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Abstract: A family of Ito process models is constructed for the dynamics of the term structure of
interest rates on default-free bonds, consistent with whatever term structure is initially observed. The
results of Harrison and Kreps [1979] are extended to cover term structure models. It is shown that
the family of models constructed in this paper can be supported in general equilibrium; in particular
arbitrage opportunities are absent. A general formula is provided for the valuation of contingent
claims. Consideration of sub-families sheds fresh light, in a generalised setting, on the term structure
dynamics under which conventional duration is the correct risk measure for bond portfolios. A

number of other models are shown to be spécial cases.



1 INTRODUCTION

1.1 TERM STRUCTURE

The prices at which fixed interest obligations! are traded in financial markets - and the term
structure of interest rates those prices embody? - have long been a focus of attention for investors,
borrowers, governments, and academics, not only as providing, obviously, a schedule of current

opportunities for the placement or raising of funds, but also as embodying market participants’

anticipations of future opportunities.

1.2 DERIVATIVE INSTRUMENTS

Alongside markets in fixed interest obligations, markets have grown up over the last couple of
decades in a range of derivative instruments3. Some of these securities, such as options on bond or
interest rate futures contracts, are derivative twice over, in that they are defined in relation to what

are themselves derivative securities.

Interest rate derivatives are important in a number of ways. Firstly some of them (eg the long gilt
futures contract on LIFFE; and some Forward Rate Agreements) provide a superior means of price
discovery, in that the bid/offer spread can be tighter than those in the fixed interest obligations
themselves; moreover, in the case of exchange traded derivative securities, it is only necessary to
obtain the bid/offer prices on the exchange floor, rather than to seek quotations from a number of
traders. The former point may be particularly important if, for example, one wishes to know on what

terms a forward position can be constructed. Secondly, it may be possible to infer from market

1 'Fixed interest obligations" refers to any security whose terms comprise the payment of one or
more cashflows, known at the outset in respect of both date and amount, by the issuer of the
security, the obligor, to the holder of the security. This definition includes both coupon-paying and
pure discount bonds. We will assume that all contracts are default free.

2 In the absence of default risk, and of certain types of market "frictions", a fixed interest obligation
may be valued by summing the values of its component cashflows, ie by regarding the obligation as
a bundle of pure discount bonds (see eg the start of Section VI of Merton [1974], or of SectionI of
Cox, Ingersoll and Ross [1981]). Thus the way the market prices fixed interest obligations at any
time can be expressed by a function describing the price per unit nominal, or equivalently yield to
maturity, of pure discount bonds of arbitrary tenor. This function is called "the term structure of
interest rates", or often simply "the term structure". Therefore to model the term structure is
precisely to model the dynamics of the prices of fixed interest obligations.

3 ie instruments which are not fixed interest obligations, but which generate cashflows between their
counterparties which are functions of the price paths of fixed interest obligations.



prices of certain derivative securities, notably options, via an appropriate model, the degree of
uncertainty attaching to market participants’ anticipations of future interest rates. Thirdly, the volume

of trading in some derivative securities is enormous, and such trading constitutes a significant activity

of a large number of financial institutions.

Derivative instruments are used in a wide variety of ways, for both speculative and hedging purposes.
For instance, a considerable number of financial institutions use combinations of fixed interest
obligations and derivative securities to hedge positions in other derivative securities; thus, for example,
government securities, futures on government securities, and options on government securities, may be
used in combination to hedge a portfolio of over-the-counter (OTC) options on government
securities. The latter options themselves could be of varying times to expiry and relate to underlying

securities of a wide range of maturities.

13 THE NEED FOR MODELS

From the foregoing, it is clear that there is a need for models of the dynamics of the term
structure, both because of interest in the term structure itself, and also to provide a consistent basis
for the valuation of a broad range of derivative instruments. In addition, to be of use to
practitioners in the derivative instruments markets, the initial state of whatever processes are used to
model the term structure must be consistent with the current term structure actually observed, so
that, for example, the value of an immediately expiring in-the-money option to purchase a fixed
interest obligation will equal the excess of the current price of that obligation over the exercise price

of the option4

14 LITERATURE REVIEW

Until the last few years, the main foci of the substantial academic literature on the term structure

were measurement> and explanation.

A pivotal paper in the latter field is Cox, Ingersoll and Ross [1981]. In this paper, as its title, "A
Re-examination of Traditional Hypotheses about the Term Structure of Interest Rates", suggests, the
authors reassess the theories previously advanced. Specifically, they consider the various forms of the

Expectations Hypothesis, the Hicksian Liquidity Preference approach, and the Preferred Habitat

4 Hull and White [1990] have recently made a similar point.

5 Recent papers include Prisman [1990] and Steeley [1989], who also give numerous references to
earlier literature.



Theory of Modigliani and Sutch, under which last head they effectively subsume the Segmented
Market Hypothesis of Culbertson. They also review a number of linear adaptive interest rate

forecasting models.

The overall thrust of the paper can perhaps be summed up® in two propositions. Firstly, any
hypothesis about the term structure not informed by rigorous use of the mathematical tools of
stochastic processes might well find itself reduced to palpable absurdity (and this applied to a
disturbing fraction of the previous literature). Secondly, any term structure model wishing to hold
itself out as conmsistent with an economic equilibrium requires very careful establishment of its

credentials in that regard.

Stochastic process models of the term structure, both earlier (eg Vasicek [1977], Richard [1978] and
Dothan [1978]) and subsequent (eg Brennan and Schwartz [1982] and Cox, Ingersoll and Ross [1985])
supposed that the evolution of the term structure could be described in terms of one or two state
variables, and a process (usually a constant parameter) describing the market price of interest rate
risk. These models can be solved to produce theoretical initial term structures, and thus, of course,

are generally inconsistent with the term structure actually observed.”

