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Abstract: Typical interest rate swaps are contracts contingent on future
borrowing rates of banks then of good credit worthiness. Differences between the
term structures for default-free bonds and for swaps are more appropriately
modelled in terms of "required return differentials" rather than of default risks.
We present a theory for the joint evolution of the two term structures, consistent
with their initial positions, and for pricing contingent claims on either or both
structures. We explore a class of models within our general framework, and
exhibit a readily computable valuation formula for european-style contingent
claims; we provide a concrete example.
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1 1 DUCTI

The interest rates at which different borrowers can raise funds generate several
different term structures within a single currency. In many currencies, quotations
are widely available for interest rate swaps! based on short term interbank
interest rate indices, thereby creating a further term structure. Some indication of
the importance of swaps is given by recent estimates by the International Swap
Dealers Association that the total value of outstanding contracts exceeds $2,500
billion. In addition to swaps themselves, a variety of contingent claims on the
swap term structure are traded; these include interest rate caps and floors, and
various kinds of options to enter or terminate swaps.

This paper presents a theory for the joint evolution of the term structures for
default-free bonds and for interest rate swaps, consistent with whatever initial
term structures are observed, and for pricing contingent claims based on either
or both term structures. We explore the properties of a class of models within
our general framework, and exhibit a readily computable valuation formula for
european-style contingent claims; we provide a concrete example. The applicability
of our approach includes the integrated evaluation of trading strategies embracing
a very wide range of interest rate instruments, including: spot and forward
trading in default-free bills and bonds, and associated futures contracts; interest
rate swaps based on government and private sector interest indices, and options
thereon; futures contracts on interbank interest rates; caps and floors; and
options on all these instruments.2

The investigation of term structure is a longstanding topic within financial
economics. One substantial body of literature adopts a framework in which all
bonds, and any contingent claims with which it may concern itself, are
default-free. Its primary application is therefore to own-currency bonds issued by
or effectively guaranteed by central government. We have in mind here both the
literature seeking to explain the determination of the default-free term structure
(eg Vasicek [1977], Cox, Ingersoll and Ross [1985]) and the more recent

1 For an account of interest rate swaps see (eg) Antl [1986] or Bicksler and Chen [1986].

Z Our framework embeds the single term structure model independently developed by Heath,
Jarrow and Morton [1987],[1989] and Babbs [1990],[1991a]. The closed-form results obtained by
Babbs [1990] for: caps and floors; european options on swaps; futures on interbank interest rates,
and margined options thereon; and his binomial approximation scheme for american options on

swaps and futures, therefore carry over.
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literature which aims to model the dynamics of that term structure consistently
with whatever initial structure is actually observed (eg Ho and Lee [1986], Babbs
[1990],[1991a], Heath, Jarrow and Morton [1987],[1989]).

A second- substantial literature addresses the term structures corresponding to the
debt obligations, at various maturities, and one or more degrees of subordination

in the event of default, of an individual default-risky borrower (ie one who may
default).

The most common approach in this second body of literature (eg Merton
[1974],[1977], Black and Cox [1976], Ho and Singer [1982],[1984] and Selby
[1983]) is based on the capital structure of a corporate borrower. It builds on an
insight due to Black and Scholes [1973] that all corporate liabilities, whether debt
or equity, can be viewed as contingent claims on the total assets of the firm. To
simplify the analysis it is often assumed that the default-free interest rate is
constant; the total assets of the firm then become the sole stochastic variable.
Default occurs when the assets of the firm are inadequate to meet payments on
debt, or fail some criterion specified in covenants that form part of the debt
contracts. Cooper and Mello [1991] - to be discussed later - have recently
applied this approach to examine default risks on swaps between a default-risky
and a default-free counterparty.

An alternative approach to the modelling of default has recently been proposed
by Jarrow and Turnbull [1991]. They model both the default-free term structure,
and the term structure representing the relative prices of different maturities of
default-risky debt, consistently with both of the observed initial term structures,
using an extension of the technology independently developed by Heath, Jarrow
and Morton [1987],[1989] and Babbs [1990],[1991a]. Default risk enters the model
via the absolute price of maturing default-risky debt. This price is unity until an
exogenously specified jump process, representing cumulative credit downgradings,
reaches the "bankruptcy" state; the price then jumps downwards and subsequently
follows a diffusion process reflecting the course of corporate restructuring. Under
this approach, as under the capital structure approach discussed in the previous
paragraph, it is solely the direct losses arising from potential bankruptcy that
distinguish corporate bonds from default-free debt and justify the existence of
separate term structures.

