = pd+n@-o 6.7)
p=t P
Differentiating (6.7) with respect to t yields

o opl o+

—E_.
He

(6.8)

Now, in (6.8) the LHS is independent of t and q, and the RHS is independent of r, and so both
must be constant, say equal to O (suggestive notation!). The solution for the RHS of (6.8) is

then just
==, [1-ew (6 @) 69)

(NB, },L‘tl = 0 by (5.2)), which is the Vasicek volatility (3.12). Also the solution for the LHS of

(6.8) is just the Vasicek mean reversion function. 0O

-



From Proposition 6.3 it is clear that if we have an Evolutionary Model whose basic
ingredients are independent of the term structure but which does not have the Vasicek form
(6.9), then it does not confirm to any Equilibrium Model. Also, if we have an Equilibrium
Model which is not of Vasicek type, then the Evolutionary Model to which it gives rise must

have term structure dependent ingredients.

The CIR Model falls into this category. However, if we take the Vasicek Model and
alter the form of the short rate mean reversion function, then the corresponding Evolutionary
model must have a volatility function ‘Pctl(r) which is independent of r for g=t (by Proposition

6.2) but dependent on r for some other values of q.

LEMMA 64

In the special case of the Equilibrium Model when p/m is independent of r, then we

have

ofd

ag | =&—m. 610
q:

Notes

This special case includes Vasicek and CIR, as can be verified by calculating L.

However, by the remarks after Proposition 6.3, it will not hold universally. To see that (6.10)

t

agrees with (6.2) note that ¥, = y¥}.
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First note that by time homogeneity we have

af‘t1 —af‘}
dqg ~ dt

etc, and from equation (2.2) we easily obtain

of

—,0

4

||

q:

where the dot denotes the t derivative.

(6.11)

Our technique for the proof is to calculate the RHS of (6.11) using the Black—Scholes equation

(3.6) for t derivatives, and equation (6.3) for r derivatives. Thus,

P=-n P + (m —&)P'+ P

= [ 2¥2+mm-o w1 P,

Also
B=|hp+m-9 @m|p

) 2
" [—%u M —8) (u/n>+r] P
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and so

. .

P)* =P =pp—(m -5 @m.
The result follows because u: =0 and u: = ‘I‘: =1 by (5.2) and Proposition 6.2. 0O
PROPOSITION 6.5
Suppose the Evolutionary Model has basic ingredients (o, o, y) which are independent of the
term structure, and that it comes from the Equilibrium Model (&, 1, 7). Also, suppose that the
initial forward rate curve {f(tl : geftw)} is asymptotically admissible with respect to the
Equilibrium Model, ie, if {’f‘tl : q € [t,»)} is admissible, then

?%—f?—)Oasq—)w.

Then the term structure evolves to become nearly admissible, ie, we have

sup {f:ﬂ — ?:H 1TE [s,oo)} —>0ass > w,

where the initial conditions {f‘g} et and {?(tl}qﬁ evolve to { s} s and {?(tl}qZS as t evolves

to s.
The Conditions of Proposition 6.5 imply that we are in the Vasicek Model.
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Note that

s
+T _ ST S+T S+1T
f: —tst +Jp= [ap dp+0'p dBp].

The result follows simply by subtracting from this the corresponding equation for
?:ﬂ and noting that the integrals cancel because they are independent of the term structure. O
The main conclusion of this section is as follows: Suppose one is working with the
Evolutionary Model, and has made the simplifying assumption that the drift and volatility
functions are independent of the term structure. Then, unless the volatility has the particular
form of Vasicek, ie, (3.12) or (6.9), then one cannot expect the evolution to conform to any
Equilibrium Model. However, if it does have this form, then from any initial term structure
with the appropriate long rate, the evolution will settle down to being admissible with respect

to the Evolutionary Model.
7. Volatility, Stability, and the Long Rate

In this section we will mostly discuss the Evolutionary Model, though in view of

Section 6, our conclusions will also apply to the Equilibrium Model.
First, note that in terms of spot rates, the no arbitrage equation (4.2) translates to
2
=7¥9+} @) (¥ (7.1)

From this we see that the volatility must attenuate to zero for large term to maturity, if the

model is to be stable; in fact we must have
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1
¥z 0((q—t)‘2 ) (1.2)
If this does not hold, then either the no arbitrage condition breaks down, or the drift x(tl grows

unboundedly and the model explodes for large term to maturity. In fact the [HL] model

violates condition (7.2) and this is why it is theoretically unstable.

The following proposition almost gives a converse to this criterion for instability; it

essentially shows that if

-1
¥ls O((q—t) ) (7.3)
then the model is stable and the long rate is constant.

PROPOSITION 7.1

Suppose the drift and volatility in the Evolutionary Model are independent of the term

structure, and attenuate for large term to maturity such that

Jq of dr<K, Jq (csf)2 dt< K2, (7.4)
T=t T=t

uniformly for some x, for all t,q with g t.