The first model of term structure dynamics to incorporate conmsistency with the initial term structure
actually observed as a fundamental feature is that of Ho and Lee [1986b]8. Ho and Lee adopt a
discrete-time approach based on the construction of an arbitrage-free binomial lattice to describe the
evolution of the entire term-structure from its observed initial state. By way of illustration of their
binomial framework, they devote much space to an extreme special "state-time independent" case of

their framework, characterised in terms of two parameters.

6 Babbs [1990] pp61-3 discusses Cox et al. in greater depth.

7 A recent paper by Dybvig [1989], however, offers hope that it may be possible to "reconcile" a
number of existing term structure models with the actual observed term structure, thus making them
- for the first time - candidates as models of practical use for the modelling of interest rate
derivative instruments.

8 The [1986b] paper is the published version of the [1986a] paper. The unpublished version describes
the general form of the binomial framework more fully, whereas the other devotes more attention to
the extreme special case in which the framework is time and state independent. At a mathematical
level, however, the contents of the two versions are essentially identical.



The chief weakness of their work is that a discrete time binomial model of term structure
movements is, in itself, unrealistic; its validity can reside only in representing an approximation to
something more plausible. The immediate question is that of convergence: namely, as the length of
the timestep tends to zero, to what if anything do the distribution of the term structure and the
values obtained for derivative instruments converge. Unfortunately, Ho and Lee do not discuss such

matters. The issues have however been addressed independently by a number of authors.

An obvious idea, building on the contribution of Ho and Lee, is to seek to construct a family of
continuous time stochastic processes for the term structure, consistent with its observed initial state.

This programme has been tackled independently by Babbs [1990] (Babbs) and by Heath, Jarrow and
Morton [1989] (HIM).

Both Babbs and HJM model each instantancous forward interest rate by an Ito processl®. The
constructions used are similar in outline, but take somewhat different courses. The approach of
Babbs, to be presented in this paper, clarifies the role played by the various regularity conditions. In
addition, Babbs goes on to show that the family of models he has constructed is viable, ie can be
supported in general equilibrium. This is achieved, as we shall see in Section 3 of this paper, by
adapting and extending the work of Harrison and Kreps [1979] to a term structure context, and
allowing a rich class of trading strategies. HIJM, like Babbs, obtain the key technical result of the
existence of a "unique equivalent martingale measure" (EMM), a reassignment of probabilities under
which normalised security price processes are martingales; however, HIM do not demonstrate
viability, and adopt a heavily circumscribed definition of trading strategies. While Babbs and HIM
use different numeraire securities in order to obtain their EMMs, their formulae for the value of

contingent claims can be shown to be equivalent.

Pursuing a similar programme at a less generalised level, Hull and White [1990] have produced
"extended Vasicek" and "extended CIR" models to reconcile the models of Vasicek [1977] and Cox,

Ingersoll and Ross [1985] with the observed initial term structure.

9 See eg: Babbs [1990], especially chapter 20, pp308-15; Hull and White [1990]; and Heath, Jarrow
and Morton [1990].

10 In an earlier paper, HIM [1987] allowed the process followed by each forward rate to depend on
the rate in question; HJM [1989] relaxed this in favour of general dependence on the history of the
entire term structure.



1.5 PURPOSE AND STRUCTURE OF THIS PAPER
The aim of this paper is to provide a general continuous time framework for modelling term

structure dynamics, for use: in research on the term structure itself; for analysis of bond portfolios;

and for the pricing of contingent claims.

The first task is to present (Section 2) the construction of a family of Ito process models, given in
chapter 4 of Babbs [1990] (Babbs). The initial state of each member of the family is consistent with

whatever term structure is currently observed, and the price of each bond attains par at maturity.

Our construction makes use (subsection 2.1.1) of an argument found in Vasicek [1977] concerning
absence of arbitrage opportunities between bonds of different maturities. The necessity of the
restrictions imposed is more apparent than their sufficiency. The second task of this paper (Section
3) is therefore to demonstrate that all arbitrage opportunities have indeed been eliminated. This is
achieved as a consequence of establishing the stronger result that the models are "viable" in the
sense defined by Harrison and Kreps [1979] (HK), ie that they could be supported in a general
equilibrium in an economy populated by rational agents.1l The key technical concept used in HK is
that of an "equivalent martingale measure" (EMM). HK established a link between viability and the
existence of one or more EMMs, under the restrictive assumption that agents can trade only at a
finite number of pre-specified fixed times!2. We adapt HK’ framework to a term structure context
and make use of results in Babbs which link EMMs to viability under a square integrability
condition on trading strategies, of the kind widely accepted as a means of eliminating arbitrage (see

eg Dybvig and Huang [1988]).13

A by-product of this second task of the paper is that the equivalent martingale measure is in fact

unique. It then follows (Section 4) that all contingent claims are priced by arbitrage.

In Section 5, we discuss a number of sub-families of our models. We shed fresh light on the
question of under what term structure dynamics conventional duration is the correct bond portfolio
risk measure, generalising the setting used in Cox, Ingersoll and Ross [1979]. We also derive a

number of existing models as special cases of our family. In particular, the "extended Vasicek" model

11 All the results here are contained in chapter 5, pp129-52 of Babbs.

12 HK made no attempt to defend this restriction on ecomomic grounds, and pointed out its
undesirability, eg in excluding the option replication strategy in the Black and Scholes [1973] model.

13 The results in Babbs are of independent interest, and we hope to present them fully elsewhere.



of Hull and White [1990] is shown to be a special case; the continuous time limit of the
"state-time-independent” model of Ho and Lee [1986b] represents a further specialisation. One effect

of this is that our results can be applied to show that these models are viable.