An altogether different approach is contained in the later sections of Ramaswamy
and Sundaresan [1985] (RS). RS assume that the default-free term structure
evolves according to the "square root" model of Cox, Ingersoll and Ross [1985],
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coupled with the Local Expectations Hypothesis - according to which expected
total returns from all default-free bonds equal the instantaneous default-free
interest rate:3

E[dAF(t)] + x(t)dt = F(t)r(t)dt (1)

where F is the price of the bond, x its (continuously paid) coupon rate, and r
the instantaneous default-free rate. Turning to default-risky debt, RS do not
model explicitly events of default; instead they assume that the expected total
returns from default-risky bonds must exceed those on otherwise identical
default-free bonds by a maturity-independent differential, p:4

EfdF()] + x()dt = F){r()+ p(t))adt (2)

RS do not make explicit which of two possible interpretations they would place
on this approach. Under one interpretation, the benefits of holding a default-risky
bond to maturity consist precisely of the promised cashflows. Since RS’ approach
does not include explicit default, these benefits are identical to those arising from
an otherwise identical default-free bond. The Law of One Price then contradicts
the simultaneous validity of (1) and (2). Jarrow and Turnbull [1991] interpret RS
this way and criticize their approach accordingly. Under the alternative
interpretation, to which we subscribe, (2) states that the returns from holding
default-risky bonds which, ex post, do not promptly default, include additional
capital gains which accrue at a rate represented by a required return differential
p providing compensation for, infer aliaS, losses on similar bonds which (also ex
post) do default.® Specifically, equation (2) revises the expected change in price

as given by (1) in order precisely to reflect the differential. No anomaly is
involved.

We believe that the required return differential approach to spreads between
term structures, pioneered by RS, may prove more successful than approaches
which attribute the spreads solely to prospective direct losses arising from
possible default. Prudent investment in default-risky bonds requires the costs of at
least rudimentary credit assessment, and of the implementation of policies to

3 see RS equation (5) p260

4 see RS equation (9) p268; we have generalized the coupon for ease of comparison with the

equation for default-free bonds
S See the next paragraph for a discussion of other possible influences on p.

6 Technically, this interpretation involves an additional element of conditioning in the expectation in

@).
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ensure diversification by economic sector of the borrowers whose bonds are held.
Institutional arrangements may restrict the types of bond in which some agents
can invest. Holdings of different classes of bonds may have different taxation
implications for some investors and, in the case of bank investors, may be subject
to different weightings for the purposes of computing capital adequacy ratios (see
Bank for International Settlements [1988]). The markets in different types of
bonds may exhibit varying liquidity and other characteristics. All these factors
may cause equilibrium yield to differ significantly from those which might
plausibly be seen as attributable to the direct costs of possible defaults. A
required return differential approach can cover the influences of all manner of
factors, essentially regardless of their source.

The a priori arguments just advanced in favour of a required return differential
approach as opposed to a solely default-oriented approach find empirical
encouragement in both Jones, Mason and Rosenfeld [1984] and in RS. Using the
capital structure approach of Merton [1974],[1977] and others, Jones et al. find
evidence (p619) that "[default] risk is not playing a significant role in explaining
investment grade bond prices. This also suggests that a stochastic interest rate
model could be a better predictor". RS indicate (pp267-8) that they found the
capital structure approach "simply unable to account for the magnitude of the
discounts [between market prices of floating rate notes and values obtained from
the default-free term structure]”.

A commonplace assumption of contingent claims analysis is that the agents in the
economy can both lend and borrow freely at the same rate of interest. In the
literature on default-risky debt, the issuers of the debt play a purely passive role,
all securities trading being carried out by investors who are assumed to be
default-free. The natural choice of the rate for freely available borrowing is then
held to be the default-free rate. In the context of the interest rate swaps market,
however, the most prominent participants are banks and other default-risky
corporations; these same agents also trade extensively in default-free
("government") bonds. It would therefore be problematic to take default-free
interest rates as applicable to freely available borrowing?. In contrast, the central
authorities, as the issuers of default-free bonds, do not trade actively in swaps, or

7 Private sector agents’ ability to borrow at rates close to default-free rates via mechanisms such
as repo markets in government bonds does not permit net raising of funds, since such borrowings

must be secured by pledging government bonds of greater value. We apply our model to repo

markets in Section 7.



page 5

even in their own debt8. We therefore deem it natural to take the borrowing
rates applicable to agents such as banks (ie interbank borrowing rates) as the

rates for freely available borrowing. This feature of our work appears to be an
innovation.