@) Then we have
E [ |f‘sl—f‘t1|2]’1‘ <2K (1.5)
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for all t, s, q with t <s < q. Thus, the term structure does not drift indefinitely far away from

the initial condition.

(ii) Suppose the initial term structure has a well defined long rate r_, in the sense that if

the initial time is t, then
f‘tl —>1 asq-—>
Then this long rate does not move as the term structure evolves.

Notes

Assuming that the risk premium 7 is constant, condition (7.3) and equation (7.1) easily yield

condition (7.4). Also, in view of (2.3), (7.5) easily yields a similar result for the spot rate

1
rather than the forward rate. The volatility ‘I’(t1 = (q—t) 4 falls into the gap between the

stability and instability criteria above. This volatility easily gives an unstable model.

Proof

@) Note that

s -l < =[] ]_spooflt -] J;f‘p*dBpVP
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(ii) Take € > 0 and then take q such that |f‘tl —r1, | <& Then for any s > t we have

o

< |-+ |-

t t 0

q
SH ochp‘+‘+Uq (Gfsl)de’%=8
p=t p p:t

—S —S 2 1
= Wl o(T) d’tl + Hq o(t)” dt ’7+s
T=q—t T=q—t

putting occt1 = ou(t) and G(tl = o(t) for T = g—t. It is clear from (7.4) that for sufficiently large q,

the integrals in this last expression will be arbitrarily small. o

The conclusion of this section is that attenuation of the volatility for large term to
maturity is necessary for a stable model, and (in a slightly stronger form) it is also sufficient,
and it leads to the long rate being constant. This conclusion is related to that of the paper
[DIR], which deals with a very general arbitrage free model, and is entitled 'Long Forward
Rates can Never Fall'. Their model subsumes ours, except that they prohibit negative interest
rates. In Section 9 below, we will discuss these stability results in the light of some empirical

considerations; notably the fact that the long rate is not actually constant.

A necessary criterion for stability in the Equilibrium Model is that the short rate be
mean reverting; note that the Vasicek volatility does satisfy our sufficient criterion if the mean
reversion parameter ¢, is positive. Also note that, putting s = q in (7.5), the stability criterion
of Proposition 7.1 implies that for the Evolutionary Model, the short rate does not drift
indefinitely far away. The relationship between mean reversion of the short rate and

attenuation of the volatility is studied in [Webber 1990].
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8. Interest Rate Option Valuation

In the Equilibrium Model, the Black—Scholes Equation (3.6) can be used to value
any term structure contingent claim, and not just the pure discount bonds as in Section 3.
Unfortunately, the derivation of Equation (3.6) does not generalise to the Evolutionary Model
because one essential ingredient is missing; namely that the entire term structure should be
determined by the short rate. Our aim in this Section is to discuss contingent claim valuation
in the Evolutionary context. This will be based largely on the very comprehensive risk neutral
expected payoff formula for contingent claims, which we present in Proposition 8.1. We will
see that the valuation of contingent claims depends on the volatility of the term structure, but
not on its drift or the risk premium, and this is analogous to the basic Black—Scholes valuation
for equity options. Our approach does lead to a Black—Scholes equation in the Evolutionary

context (see Proposition 8.9), but this is less central than that in the Equilibrium context.

This section is organised as follows: first we discuss contingent claim valuation in
the Evolutionary Model via a series of propositions; then we compare our ideas with those of
some other papers, namely [Hull White 1990a] [Dybvig 1989], [Black Derman Toy 1990];
finally we mention some ways in which our propositions might be implemented in a practical

context.

PROPOSITION 8.1

Suppose a contingent claim has value ¢ q at time q. Then at any time t with t < g,

its value <|>t is given by

0, = Et [exp { — E—trt d r}q)q} , (8.1)

=9 =



where Et is the 'risk neutral expectation' at time t. This expectation corresponds to the 'risk

neutral (martingale) probability' which is characterised by the ('Girsanov transformation')

formula

dB, = dB, —ydt,
(8.2)

Y being the risk premium. To obtain the probability distribution of any process under the risk
neutral probability, we take the stochastic equation for the process and substitute dB ¢ for dB "

as given by formula 8.2.

Notes and Explanation

As an example of the transformation to the risk neutral probability le us consider the
pure discount bond price P(t1 itself. Substituting formula (8.2) into equation (4.1), we see that

the risk—neutral distribution of P‘tl is the same as that of 1"5% given by

a _ q
d'Ft/Fq—rt dt + pd dB, (8.3)
t

We see from equation (8.3) that Fctl discounted at the short rate is a martingale.