Section 6 provides brief concluding remarks.

2 RUCTI T E

A common assumption is that the state of the world at any time can be described by the values of
some fixed finite set of state variables. We have no need to impose this restriction, and therefore
omit it. Instead, we shall focus directly on the term structure itself. We shall see, however, (see
Section 5 below) that certain subclasses of our family of Ito processes can be described using state

variables.

In setting out to conmstruct stochastic processes for the term structure, one immediate question is
whether to base the construction on asset prices - those of pure discount bonds are the natural
choice - or with interest rates. Inspection of the stochastic processes of asset prices in existing
literature (eg equation (30) in Section8 of Merton [1973]) reveals that the instantaneous riskless
interest rate can be a prominent element of the "drift' or "trend" component. If therefore, having
eschewed the use of state variables, we base the construction on the prices of pure discount bonds,
we may find it difficult to specify their stochastic processes fully without prior analysis of the
instantaneous riskless rate, which is itself a functionl4 of bond prices. To avoid this kind of vicious

circle, we base our construction on interest rates.

To limit the burdens of notation, we will present our results in single-factor form, ie using only one
Brownian motion to drive the dynamics of the term structure. We would emphasise that this is a
purely expositional device, since the multi-factor version of our results can be obtained by simply
adding additional terms identical in form to those arising from the single-factor case, a procedure
whose details we regard as self-evident. We believe that our approach to this issue best serves

expositional clarity.

14 gee equations (8)-(9).



2.1 CONSTRUCTION
By means of Proposition 2.1 and Theorem 2.1 below, we construct a collection of Ito processes, one
for each pure discount bond, that is consistent with the initial term structure and which ensures that

each bond price converges to par at maturity.

We then proceed (in subsection 2.1.1) to employ an argument, due to Vasicek [1977], to obtain a
restriction on the drift terms that is a necessary condition for the absence of arbitrage opportunities.
Imposing that restriction enables the stochastic processes for the term structure to be re-expressed in
an intuitively appealing way:

dB(M,t)

B(M, 1) {r(t,w)+06(t,w)o(M—t,t,w)}dt + o(M—-t,t,w)dZ(t) (1)

where: B(M,t) denotes the price at time ¢ of unit nominal of a pure discount bond maturing at time

M2t ; r(t,w) denotes the instantaneous spot interest rate; and Z() is a standard Brownian

motion1S,

Equation (1) bears the straightforward interpretation that each pure discount bond has an expected
instantaneous rate of return which differs from the instantaneous spot interest rate by an amount
proportional to the bond’s instantaneous price volatility. The factor of proportionality represents the
market price of interest rate risk, and is the same across all bonds. The presence, as a functional
argument, of the representative element w € € of the set of all possible paths for the evolution
of the term structure, indicates that the instantaneous spot rate, the price of risk, and the volatility
of bond prices are allowed to be state-dependent in a very general fashion, as well as

time-dependent.

Unfortunately, (1) is not a satisfactory starting point since, as discussed above, the instantaneous spot
rate is itself a function of the prices of pure discount bonds. To avoid this kind of vicious circle, we
base our construction upon instantaneous forward interest rates for all dates. An heuristic preview

may be helpful:

15 To be precise, Z( ) denotes a standard Brownian motion starting at zero, defined on some
probability space (Q,F,P) equipped with an increasing family of sub-sigma-algebras of F ,
{F: : te[0,T]}y for some fixed T >0, satisfying the "usual conditions" (see eg Karatzas and
Shreve [1987] 1.2.25 Definition p10), and where, without loss of generality, ¥, is almost trivial, and
TT =F.



Having no particular intuitions about the dynamics of instantaneous forward interest rates, we
suppose (Proposition 2.1) that they follow very genmeral Ito processes, subject only to conditions on
the processes of the different rates sufficient to ensure that the prices at all dates of pure discount
bonds can be recovered via the appropriate integration (see (7)). It follows from that integration that
bond prices attain par at maturity (see (5)), and that future instantaneous spot interest rates are

well-defined (see (6), (8) and (9)).

To turn the expression (10) for future bond prices, obtained in Proposition 2.1, into an Ito process,
we must reverse the order of some repeated integrals, one of them involving an Ito stochastic
integral. We achieve this in Theorem 2.1, subject to additional regularity conditions upon the

instantaneous standard deviations of the forward rate processes.

In subsection 2.1.1, we make the final step to reach our conjectured bond price dynamics (ie (1)), by
noting that an argument due to Vasicek [1977], concerning arbitrage between bonds of different
maturities, requires a relationship (see (14)) between the drifts and instantaneous standard deviations

of instantaneous forward rates.

Pr iti Let the initial term structure B(.,0) : [0,®) - R be strictly positive and

differentiable on [0, )

Let a,b : [0,T]X[0,®)XQ = X satisfy appropriate16 measurability conditions and the following

regularity conditions.

(i) a(.,.,w) : [0,T]X[0,°) - R s integrable over bounded rectangles almost surely.

@) E[f‘bz(s,m,uo)ds} < o; Vt<m
0

is integrable in m 21t over bounded intervals.

(iii)f‘b(s,m,w)dZ(s)
0

16 The measurability conditions are omitted for the sake of brevity. They are simply the kind of
conditions customary in stochastic calculus, see eg lkeda and Watanabe [1981].