Of course, having recognised that the prominent participants in the swaps
markets are themselves default-risky agents introduces a new problem. The
existing literature on the valuation of default-risky claims is devoted to claims
held by default-free investors on default-risky counterparties?, rather than claims
and obligations held by default-risky agents. In the present paper, we sidestep
this issue by treating agents in our trading model as default-free. One could
argue from this that the required return differential in our model therefore
covers factors other than default; we would rather intend it as approximating the
full reality. It should also be noted that there are strong reasons for regarding
default-risk on swaps as far less significant than on bonds: swaps consist of
exchanges of fixed and floating payments initially perceived as of equal value, and
exclude the exchange of the notional principal amount; the value of a swap,
unlike that of a bond, is therefore unlikely to exceed a small percentage of the
principal amount. The low credit risk on swaps is reflected in the approach of
banking regulators expressed in Bank for International Settlements [1988], under
which the risk weighting attaching to a new swap is only a tiny fraction of that
attaching to a bond or loan of the same principal amountl0.

At first glance, Cooper and Mello [1991] (CM) might be interpreted as indicating
that default-risk might play a larger part in the swap term structure than
suggested by our previous paragraph. CM adopt the capital structure approach, of
Merton [1974],[1977] and others, to value a swap claim by a default-free investor
upon a default-risky corporation. After a general analysis in terms of a stylized

8 We feel it reasonable to regard the central authorities’ open market operations as part of their

debt issuance/retirement, rather than as securities trading.

9 We have in mind the term structure literature already cited and, outside such a context, Johnson
and Stulz [1987].

10 Under the "original exposure" method the fraction does not exceed L% where L is the maturity
of the swap in years. Under the alternative "current exposure" method, widely viewed as superior,

the fraction for a new swap at quoted market rates does not exceed %L% .
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swap, CM consider the equilibrium spreadsll on S5-year fixed interest and floating
interest debt and on a swap from floating to fixed interest. CM provide
illustrative estimates of these spreads; the equilibrium swap spread equals a
modest but significant fractionl?2 of those on fixed or floating debt. We would
conjecture, however, that the swap spread has been substantially increased by
CM’s assumption - which they accept is of uncertain validity - that swap claims
are subordinated to debt in the event of default.

The impact of default-risk on the swap term structure is lessened, not just by the
small scale of the exposure relative to that on debt, but by the fact that the
typical swap is between two default-risky counterparties - whereas in CM one
counterparty is default-free. We believe that the equilibrium spread for a swap
between two default-risky counterparties of comparable credit standing - two
banks for instance - would be near zero.

The most common variety of interest rate swaps - and those regarded by
practitioners as defining the swap term structure - are contracts which provide for
periodic "fixed rate" payments by one counterparty, against periodic "floating rate"
payments by the other, based on short-term interbank interest rates - rather than
the default-free rate used in Sundaresan [1989] (see below) and in Cooper and
Mello [1991]. Such swaps should be seen as contingent contracts on future
interbank rates. Those rates do not correspond to the future borrowings of an
individual corporation, but to borrowings by members of a perpetually renewed
pool of corporations who are of good credit standing at the time the funds are
raised. Such a pool cannot readily be seen as a single borrower, and indeed
cannot collectively default - short of a general banking collapse. In consequence,
neither the capital structure approach of Merton [1974] and others, nor that of
Jarrow and Turnbull [1991], can be applied to the evolution of interbank rates,
since, under both those approaches, only the possibility of explicit default justifies
the existence of separate term structures. By extension, neither approach can
readily applied to the swap term structure.

We draw the conclusion from the above discussions that a required return
differential approach is more appropriate to the joint modelling of the
default-free and interest rate swap term structures than one which concentrates
heavily on the possibility of default.

11 je the additional per annum interest rates required to be paid by the default-risky corporation

over and above those payable in comparable default-free contracts.

12 lying between one ninth and one half, depending on the parameter values used
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Sundaresan [1989] applies the required return differential approach of
Ramaswamy and Sundaresan [1985] to determine the swap term structure, given
stochastic processes for the default-free term structure and the required return
differential. This entails accepting the RS assumption of the Local Expectations
Hypothesis, and the inconsistency of the Cox, Ingersoll and Ross [1985] term
structure model with the initial term structure actually observed. While we prefer
to avoid such assumptions, we do not thereby imply any theoretical criticism.
However, Sundaresan’s approach also assumes that agents can borrow freely at

default-free interest rates; we have argued above that this is inappropriate to the
swap markets.