Proof of Proposition 8.1

The evaluation of contingent claims as risk—neutral expectations is a very general
principle; see [Harrison Kreps 1979], [Harrison Pliska 1981], also [Ingersoll 1987]. In general
the existence of the risk—neutral martingale probability is associated with the absence of
arbitrage opportunities among the assets, and it is characterised by the condition that under it,

the asset values should be martingales when discounted at the short rate. In the context of the
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Evolutionary Model, it is clear that this probability must be characterised by formula (8.2), in
order to render Fctl as in equation (8.3) a martingale when discounted at the short rate. Also, it
is clear that the probability being well defined corresponds to y being independent of the bond
(ie of q), and hence to the absence of arbitrage possibilities. Also, in general a formula like
(8.1) holds for the value of any 'attainable’ contingent claim, ie, any claim that can be
replicated using a dynamic portfolio of the underlying assets, because the value of such a
claim must also be a martingale under the risk—neutral probability, and when discounted at the
short rate. In the Evolutionary Model any contingent claim is attainable because the model is
‘complete’; these are enough independent assets to 'cover' (ie, hedge) the dimension of

uncertainty (namely 1) in the model. o

In order to use formula (8.1) we must know the risk—neutral distribution of the short

rate. This is given by:

PROPOSITION 8.2

The distribution of the short rate r T as governed by the risk—neutral probability, and

given knowledge of the term structure at a previous time t, is the same as the distribution of T

given by
T =4 9 [4 1 y9q 2 q
rq= t+a_q Jp—t Z(up) dp ”p dBp 8.4
=4 I C12d —udgB (8.5)
e p_taq Z(ut) P uP Y ’
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For this we substitute dB " for dBt in equation for rq, namely (5.13). Thus

q
= q q
Ty t?+J [oc dp+cpd§p}

P
p=t

| 9 A_1,d° 0,4

s £ + ag Vo —3Hy ) dp =550 () dB
p=t

(using equation (5.6)). Now, to get equation (8.4) take the differentials from under the
integrals, and apply equation (8.2), and then to get equation (8.5) put the differentials back
again. The justification for swapping the differential and integral is the fact that vg = p.g =0,

and the general formulae

0o 1 g _ rl 0
Sl L o] G

dB, q
0 q _ J d g
aaf;:tepdp egafh p=t5§ePdBp' o
THEOREM 8.3

If a contingent claim has value ¢ q at time q, then its value ¢t at time t with t < q is

given by

o =E,

exp { — E—ft dt](bq} , (8.6)

where 'f,c is given by equation (8.4) or (8.5).
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Clear from Propositions 8.1 and 8.2. 0

COROLLARY 8.4 (to Proposition 8.2)

The risk—neutral distribution of the random variable exp {— Jq
T

T d‘t} given the

term structure at time t, is given by the unadjusted distribution

2
o[ Lol e

Substitute for ?1: in the LHS of (8.7) using (8.4). o

Note that the RHS of (8.7) is an exponential martingale, and so it has expectation 1.
Therefore, if we put ¢ q = 1 in (8.1), then this formula correctly gives the time t value of the
g—maturity bond, ie, P(tl. Also, if the volatility ug- only depends on (q—p) and not on the term
2 q 42 11
—%Jq ho dp,” ho dp]f},
p=t =t

p
where N(o,06) denotes the normal distribution with mean o and standard deviation ©.

structure, then (8.7) has lognormal distribution Pct1 exp N
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PROPOSITION 8.5

Take times t <s < q. Then given the term structure of time t, the spot interest rate

p(sl is random, and its risk—neutral distribution is the same as the unadjusted distribution ﬁcsl,
given by

2 S\2 q ]
s ehHe - wd pd -
~q_ 4 p p P~ "
s _gts+Jp=t %[ q-s }dp—l L ]dBp &9

Similar to Proposition 8.2. Start from the formula

S
T_ T T T
fs -ft +Jp=t {ocp dp+<sp dBp}

for s < 1T < g, which comes from formula (5.5). Then substitute for o, ¢ in terms of W, v using

equation (5.6), take the differential from under the integral; substitute dB 0 for dB _ using (8.2),

P

so that the v term cancels, to obtain

.9 (S Tl T
T:_’ft-*aijp:t [%(up) dp—udep}

Finally, act on this last equation with q%s Jq ... d 7, and note that
T=8

~q__1
ps—q_sti:S?:d‘t. O
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Note that in the limit as s —>q, equation (8.8) gives us equation (8.5). Also
Proposition 8.5 gives rise to the following Corollary, which is the basic for the option

valuation formula of Theorem 8.7 below.

COROLLARY 8.6

Take times t < s < . Then given the term structure at time t, the pure discount

bond price P(S1 is random, and its risk—neutral distribution is the same as the unadjusted

distribution

q S 1 dy2 q

P? exp {— 7 (B)7dp — udB

t — p

Pcsl= g— (8.9)
Piexp{—J [ mS%dp — S dB?
p=t p p

Proof

Use (8.8) in the equation P(g: exp {— (q—s) ﬁ(sl] O

Note that (8.9) does not give a martingale as s evolves, but with equation (8.7) it

does make the following equation work:

exp {— J;t 7, dm} F‘g} (8.10)

One might think it a paradox that equation (8.9) does not give the equation

qd_
Pt_Et

d’P‘Sl/ = rsds+ugst fort<s<gq. (8.11)
$4
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The resolution of this paradox is that (8.9) tells us how P(Sl behaves given the term structure at
time t with t < s, but (8.11) tells us how chl behaves given the term structure at time s itself.
One could easily obtain non—risk—neutral versions of (8.9) and (8.11), and a similar paradox
would hold. Also, this paradox is essentially the same as that which exists between (5.13) and
(5.15) with t replaced by q.