Then we may construct Ito processes, consistent with the initial term structure, for the instantaneous

forward interest rate f(m,.) for each date m20 :

fm,t) = f(m,0) + fla(s,m,w)ds + f‘b(s,m,w)dZ(s); t<m (2)
where

0) = ——d—l B 0 3
f(m,0) = -——InB(m,0) (3)

Moreover, we can derive from these processes an expression for the price of any pure discount bond at

any future date:

InB(M,t) = InB(M,0) + f‘f(s,O)ds - fola(s,m,w)dsdm
0 ! 0

M t
- f fb(s,m,w)dZ(s)dm 4)
t 0
with
B(M,M) =1 almost surely, YM>O0 (5)

Furthermore, the instantaneous spot interest rate r(t) follows a well-defined process:
t t
r(t) = f(,0) + / a(s,t,w)ds + f b(s,t,w)dZ(s) 6)
0 0
Proof By the assumed differentiability of the initial term structure, (3) well-defines an initial curve
f(.,0) : [0,) - R of instantaneous forward interest rates.

By assumptions (i) and (i), we may now define a family of Ito processes, indexed by m 2= 0

b

as given by (2).

By assumptions (i) and (iii), each summand on the RHS of (2) is integrable in m over bounded

intervals. Therefore, we have a well-defined stochastic process
M

InB(M,t) = —f f(m,t)dm;  Vte[0, M] (7)
t

for the price of each pure discount bond.

Equation (5) follows immediately from (7), while substituting (2) and performing elementary

manipulations gives (4).



Also from (7), we have that

-InB(M,1t)
—M—'t - f(t,t) as Mt (8)

whence we may well-define the spot instantaneous interest rate, r(f) and establish (6), by setting:

r(t) = f(t,t); Vt=0 €D)

and substituting (2) on the RHS. [

To turn (4) into an Ito process, we need to reverse the order of integration of the repeated
integration. This requires some additional regularity conditions which, as we shall see in later

sections, are satisfied in a number of significant cases.

Theorem 2.1 If the conditions of Proposition 2.1 hold and, in addition, b() satisfies the following

regularity conditions:

is almost surely pathwise integrable in t .

(@) f’b(s,t,o\))dZ(s)
0

v) b(s,.,w) : ¥ = R is integrable over finite intervals Ys almost surely.
(vi) ¢ M 2
E f(f b(s,m,w)dm) ds| < o Vi<M
0 s
(vii) . : is integrable with respect to m over finite intervals (m21t)
(E[f bz(s,m,w)ds])
0

Then we may construct Ito processes for the price of each pure discount bond, consistent with the

initial term structure, with the stochastic differential form:

dB(M,1) . fM t 4 1 '[Mb t 4 2 5
QU = — + —

B(M, 1) r(t) : a(t,m,w)dm 2\, (t,m,w)dm

_ {be(t,m,w)dm}dZ(t) (10)

where r() is the spot instantaneous interest rate process given by (6), and where each bond price

converges to par at maturity, as described by (5).

10



Proof By assumptions (i) and (iv), equation (6) is almost surely pathwise integrable over finite

intervals, giving:

folr(m)dm = j:f(s,O)ds + fol/;ma(s,m)dsdm + j:/omb(s,m)dZ(s)dm (1)

which, being pathwise an ordinary integral, is absolutely continuous (cf eg Weir [1973] p67) and thus,

a fortiori, a continuous VF process and a semi-martingale.
Subtracting (11) from (4), and combining the ranges of integration, now yields:

InB(M,t) - InB(M,0) = f‘r(m)dm - fomin(m'”a(s,m)dsdm
0 0 0
M min{m, !}
- /f b(s,m)dZ(s)dm (12)
0 0

Applying Fubini’s theorem to
M min{m, t}

f f a(s,m)dsdm
0 0

and using assumptions (ii), (v), (vi) and (vii) to enable us to apply a Fubini-type theorem for

stochastic integralsl7 to

M min{m, t}
f f b(s,m)dZ(s)dm
0 0

we may rewrite (12) as:
InB(M,t) - InB(M,0) = flr(m)dm ~ flfMa(s,m)dmds
0 0 Vs
- flbe(s,m)dde(s) (13)
0Js

The final term on the RHS of (13) is a continuous martingale by assumption (vi). The preceding
terms are absolutely continuous in ¢ and thus VF. Hence, InB(M,.) is an Ito process. By Ito’s

lemma, we deduce that B(M,.) is itself an Ito process, whose differential form is (10) as required. Jj

17 The required theorem is an adaptation of Lemma 4.1 on pp116-9 of Ikeda and Watanabe [1981]
to the special case of martingales based on Brownian motion. See Babbs (chapter 28, pp379-83) for
details.

11



211 N restriction_for n rbitr niti

We may apply an argument identical to that used in Section3 of Vasicek [1977], concerning arbitrage

between bonds, to deduce from (10) that we require:

M 1 M 2 M

—/ a(t,m,w)dm + E{f b(t,m,uo)dm} = —-0(t,w) f b(t,m,w)dm (14)
t t t

where

0(t,w) = price of interest rate risk at (¢, w); (15)

If we now define

M
o(M-t,t,w) = —f b(t,m,w)dm (16)

t

we may use (15) to re-express (10) in the form of (1), completing the construction.

3 VIABILITY

While we took steps, in the preceding subsection, to eliminate arbitrage opportunities, we have not
established that none remain. A strictly wider question is whether members of our family of models

are "viable", ie capable of being supported in a general equilibrium in an economy populated by

rational agents.

To address these matters, we must embed our term structure dynamics in an economy, and decide
what class of trading strategies are available to economic agents. For simplicity, we will utilise the
pure exchange economy employed in HK; in the interests of brevity, we refer the reader to Sections

1 and 2 of HK for details.

We need however to make some various adaptations to accommodate term structure models. In
particular, we will suppose that the set of traded securities consists of pure discount bonds18; we do
not require the collection of available securities to be finite, and we allow for maturing bonds by

prescribing that bonds may not be held beyond their maturity dates.