We believe that we have now given sufficient justification to motivate the
modelling approach to be adopted in this paper. Namely, we shall not include
the occurrence of default explicitly; instead we shall adopt a generalized version
of the required return differential approach of Ramaswamy and Sundaresan both
to model, and to justify the existence of, distinct default-free - hereafter
"government” - and swap term structures. Since major banks are prominent
participants in the swap market, we shall use interbank rates as representing the
rates for freely available borrowing.

In Section 2 we rehearse the structure of a simple interest rate swap. This leads

us to the fundamental relationship, (3), between swap rates and the swap term
structure.

In Section 3 we set out the formal structure of our model. We consider a finite
horizon continuous time pure trading economy akin to that used in Harrison and
Kreps [1979]. In modelling both the "government" and swap term structures we
exploit the technology recently independently developed by Babbs [1990],[1991a]
(Babbs) and Heath, Jarrow and Morton [1987],[1989] to model the dynamics of
each by means of Ito processes driven by a finite number of Brownian motions,
consistently with whatever initial term structures are actually observed. We feel
that the last mentioned feature of the technology is of significant practical
importance; moreover, we are able in this framework to avoid making strong
assumptions on preferences (such as the Local Expectations Hypothesis assumed
by Ramaswamy and Sundaresan).

In Section 4 we show that our model of securities trading is viable, ie capable of
being supported in a general equilibrium, and that all contingent payoffs are
priced by arbitrage, in the senses defined by Harrison and Kreps [1979]; our
demonstration builds on extensions to Harrison and Kreps’ results, and
applications to term structure models, recently obtained by Babbs [1990],[1991a].
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Our results hinge on the existence of a unique equivalent martingale measure;
we are also able to deduce from this that the model is complete in the sense
that all claims can be attained by admissible trading strategies.

We noted above a number of factors underlying a yield differential between the
"government” and swap term structures. These factors may bear differently on
different agents. How would allowing for this affect the viability of our model?
Will agents who apply different required return differentials assign the same
values to contingent claims? We show in Section 5 that viability is preserved, and
that contingent claim values are assigned unanimously.

Up to the end of Section 5, our framework is quite general, and the valuation
formula for contingent claims correspondingly abstract. In Section 6, we illustrate
our framework by imposing a particular family of term structure models. We
explore briefly the behaviour of the term structure dynamics, and of the spread
between short term "government" and interbank/swap interest rates. We also
derive a easily computable valuation formula for european-style contingent claims
expiring at any date in the economy. Specializing still further, and supplying
particular parameter values, we take a reasonably complex example of some
interest to market participants - an option to enter a swap, whose fixed rate will
be set at the expiry date of the option at a fixed spread above whatever yield is

then ruling on a reference government bond - and show how to obtain a
numerical valuation.

Section 7 shows how a repo market in "government" securities can be analyzed
in our model, and provides secured funding at a cost close to default-free rates
of interest.

Section 8 provides concluding remarks.

2 INTEREST RATE SWAPS

The most common variety of interest rate swap is a contract requiring one party,
the "fixed payer', to make periodic payments to the other party, over some
overall maturity, calculated by applying over each period a fixed rate of interest,
the "swap rate", to a constant notional principal amount; in return the other
party, the "floating payer", makes periodic payments, over the same overall
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maturity and with the same notional principal amount, calculated by applying
over each period a floating rate of interest equal to the interbank interest rate
for the period - as observed atl3 the start of each period.

If we supplement both the "fixed payer’s" and the "floating payer’s" obligations
with a requirement to pay the notional principal amount at the maturity date of
the swap, clearly no net payment is required. The supplemented obligations,
however, now equate respectively to those on a fixed interest bond with coupon
equal to the "swap rate" and to those on a floating rate note paying the periodic
interbank rate each period. If we suppose that agents may lend or borrow freely
at the interbank ratel4, then the value of this floating rate note must equal its
face value: the notional principal amount of the swap. (This argument is
essentially identical to that due to Cox, Ingersoll and Ross [1980] p391, which
shows that what Ramaswamy and Sundaresan [1985] p256 call a "perfectly-indexed
floater" has a value equal to par. It sidesteps the need to value the floater by
approaches such as that used by Bicksler and Chen [1986].) Since no premium
changes hands when a swap is enteredlS, the value of the fixed interest bond
must also equal its face value. Applying therefore the well-known decomposition
of a coupon bond into a bundle of pure discount bondsl®, we obtain the
relationship between swap rates and the swap term structure:

J
c, Zlﬁij(Mj,O) + B,(M,;,0) = 1 (3)
s

where c, is the swap rate applicable to a maturity of J fixed interest periods, 6;
is the interest accrual factor for the jth period, and B,(M;,0) is the price at
the initial time of a "private" sector pure discount bond maturing at the jth
payment date, M; . This relationship resembles that between the coupon on a
bond valued at par and the corresponding term structure.