The following Theorem gives a formula for option valuation in the Evolutionary
model. At the end of this section we will briefly discuss the applications of this formula for

practical option valuation.

THEOREM 8.7

Consider the option to buy (or sell) at time q and at strike price X, a bond with

payments Cl’ C2, ws G &t times Qs dps s 9 beyond time q. The value consistent with the

Evolutionary Model at time t of this bond, is given by

where (8.12)

— 1 q12 — ql 1= . =
Ri_exP{_J:;t[Z(up) dp pp dBpron—O, 1,...,n,q0—q }

+
and { ] denotes the greater of the expression in the brackets and zero. (Also take '+ for

'buy' and '— for 'sell'.)
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Substitute into equation (8.6) using (8.7), (8.9) and taking
+
¢q i{ (Bond price at time q) — X} . O

The next proposition presents the elegant approach of [Margrabe 1978], which is
also implicit in [Merton 1973], for the option to exchange one asset for another. it is
applicable to an option on a pure discount bond, because the option say to sell at time q and at
a price X, an amount C, of the pure discount bond to mature at time qqs is equivalent to the
option to give away X of the q maturity pure discount bond at time q, in return for C1 of the
q maturity pure discount bond. This Margrabe approach is an alternative (for options on pure

discount bonds) to the risk—neutral expectation approach of the rest of this section.

PROPOSITION 8.8

Suppose the asset prices Pt and Qt obey the equations
dPt/ =v1:dt+p1t)dB1:,
P
§
th/ = v? dt + u? dB?,
Qt

<dB1:, dB(t2 > = 8% dt (8t nonrandom)

(ie, the correlation of their returns is 8t, which is nonrandom).
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Then the option to receive at time q asset Q in return for asset P has value at time t
+ ot
Q,N(@") —P, N (@)

where

(8.13)

di=[bgF%AJiG&L§E

_ P2, Q252 P Q) 4
G—J2=t[(up) + (U - 287w uS] o

This option can be perfectly hedged by an amount —N(d+) of asset Q together with +N(d ) of
asset P. If the two assets are perfectly correlated (8t = 1) then either asset can alone hedge the
option. If hedged by Q, then one should take an amount —N (d+) + G(Q:P) N(d" ), where
G(Q:P) is the 'gearing ratio', ie, the relative sensitivity to the random factor of the assets; here

we have G(QP) = (H/hD ®/Q).
Proof
See [Margrabe 1978] or [Merton 1973]. o

The fact that (8.13) agrees with (8.12) under the conditions of Proposition 8.8 is
clear from discussions about the elementary Black—Scholes formula; see for example
[Carverhill, Webber 1988]. Also, the option valuation according to the Vasicek Equilibrium
Model would be the same as Formula (8.12) or (8.13) (with the appropriate volatility function,

ie, equation (3.12)), except that we would use the current bond prices given by the model
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rather than given empirically. Thus, one might naively guess these formulae as modifications
of the Vasicek Model which conform to the current term structure. Note that in the paper

[Jamshidian 1989] the Vasicek value of a coupon bond option has a similar form to our

Formula (8.12).

We now mention the issue of hedging options on coupon bonds in the Evolutionary
Model. Our approach is to calculate using formula (8.12) the sensitivity of the option value to
the random factor in the model. Thus, suppose that over a short time interval [t, t+€] the
Brownian Motion increment A:+8B is either of £ B. Then the option of Theorem 8.7 has

sensitivity

1
) =
{t=+1 or —1}

9

+
{ + {(P(t11 + 1, E+1 u‘rh B)R; +..— (P(tl +1, e41 Hctl B)Ro}}

which will be virtually independent of B if B is sufficiently small. The sensitivity of the
coupon bond with payments Dl’ Dm at times ts e by is just u:iDl + .+ u:m Dm’ and the

ratio of these sensitivities is the hedge ratio if we hedge using the bond.

The next proposition presents a Black—Scholes equation in the Evolutionary context.
Note that it is not as central as is equation (3.6) in the Equilibrium context; it is much more

restrictive in its application; and we arrive at it by a completely different route.
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PROPOSITION 8.9

Consider a contingent claim that pays off at time q an amount which depends only
on the short rate at that time. Write ¢ q(r) for the payoff if the short rate then is r. Then the

time t value ¢t of this option is the solution to the Black—Scholes equation

aq),t ~282¢'c 271
aTl:_=_%nt5:2—+E,l:ar—+rq),‘:fort5'c5q (8.14)

with the final condition ¢ q given, and where Mt and E,c are the coefficients in the equation
dr1:=E1: d'c+'r],c dB'c’ (8.15)

which is obtained by differentiating equation (8.5).