HK demonstrated a link between viability and equivalent martingale measures (EMMs). An EMM is
a reassignment of probabilities under which appropriately normalised security price prices are
martingales; we give a formal definition below. The first stage of the link was to show that a price

system for the traded subset of contingent claims (here understood as state-contingent claims to

18 A far richer setting, involving coupon bonds and other assets, is readily comstructed, but would
obscure the essentials of the exposition.

12



consumption at the terminal date of the economy) is viable if and onmly if it can be extendedl? to
all claims. The second was to show that each such extension could be used to define an EMM, and

vice versa.

The natural numeraire in this economy is the security which has a certain unit payoff at T, ie the
pure discount bond maturing at that date. With this numeraire, HK’s definition of an EMM is

modified to become:

Definition A probability measure P~ on (Q,F) is said to be an equivalent martingale measure

if and only if the following three conditions hold:

@) P* and P are equivalent, ie have the same null sets. A necessary and sufficient

condition for this is that the Radon-Nikodym derivative

dP’
dpP

be strictly positive20.

(ii) bond price processes, after normalisation by dividing through by B(T,.) , are martingales

under P~

(@i Gcll]: e L*(Q,F,P) 17)

The second stage of the link demonstrated by HK was achieved under the assumption that each
agent can follow only "simple" trading strategies, involving trading only at a finite set of fixed dates

selected at the outset of the economy. As HK observed, this is undesirably restrictive. At this stage,

therefore, we make instead the:

Provisional definition A ftrading strategy is provisionally defined as a non-negative integer n, a
selection of bond maturity dates, M,,...,M, , together with an n-dimensional real valued stochastic

process v : [0, T]1XQ - X", whose jth component <; represents time-state-dependent holdings

of bond j, satisfying:

)] The stochastic integral in (18) is well-defined;

19 by a continuous and strictly positive linear functional

20 Note that since P, P have the same null sets, we may use the term "almost surely" without

qualification as to which probability measure is intended.

13



(i) w,;(t,w) = O if bond j matures strictly before t;
(i)  self-financing: Vt, w:

n n t
Vo(t,w) =) v,(t,w)B(M,,t) = V,0,w) +Zfow,(u,w)dB(M,,u) (18)
i=1 j=1

This requirement says that changes in the value of the strategy must be attributable precisely to
capital gains on bond holdings, ie with no net injections or extractions of funds.

(iv) terminal value in the terminal consumption space:

VlT..} € L*CQL.F.P) (19)

We now avail ourselves of a result in Babbs (chapter 5, pp134-9) which extends HK’ work to admit

a wider class of trading strategies.

Theorem 3.1  Suppose P~ is an EMM and that we further restrict strategies by requiring that their

discounted?l  value processes  are P*  -martingales; then the model is viable, with
x : L*(Q,F.P) = R defined by:
x(x) = B(T,0) E[x] (20a)

extending the price system to all contingent claims.

Conversely, if we suppose that the model is viable, with « extending the price system to all claims,

and make the alternative restriction that the discounted price of each traded bond is P-square integrable,

then there exists an EMM, P~ given by:

x(14)

P (A) B(T.0) (20b)

where 1, is the indicator function of A .

Proof See Babbs, (loc. cit.) I

We are now ready to address the viability of the Ito process models of the term structure
constructed in Section 2.1. We begin (Theorem 3.2) by showing that there is at most one EMM, and
specifying its Radon-Nikodym derivative with respect to P - a step which lends itself to obtaining
sufficient regularity conditions for existence. By imposing these conditions, we establish (Theorem 3.3)

the existence of an EMM and hence viability.

21 je normalised by dividing by the price of the numeraire security

14



Theorem 3.2  If the bond price processes are described by (1), then the economy just specified has at
most one EMM.

If this EMM, P~ exists, then?2

£(t) = exp{—j;{e(u)—o(T—u,u)}dZ(u) - %fo {e(u)—o(T—u,u)}zdu}

is a P-martingale, with £(T) € L3(P) (21)
and P* has Radon-Nikodym derivative
dP’
== = KT (22)
Conversely, if (21) holds, define a probability measure, P, by (22). Then a sufficient condition for

P* to be an EMM is:

exp{j;l{o(M—u,u)—o(T-u,u)}dZ'(u) - %_/:{O(M—u,u)—o(T—u,u)}zdu}
is a P'-martingale YMe[0,T] (23)

where Z'( ) s the standard Brownian motion under P~ given by (35).

Proof Define the discounted bond price processes:

. B(M,t)
B'(M,1t) B VM (24)
(The argument which now follows is largely due to Pages [1987].)
Suppose that there exists an EMM, P~ . By the definition of an EMM,

dP’ 2
—5 € L(P) (25)

Hence n( ), defined by:

dP’
n(t) E[ E\ F . } (26)
is a square-integrable P-martingale with

dP’
n(o) = E[ aF ] =1 27)

22 From this point on, we usually drop notational dependence on > in the interests of brevity.
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We can therefore apply martingale representation theory?3 to obtain that24
t

nit) = 1 + f a(u,w)dZ(u) (28)
0

for some P-square-integrable process a( ).