Proof

This follows because formula (8.6) is the Feynman Kac formula corresponding to

the reverse time diffusion equation (8.14). (See [Oksendal 1985]. o

The assumption that the option payoff depends only on the short rate at the payoff
time is a good approximation if it refers to a short lived bond, but it is not exact in the

Evolutionary Model. Also, for 7 strictly between t and q the solution to the Black—Scholes

equation (8.14) is Et

q ~ o~ ~

exp —J r_d_t ¢(r) ‘ r,_ = r|, but this might not be the value at
p=t PP q T

that time of the contingent claim; in fact this value may not be determined by the short rate at

time T. Therefore equation (8.14) cannot be used for valuing American Options.
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We now compare the ideas that we have presented in this section with those of the

papers [Hull White 1990a], [Dybvig 1989], [Black Derman Toy 1990].

The goal of [Hull White 1990a] is to adapt the Equilibrium Model so as to avoid
what they regard as its main shortcoming, namely that it does not fit the current term structure.
They do this by altering the drift in their short rate equation (which corresponds to our
equation (3.1)), so that the solution to the correspondingly altered Black—Scholes equation fits
the current term structure. (They can also fit the 'term structure of volatility' which
corresponds to our function W or W.) Via this approach some of the advantages of the

Equilibrium Model are retained, in particular the relatively easy option valuation procedures.

Our Evolutionary Model can also be interpreted in terms of altering the drift in the

short rate equation. The risk—neutral equivalent of equation (3.1) is
d?t =E—yn)dt+n dBt, (8.16)

and substituting the coefficients of this equation into equation (8.14), rather than the
coefficients of (8.15), gives the Equilibrium Black—Scholes equation (3.6) rather than the
Evolutionary Black—Scholes equation. Note also that if the Evolutionary Model comes from
an Equilibrium Model, then 1 of (8.15) is the same as 1 of (8.16), and so the Evolutionary
Model corresponds to taking the drift coefficient & of (8.15) rather than (E—yn) of (8.16).

However, the modified Equilibrium Model of [Hull White 1990a] does not agree
with our Evolutionary Model; the drift alterations are different. From our perspective, their
drift alteration seems ad—hoc, and its interpretation and stability over time are unclear. On the
other hand the actual option valuation formula at least for their modified Vasicek model does
agree with our Evolutionary Model; their justification for their formula is just like our

Proposition 8.8.
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The criticisms in [Dybvig 1989] are essentially the same as those we have just
made. However, they are meant to apply to the Ho—Lee model, which can also be thought of
as the modified (in the sense of [Hull White 1990a]) 'degenerate Vasicek Model' in which the
volatility function ‘I‘ct1 is constant. In this case the 'ad—hoc' drift alteration of [HW] does agree
with the Evolutionary Model, and so from our perspective it is not ad—hoc. The
current—term—structure—consistent model that [Dybvig 1989] proposes is essentially the same

as the higher—factor Evolutionary model that we describe in the following section.

The paper [Black Derman Toy 1990] gives a Binomial algorithm for bond option
evaluation, which matches the initial term structure and volatility function. The model which
underlies their algorithm is made explicit in [Hull White 1990a], and it fits into their
framework. Therefore our criticisms of [Hull White 1990a] also apply to [Black Derman Toy

1990], and their option valuations are in conflict with ours.

Finally in this section, we will briefly discuss practical option valuation, based on
the Evolutionary Model. This topic will be developed further in future research. Also, for the
moment, we will restrict ourselves to the 1 factor model. This valuation is greatly simplified if
we assume that the volatility function u‘tl depends only on (q—t), and not on the term structure.

Also, we have already argued that this is a reasonable assumption.

For a European option on a coupon bond, the valuation can be based on formula
(8.12). Also, if we assume that the volatility function uctl depends only on (q—t) and is
moreover as in formula (3.12), then our Evolutionary Model is coming from the Vasicek
model, and we can apply the trick of [Jamshidian 1989]. This trick reduces the coupon bond
option evaluation to a series of pure discount bond option evaluation, one corresponding to
each coupon, and each one being giveu by a version of formula (8.13). To apply the

[Jamshidian] trick, note that for this volatility, if we take the current bond prices P(tl, Pctli,
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pctln, to be given by the Vasicek Model rather than empirically, then formula (8.12) agrees with
the Vasicek valuation. Therefore the transition from the Vasicek Model to the Evolutionary
model can be achieved formally merely by adjusting the constants X, Cl’ . C - From our
perspective, the [Jamshidian] trick requires that the time ¢ prices of the bonds which
correspond to the coupon payments, given the time t term structure, should be perfectly

correlated with each other. In the notation of Theorem 8.7, these prices are (P(tliRi/ P(t1 R O) for

i=1, .., n, and the i® and j™ bond prices are related simply via the factor e_a(qrqj). For

more general volatility functions these bond prices might not be perfectly correlated.