By (1),

dB'(M,t)

LD {o(M~=t,t)-a(T-t,t)y [ {0(t)-o(T—t,0)ydt + dZ(1) ] (29)

Since P° is an EMM, B'(M,.) is a P~ -martingale; implying?S that B'(M,.)n( ) is a

P-martingale. Applying Ito’s lemma,

d(B'(M,t) n(t))
B'(M,t)

{o(M-t,t)-o(T-t, 1)} [a(t) + {6()-o(T-t, )} n&)] dt

+ [a() + {o(M-t,t)-o(T-t, )} n(t)] dZ(t) (30)

Now an Ito process is a martingale only if26 it has zero drift. Thus we require

a(t) + {6()-o(T-t,t)y nt) = O (31)
Multiplying this through by dZ(t), substituting for «(t)dZ(t) by means of (28), and rearranging:
anily _ (T -

0t {0(t)—o(T-t,t)y dZ(t) (32)

whose solution is

n) = §@) Vvt (33)

23 see eg Liptser and Shiryayev [1977] Theorem 5.5 pl62 - essentially the Kunita-Watanabe
Representation Theorem.

24 We have generally not felt the need to make explicit the various measurability conditions involved
in the stochastic calculus we have been undertaking. The validity of (28) however depends on the
assumption that the increasing family { ¥,:t€[0,7T]} with which our probability space is equipped
is that generated by Z('). Restrictions of this kind, introduced by HK (Section 5) and subsequently
commonplace, restrict agents’ information to the past price history of the traded securities.

25 see eg Liptser and Shiryayev [1977] Lemma 6.6 p226; Pages [1987] cites Dellacheric and Meyer
[1982] Lemma VIIL.48

26 1t is well known that this condition is necessary but mot sufficient. Its necessity flows from the
result that, on a finite interval, a continuous local martingale of finite variation is constant (see eg
MU Dothan [1990] Theorem 10.28 p249).
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Thus, if P° is an EMM, then &( ) is a P-martingale with

5T - () - S5 e 3P (34)

Conversely, if the condition (21) in the theorem is fulfilled, then, by the Girsanov Theorem?7, (22)
defines a probability measure P~ equivalent to P, under which

Z'(t) = Z() + _/;({e(u)—o(T—u,u)}du (35)

is a standard Brownian motion, and we may re-express the discounted security price process (29) as

dB"(M,t)

e {o(M-t,t)-o(T-t,t)) dZ'(t) (36)

whose unique solution is the P -supermartingale

B'(M,t) = B'(M,0) exp{fl(o(M—u,u)—o(T—u,u)}dZ'(u)
0

- %/l{a(M—u,u)—o(T—u,u)}zdu} (37)
0

If (23) holds, the RHS of (37) is, in fact, a P~ -martingale; thus P" is an EMM as required. [

To utilise the above Theorem in the most straightforward way, we now impose the following:
Regularity conditions The conditions (21) and (23) of Theorem 3.2 are fulfilled.

Remark  These regularity conditions are satisfied in a range of interesting cases. For example, by
the Novikov condition28, (23) will always be fulfilled if o( ) is globally bounded (eg when it is
deterministic); similarly (21) will be satisfied if ©( ) is also globally bounded. We shall see

examples of this in Section 3.

Since Theorem 3.2 tells us that there is at most one EMM, and mindful of Theorem 3.1, we elect

to finalise our definition of trading strategies as follows:

Definition  Define a trading strategy by the Provisional Definition above, supplemented by the following

additional requirement:

27 see eg Karatzas and Shreve [1987] Theorem 3.5.1 p191

28 see eg Karatzas and Shreve [1987] Corollary 3.5.13 p199
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) Vo(.,.) 7/ B(T,.) is a P’ -martingale

We can now conclude:

Theorem 3.3 Our term structure model is viable, with a unique EMM. In particular, arbitrage

opportunities and 'suicide" strategies are precluded.

Proof The unique EMM follows immediately from the above regularity conditions and Theorem 3.2.
Viability follows by Theorem 3.1. Arbitrage and suicide strategies are readily shown to be precluded

by requirement (v) on trading strategies. [

4  PRICING OF CONTINGENT CLAIMS

As HK (Section 3, Corollary to Theorem 2) pointed out, the existence of a unique EMM implies
that there is a unique extension of market prices to all contingent claims. Thus every claim has a

unique price consistent with equilibrium; HK termed this price "determined by arbitrage".

Theorem 4.1  Let the conditions of Theorem 3.3 be fulfilled, Then any xe€L?(Q,F,P) is priced
by arbitrage, at a value:

v = B(T,0) E'[x] (38)

Proof Let P be the unique EMM. Let x be the corresponding extension of the price system.
Then, by Theorem 3.1, « 1is given by:
x(x) = B(T,0) E[x] (39)

The result follows. [

The valuation equation (38) applies across the whole family of models constructed in this paper, and
is thus inevitably abstract. For particular models, formulae capable of explicit computation can be

derived from it.

For example, for a broad class of models within the subfamily discussed in Section 5.3 below, Babbs

has obtained closed-form pricing formulae for a wide range of contingent claims (Babbs chapters
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6-17 pp153-272), including: european bond options2?; interest rate caps and floors; futures contracts
on bonds30 and on short-term interest rates; and for options, margined in a manner akin to futures,
on those futures contracts, such are traded on the London International Financial Futures Exchange
(LIFFE). A computationally efficient binomial approximation scheme, using the general framework of
Ho and Lee [1986b], extends the coverage (Babbs chapters 18-25 pp273-370) to include, inter alia:

american bond options; and non-margined options on futures. We hope to present a number of these

results in future papers.

5 ROPERTI B-FAMILIE

In this Section we consider various sub-families of the models constructed in Section 2. In each case
we are able to shed light on topics discussed in earlier literature in more restricted settings, or to
obtain existing models as special cases. One effect of this is that our results on viability (Theorem
3.3) and the valuation of contingent claims (Theorem 4.1) can be applied to a range of models of

theoretical and practical interest.

We shall see that in some cases - though not in others - the evolution of the term structure can be
described in terms of a finite set of state variables. This vindicates our decision, at the outset of
Section 2, to eschew basing our construction upon state variables. At the same time, the existence of
a state variable representation for some classes of our models may be useful to other researchers

seeking to incorporate our models in wider endeavours.