If uctl depends only on (g—t) but is not necessarily as in equation (3.12), then to
evaluate formula (8.12) one can use a binomial (or more accurately, a trinomial/explicit finite

difference) type procedure. For this note that each random variable R, in the formula can be
; = ré ugi dB,, with initial

condition ri = 1, and that these rrl) 's have perfectly correlated increments. For the procedure

one should replace each of these processes r

obtained as the solution at time q to the stochastic equation dr

i

D by a trinomial random walk with appropriate

variance.

For American coupon bond options Theorem 8.7 and Proposition 8.9 will not hold,
and the trinomial procedure outlined above is not adaptable to this situation. Any such

procedure would have to be based on a version of equation (8.11) rather than formula (8.12).

Interest rate options such as caps are strips of European options, each of which can
be thought of as applying to a pure discount bond, and amenable to Proposition 8.8. The
valuation and efficient hedging of interest rate caps will be dealt with in the paper

[Carverhill 1991].
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9. Some Empirical Considerations: Introducing more Random
Factors into the Models

So far we have included just 1 factor of Brownian Motion in our models. For both
the Equilibrium Model and the Evolutionary model this implies that the evolution over short
times of all prices or rates are perfectly correlated. This correlation is supported empirically if
attention is restricted to a relatively short term structure. [Dybvig 1989] reports that for the 9
month or 5 year term structure a single factor can account for about 981% of the evolution (in
the sense of principal components, which we describe below). In this paper, the 9 months
analysis is based on monthly US data between June 1964 and December 1987, and the 5 year
analysis is based on annual US data between 1952 and 1987. Between the 1 factor models we
favour the Evolutionary over the Equilibrium, on the grounds that empirically the term
structure is not determined just by the short rate. This empirical assertion is supported by the

3 dimensional graph of Section 2, Figure 2.5.

There are a number of motivations for including more factors of Brownian Motion
into the Evolutionary or Equilibrium Model. One is to capture more of the comovements of
the rates or prices; [Steeley 1991] reports that for the 18 year UK term structure a single
factor can only account for about 75% of the behaviour. Another motivation is to avoid the
conclusion, which is drawn in Section 7 above but is also at odds with Figure 2.5, that the long

rate should be constant.

Thus, it is reasonable to set up a 2—factor Equilibrium Model, in which the
determining factors are the short rate and the long rate. This has been done for instance, in the
paper [Schaefer Schwartz 1984]. The development of the higher factor model is very similar
to that of the 1 factor model of Section 3; having specified the 'basic ingredients', ie, the
process for the determining parameters and the risk parameters, one obtains a Black—Scholes

Equation for bond prices and any other contingent claim value. Note that in [Schaefer
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Schwartz 1984] the long rate is actually taken to be the 'consul’ rate, which is the reciprocal of
the price of the 'consul bond', which pays out continuously at unit rate. Therefore this model
does not correspond directly to any of the formulations of the present paper, though it does to
the spirit of our Equilibrium Model. Also this paper appeals to the empirically supported
assumption (see references in the paper, also [Steeley 1989]) that the short rate and the spread

between short and long rate are orthogonal mean reverting processes.

This 2 factor Equilibrium Model still suffers from the empirical fact, again
supported by Figure 2.5, that the term structure is not determined just by the short and the long
rate, and thus we are led to favour the 2 factor Evolutionary Model over it. Recall also from
Section 6 that the Evolutionary Model is more general, ie, the Equilibrium Model can be
regarded as a special case of it. In our concluding section we will argue philosophically in
favour of the Evolutionary Model, and against the assertion that introducing more factors into

the Equilibrium Model will make it as accurate as we desire.

We now describe how to develop and estimate a higher factor Evolutionary Model
using Principal Components Analysis. This technique is described in general in [Lawley
Maxwell 1971], [Steeley 1989b]. Just as with the Equilibrium Model, the more difficult aspect
of this is to specify the basic ingredients of the model; having done this the development is
very similar to that of the single factor model. We take as our point of departure Formulation
5.2 of the model. Our basic equation for the n—factor model is

q _ 9 q At+e .l At+E pi

Pire = Bppae ¥ XgBp T 2‘1 ¥ ATB .1

the notation being as in Section 5. Thus the basic ingredients are the functions y(s), ‘Pl(s), -

lI’n(s), where y(s) = x(tl for s = t—q etc; thus we are assuming time homogeneity in the model.
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We estimate the volatility functions ‘{’1, . P using Principal Components
Analysis. First, restrict attention to the discrete time grid {t0 <ty <ty }, in which
Ly~ 4=¢€ for all i and for a small €, say € being 1 month. Then estimate the term structures
as in Section 2, in terms of spot rates, corresponding to these times. Next, calculate the

following collection of time series, each one corresponding to a given term—to—maturity