51 in nden
If we write
b(t,M,w) = b(t,w) (40)

in (16), we see that the volatility of B(M,t) is

o(M~-t,t,w) = (M-t) b(t,w) (41)
Moreover, from (14) we find that

a(s,M,w) = b(s,M,w) {e(s,w) + '[Mb(s,m,w)dm> YV s, M (42)

29 The formula in question yields that of Jamshidian [1990] as a special case, when applied to the
Vasicek [1977] term structure model.

30 The analysis sets aside the various delivery options often embedded in such contracts.
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From (41) it is easy to verify3l that the volatility of the value of any bond portfolio, not just that of
a single pure discount bond, is proportional to conventional duration. Thus the sub-family discussed

here is significant as the sub-family for which conventional duration is the correct tool for portfolio

immunisation.
However, if we substitute (41) and (42) into (2), it is readily shown that
t
f(Mz,t) - f(My,t) = f(M;,0) - f(M,;,0) + (Mz‘Ml)_/; b*(s, w)ds (43)

The interpretation of (43) is that, with probability one, the forward instantaneous rate curve, with
respect to forward date, steepens as time elapses. Thus the sub-family for which conventional

duration is the correct immunisation tool has implausible properties.

Cox, Ingersoll and Ross [1979] suggested (p55)  that the only dynamics for which conventional
duration is a valid measure of risk is that which corresponds in our framework to the case
b() = constant. ~This stemmed from their restricting their attention to term structure dynamics for
which their equation (6) holds. Our findings thus reinforce, from the vantage point of a more
general framework, the conclusion of Cox et al. that using conventional duration as a measure of

risk is consistent only with implausible term structure dynamics.

31 1et the promised cash flows from the portfolio be «¢;,...,c, at datess M,;<...<M,

respectively, with M, greater than current time, t. Then the value of the portfolio is:
V() = ) ¢,B(M,,t)
j=1

Applying Ito’s lemma, and substituting (1),

av(t) = iciB(Mi,t){r(t)+9(t)c(Mj—t,t)}dt # ic,B(Mj,t)o(M,-t.t)dZ(t)
j=1 i=1

whence

dv(t) _

Ty - rO+emDmYdL + D(HAZ)

where

D(t) = {ic,B(M,,t)o(M,—t,t)} + {ic,B(M,,t)}
j=1 j=1

Thus D(t) is the volatility of the value of the portfolio, and the appropriate measure of risk.
Comparison with conventional duration:

C() = {ic,B(Mj,t)(Mj—t)} + {ic,B(Mj,t)}
j=1 j=1

quickly reveals that volatility will be proportional to conventional duration, for all portfolios, if and
only if o( ) is of the form given by (41).
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Substituting (40) and (42) into (2) also yields:

f(m,t) = f(m,0) + mfolbz(s,w)ds

- '/;l(sbz(s,w)—e(s,uo)b(s,uo))ds + /o‘b(s,w)dZ(s) (44)
Hence
fo'bz(s,w)ds (45a)
and
fo'{sbz(s,w)-e(s,w)b(s,m)}ds - folb(s,w)dZ(s) (45b)

constitute the state variables for the entire forward instantaneous rate curve and hence, via (7), of

the entire term structure itself.

52 b() constant

Setting

b(t,M,w) = b (46)
obviously represents an extreme case of the sub-family just considered above, with the proportionality
factor between volatility and conventional duration being state and time independent. Various
authors32 have shown that the Ho and Lee [1986b] state-time-independent model represents a

discrete time approximation to precisely this extreme case.

For this sub-family, it is possible to derive a closed-form expression for future term structures, as

follows.

Substituting (46) into (41) and (42) and thence both into (6) and (1) yields:

r(t)y = f(@,0) + bfle(s,w)ds + lbztz + bZ(1) (a7)
0 2

and

dB(M,t) _ ) ]

B(M,t) = {r()+oe(t,w)(M-t)db)dt + (M-t)bdZ(t) (48)

32 Babbs (chapter 20, pp308-15) and Heath, Jarrow and Morton [1990] provide independent, and
indeed quite different, treatments. We are unclear to what extent Carverhill [1989] and Hull and
White [1990] are indebted to Heath et al
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whence straightforward manipulations give

- BM,0) - _ I
B(M,t) = B(1,0) exp[(M O{fE,0)-r(t)y 2t(M )b ] (49)
(Note that if, in (48), we set 6( ) = O and b = -g, we obtain the model described in

footnote 43 on pl63 of Merton [1973].)

It may be seen from (49) that, for this sub-family, the instantaneous interest rate r(f) is a state

variable and that no other such variable is required.

53 b() state-independent

By removing state-dependence, ie dependence on w, from b( ), the volatility of pure discount bond
prices becomes state-independent, as can be seen from (16), but may nevertheless be a function of
time as well as of term to maturity. Models in this family are readily shown to be viable, if (say)

the market price of risk is globally bounded (see Theorem 3.2 and subsequent Remark).

For this sub-family the impact of the innovations of the Brownian motion Z() upon any particular
part of the term structure depends on the maturity date in question33. In general, therefore, no

finite set of state variables for the entire term structure exists for this sub-family.

In pricing contingent claims, Babbs focusses much attention upon a portion34 of this sub-family in

which b() has the functional form:

b(s,m) = -G’(m)A\(s) (50)
where G,N:[0,©) - [0,») with G(0) =0 and where G°( ) denotes the first derivative of
G().

33 For example, it is easy to verify that for this sub-family, (2) becomes:

ftm,t) = f(m,0) + ﬁlb(s,m){j;mb(s,n)dn—e(s,w)}ds + /;lb(s,m)dZ(s)

34 Babbs shows that, after adjusting the probability assignment to the ‘“equivalent martingale
measure”, future term structures can be described by a single Gaussian state variable. This facilitates
the derivation of concrete valuation techniques - in many cases closed-form expressions - for a very
wide range of contingent claims of commercial interest (see the end of Section 4 above).
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For this portion, it is easy to verify that (2) becomes

f(m,t) = f(m,0) + G'(m)ﬁ{c(m)-G(S)}XZ(S)dS

= G'(m)[fo'e(s,w)k(s)ds+/;‘x(s)d2(s)} (51)
so that
Y(t,w) = fole(s,w)x(s)ds * /;')\(s)dZ(s) (52)
constitutes the single state variable for the whole term structure.

It is worth exploring the properties of the instantaneous spot rate of interest for this portion of the
wider subfamily.

Recalling from (9) that

r(t) = f(t.t) ; Vit

we put m =t in (51) and use (52) to obtain
t
r(t) = f(t,0) + G'(f)'/;(c(t)-G(s)}Kz(s)ds - G()Y (@) (33)

If G°( ) is differentiable35, we may re-express (53) in differential format:

G (1)
G (1)

dr(t) = p’(t)dt {w(®)-r(®)}dt - G(HAY (1) (54)

where p°(t) is the derivative of

pt) = f(t,0) + G'(i)fo{G(l)—G(S)}?\z(s)ds (5S)

(54) can be interpreted as expressing a mean reversion process involving a moving mean, p(t) ,

and a generalised innovations process G°(t)dY (t) . Analysing contingent claims under this model,
Babbs has obtained (chapters 6-25, ppl53-370) an extensive range of continuous time closed-form

results and a binomial approximation scheme (see also the end of Section 4 above).

35 Assumption (iii) of Proposition 2.1 implicitly imposes the requirement that G’( ) exist, but it

will not necessarily be differentiable.
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531 The "extended Vasicek" model of Hull and White [1990] (HW)36
HW propose an ‘"extended Vasicek" model, in which the dynamics of the instantaneous spot

instantaneous rate can be written in the form:37
dr(t) = {a()+R)r()}ydt - y(t)dZ(t) (56)
and the market price of risk process is a function of time alone, to be determined from the other

parameters and the initial term structure.

HW propose that a( ), B( ) and vy( ) be chosen so that the model fits: the initial term

structure, the initial variabilities of spot interest rates of all maturities, and the prospective variability

across time of the instantaneous spot rate.

It is readily shown, by comparing (56) with (54), that any "extended Vasicek" model is a special case

of our "b() state-independent" sub-family, with:

G(t) = f‘exp{fsﬁ(u)du>ds (S57a)
ACt) = v(t)exp{-foﬂ(u)du} (57b)
and

0(t) = —a(t) - B@SF(t,0) + f,(t,0) + onz(S)eXP<2fs B(u)du}ds (S7¢)

The significance of this representation is threefold:

Firstly, we can apply the results in this paper to establish that HW’s "extended Vasicek" is viable -

an issue HW overlook.

Secondly, HW achieve the "fit" of their model by imposing an artificial structure (57c) on the market

price of risk, ©( ). By contrast, the greater gemerality of (54), over that of (56), enables us to

achieve the same "fit" while leaving the price of risk, ©( ), free to take any form.

36 HW also put forward an "extended CIR" model, building on that in Cox, Ingersoll and Ross
[1985]. A similar analysis to that given here for the "extended Vasicek" model can be brought to
bear (see Babbs p96), but no gain in tractability accrues.

37 We have changed the notation, to avoid confusion below when HW’s models are compared with
ours.
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Under our approach, all we need to parametrize38 the model are G() and A( ) . The former,

together with A(O0) , is determined from the initial absolute variabilities of spot rates of all

maturities:
G

0 \p(M,0) { = Tm MO M>0 (58)
= G'(0)A(0), M=0

where, without loss of genmerality, we set G’(0)=1 . We can now determine A( ) from the

anticipated absolute variability of instantaneous spot rates:
Ospat(0:1) = G(HIN(L) (59)

Thus, not only is our approach more general but also, as comparison of (58)-(59) with equations
(15)-(16) in HW’s paper reveals, we are able to parametrize our model using substantially simpler -

and more computationally tractable - expressions.

Thirdly, in pricing contingent claims, we can apply the results in Babbs (chapters 6-25, pp153-370)

referred to at the end of Section 4 above.

6 CONCLUSIONS

In this paper, we have identified a need for continuous time models of the dynamics of the term
structure of interest rates, conmsistent with the initial term structure actually observed. We have
addressed that need by constructing a general family of Ito process models, and by extending the
work of Harrison and Kreps [1979] in such a way as to enmable us to identify modest sufficient
conditions under which members of that family are viable, ie can be supported in general
equilibrium. As a by-product of our analysis of viability, we have established that all contingent

claims are priced by arbitrage, and exhibited a general pricing equation.

We have examined some subfamilies of our models. In so doing, we shed fresh light on the
implausibility of the term structure dynamics under which conventional duration is the correct
measure of bond portfolio risk, extending a critique advanced by Cox, Ingersoll and Ross [1981]. We
also pointed out that various existing models, including the continuous time limit of the state and

time independent model of Ho and Lee [1986b], and the "extended Vasicek" model of Hull and

38 The "price of risk" process is irrelevant to the pricing of contingent claims, and so can be left
unspecified.
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White [1990], are special cases of our framework. In particular, we showed that we could generalise
the "extended Vasicek" model in such a way as to remove the artificial form of the market price of

risk, imposed by Hull and White.
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