A:(l) p(t,), AE p(ty), Ag pty), . (term €)

Al p(t AR pt AB (o), ... term 2
tO p( 3)s tl P( 4)’ t2 P( 5)’ ( 8)

Atrpr), ARpi ), ABpr L), .. (term ne)
P 1 t; T n+l” t, © 2”7

ts _ .t _ t.

sl

Now form the matrix C = {Cij} i,j = {1, ..., n} in which each entry cij is the covariance
between the series corresponding to term i€ and the series corresponding to term je. Next,
calculate the eigenvalues, denoted 7»,1, 7»2 , .. in descending order, and corresponding

orthonormal basis of eigenvectors, denoted ¢1, ¢2, ... Then the volatility functions are given

by ¥' =/ M. Also, their relative importance can be ascertained from the sizes of the
corresponding eigenvalues; in fact the first say m volatilities will account for a proportion (7\.1
+ ..+ Km) / (7\.1 + ..+ kn) of the term structure evolution in a least squares sense, if the

model is driven by equation (9.1).

i



This analysis has been carried out by a number of researchers. As mentioned above,
for relatively short term structures just 1 factor is sufficient to account for virtually all of the
evolution. Also [Steeley 1989b], working with the 18 year UK term structure, over the period
October 85—October 87, concludes that taking 1, 2 and 3 factors accounts respectively for
87%, 94%, 98% of the evolution. We agree that 2 or 3 factors is enough to take in this model;
beyond this number we are constrained by the shortcomings of the model itself, in particular
by the time homogeneity assumption, and so it is better to refine the model rather than just

include more factors. In his paper, Steeley also presents graphs of these 3 principal factors.

Note that the Principal Components estimation of the volatility functions implicitly
assumes that these functions do not depend on the term structure; this corresponds to the
Vasicek—type assumption that we have made earlier in this paper, but which theoretically leads

to the (small) possibility of negative interest rates.

One can estimate the drift function % in terms of the expectations associated with the
above time series, corresponding to each time to maturity. Note that theoretically each

volatility function W' is associated with a risk premium y‘ and we have

v=ylpl s eyl 9.2)

where v, ul are related to ¥, ¥ as in Equation (5.2). However, these risk premia are difficult
to estimate even in the single factor model and in fact they and the drift are not needed in

option valuation.

Using Equation (9.2) we can show theoretically just as in Section 7, that for stability
of the model we should have attenuation to zero of all the volatility functions, and constancy
of the long rate. Thus, theoretically introducing more factors into the model does not solve the

paradox of the long rate. Our feeling about this is that the 'long rate' should be allowed to
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correspond to a long but not infinite time to maturity, beyond which the model breaks down
due to the sparsity of available bonds. Note that these remarks apply to the Equilibrium Model
as well as the Evolutionary Model. Also, even the first factor presented in [Steeley 1989b]

does not attenuate to zero as it theoretically should.

Valuing options in the higher factor Evolutionary Model is essentially the same as in

1

the single factor model. If we split the drift function v into the sum V= + ... + V" where

V= 'f ul, then the factors remain separate in all the calculations, and Theorem 8.7 applies but

with

_ j 2 j i
Ri = CXp { - jgl J;:t [% (u (qi_P)) dp — (qi_P) dBpH 9.3)
10. Conclusions

Our aim in this paper has been to develop and compare from a unified perspective, the various
models of the term structure of interest rates and associated procedures for option valuation.
We have collected these models into two groups, which we have called the Equilibrium Model
and the Evolutionary Model. The essential difference between these two collective models is
that the Equilibrium Model seeks to characterise the shape of the term structure at any instant,
assuming that this is determined by some set of parameters, whereas the Equilibrium Model
seeks to characterise the evolution of the term structure, starting from an exogenously given
initial shape. Thus, the Equilibrium Model predicts a shape for the term structure which may
not accurately match the actual term structure at any given time, but which one hopes to be a
reasonable match over all time; whereas the Evolutionary Model predicts a term structure

which decreases in accuracy as the prediction is pushed further into the future.
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Our first presentation of the models is given in Sections 3 and 4, and it makes them
look quite different from one another. The Equilibrium Model takes as its basic ingredients
the short rate process and the risk premium, and the bond prices satisfy a Black—Scholes type
equation. On the other hand, the Evolutionary Model takes as its basic ingredients the drift
and volatility of the prices or rates, as functions of their term—to—maturity. However, we see
in Section 6 that the Equilibrium Model can be cast into the framework of the Evolutionary
model by deriving the evolutionary equation within the Equilibrium Model. Then if the initial
term structure is admissible with respect to the Equilibrium Model (ie, it is a shape which is
allowed by the model), then the two models will not be in conflict in their predictions for the

subsequent behaviour of the term structure.

One can also ask whether any given version of the Evolutionary model can be
obtained in this way from a version of the Equilibrium Model. In Section 6, we answer this in
the negative. In fact, if the Evolutionary Model has drift and volatility independent of the
term structure, and it comes from a version of the Equilibrium Model, then this has to be the
Vasicek version of the Equilibrium Model. Thus, the Equilibrium Model can be regarded as a
special case of the Evolutionary Model.

The assumption for the Evolutionary Model, that the drift and volatility functions of
the term structure do not depend on the term structure itself, so that they are purely functions
of the term—to—maturity, is made frequently in the paper. It corresponds to the Vasicek
assumption in the Equilibrium Model, and it leads to the theoretical shortcoming that the
model can give negative interest rates. However, we argue that the probability of negative
rates is insignificantly low, and so it is reasonable to make this assumption for the sake of the
great technical simplifications to which it leads. As we have already mentioned, this

assumption taken together with the assumption that the Evolutionary Model has been obtained
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from an Equilibrium Model, implies that we actually have the Vasicek Model. The drift and
volatility functions which this entails are also reasonable, and they also give rise to great
simplification in the Evolutionary Model. For example, with this drift and volatility, even if
the initial term structure deviates from being admissible with respect to the associated
Equilibrium Model (ie, the Vasicek Model), then this deviation is transient, and the behaviour
predicted by the Evolutionary Model will eventually settle down to being Vasicek—admissible.

Thus, this Evolutionary Model also possesses the attractive features of the Equilibrium Model.

In Section 7 we discuss the stability of the Evolutionary Model. We see that for
stability, the volatility must attenuate to zero for large term—to—maturity, and (in a slightly
stronger form) this leads to the model predicting that the long rate is constant. These
conclusions also hold for the Equilibrium Model, in view of 6; and for the Vasicek Model,
they correspond to the short rate being mean reverting. These conclusions also hold if we
include extra factors into the model, as discussed in Section 9, but they are not supported
empirically. Our feeling is that the model breaks down for large term—to—maturity due to the

sparsity of available bonds.

In Section 8 we deal with interest rate option valuation. We cannot extend to the
Evolutionary Model the Equilibrium Model technique of using the Black—Scholes Equation for
this; rather we use the risk—neutral expectation technique. Option values in the Evolutionary
Model are determined by the volatility but not the drift or risk premium of the term structure.
This is in contrast to the Equilibrium Model valuations, but analogous to the situation when
using the elementary Black—Scholes approach to valuing equity options. However, many
features of our final Evolutionary option valuation formulae are surprisingly similar to the
formulae in the Equilibrium Model. In particular our Formula (8.12) for a European coupon
bond option agrees with the formula in [Jamshidian 1989] which is based on the Vasicek
Equilibrium Model, except that [Jamshidian] puts into this formula the current bond prices

dictated by the model, whereas in (8,12) we put in the empirically estimated prices. In fact the
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drift and risk premium enter the option valuation in the formula of [Jamshidian 1989] via these
model prices. Also, we give a Black—Scholes Analytic formula for European options on pure
discount bonds in the Evolutionary Model, and if the volatility has the Vasicek form, then we

can extend this to coupon bond options via the trick of [Jamshidian].

In Section 9 we discuss some empirical issues, and the inclusion of more random
factors into the Equilibrium and Evolutionary Models. The main motivation for this is that the
single factor model cannot account for the less than perfect correlations between the
movements of the various rates, in particular between the short and long rates. We describe
the technique of Principal Component Analysis, which optimally estimates the volatilities in
the higher factor model. We see in Section 9 that the development of the models, in particular

the option valuations that they entail, is not essentially altered when we include more factors.

Finally, we must opine in favour of the Equilibrium Model or the Evolutionary

Model. As might have already been guessed, we favour the Evolutionary Model.

First, we believe that the Evolutionary formulation more accurately reflects the way
the market behaves; the market is aware of the volatilities and correlations among the rates and

prices for the various maturities.

Second, both models agree on the term structure dynamic and the arbitrage
mechanism, but the extra ingredient possessed by the Equilibrium Model, namely that the term
structure should be determined at any instant by a set of parameters, seems to us to be
philosophically without foundation. In Section 6 we saw that any version of the Equilibrium
Model can be 'differentiated’ to make it look like a version of the Evolutionary Model, but that

not every version of the Evolutionary Model can be 'integrated' to go in the opposite direction.
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We see no philosophical reason why the volatility of the Evolutionary Model should be such
that it is integrable in this sense. On the other hand there is a pragmatic reason for choosing

an integrable volatility, in particular the Vasicek Volatility; it makes the model technically

more tractable.

Third, option valuation is more reasonable in the Evolutionary Model. In fact the
similarities in option valuation between the Models are surprisingly strong and as we have

already explained, these make the advantages of the Evolutionary valuations clear.
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