13 This observation will, in many currencies, take place two business days prior to the start of the
period. Moreover, since the successive interest dates in the swap are calculated from the inception
of the swap, the interbank rate observed at the start of a period may refer to an interval of time
ending on a date slightly different date from the swap payment date. The analysis we will present

generalizes readily to accommodate such practical minutiae.
14 This analysis also sets aside the occurrence of default.

15 Sfrictly this applies only to the "par" or "at-the-market' swaps most commonly quoted and
traded.

16 sece eg the start of Section VI of Merton [1974], or of SectionI of Cox, Ingersoll and Ross
[1981]
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By considering the case J = 1, it is evident from arbitrage considerations that
the one period swap rate must equal the interbank rate for that period.

3 FORMAL STRUCTURE OF THE MODEL

We consider a two-sector continuous trading economy with a finite horizon. One
sector (the "government") is not modelled and plays a purely passive role, but is
exogenously assumed to issue a range of fixed interest securities. Agents in the
other, active "private" sectorl” may trade these securities18, but may not take
short spotl? positions20 in them. They also trade fixed interest claims on each
other and arbitrary contingent claims.

3.1 THE CONSUMPTION SPACE; AGENTS; INFORMATION

We suppose that consumption occurs only at the outset of the economy, and at
the terminal horizon date. Agents’ preferences are defined over initial
consumption and state-contingent terminal consumption. Formally we construct a
consumption space RX X where X=L?(Q,F,P), and a set of agents, as in
Harrison and Kreps [1979] (HK). The technical assumption that state-contingent
terminal ‘consumption must have finite second moment affords considerable
mathematical convenience.

17 In Section 5 we will subdivide the private sector, in order to discuss the effects of differing

levels of required return.

18 We assume that the aggregate endowments of these agents are sufficient for them to hold all

the "government" securities outstanding.
19 We will assume that spot transactions are for immediate delivery.

20 wWe emphasize that this restriction applies only to spot positions; it does not restrict the ability
to take short forward positions (which we treat as a particular type of contingent claim). We show
in Section7 how this framework accommodates a repo market such as that operating in US
Federal Government securities. In that market, the security provided by the government securities
permits long positions to be financed at close to default-free interest rates, even by investors of

indifferent credit standing.



page 11

The information available to agents at time te[O,T] is represented by F,CF

where {F. : te€[O,T]}y is an increasing sequence of sub-sigma-algebras
satisfying the "usual conditions'?l and where, without loss of generality, Fo, is
almost trivial, and F;=F .

Following HK, we assume that the (relevant) information available to agents is
confined to the past histories of the two term structures:22

Assumption The information filtration {F, : te[0,T]} is that generated by the

Brownian motions Z,( ), Z,( ) , introduced below, which drive the term
structure dynamics.

3.2 TERM STRUCTURE DYNAMICS

Let B,(M,t) and B,(M,t) denote the prices at ¢ of unit nominal of a

pure discount bond maturing at M =2>¢ , issued by "government" and "private"
sector borrowers respectively.

Assumption  The term structure dynamics can be described by the following Ito
processes23, consistent with any24 initial term structures:

dB,(M,t)

By(M, 1) {ry)+s(M,t)+0,()a,(M,t)ydt + o, (M,t)dZ,(t) (4)
and

dB,(M,t)

B, (M, 0) {r,(1)+06,(1)o,(M,t)ydt + o,(M,t)dZ,(t) (5)

21 see eg Karatzas and Shreve [1987] p10

22 The findings of Babbs and Selby [1991] may be used to establish that the key results in this
paper - viability; pricing by arbitrage of all contingent claims on either or both term structures;
completeness with respect to term structure risks - carry over to a more general information
filtration, provided that the volatility, correlation, and required return differential processes are all

adapted to the filtration generated by the Brownian motions driving the term structure dynamics.

23 The equations are given in single factor form. The model could be made multi-factor by the

simple expedient of adding further terms of similar form; details are left to the reader.

24 gtrictly, any initial structures B,(M,0) and B,(M,0) whose logarithms are differentiable

with respect to M.
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In these equations r,( ), r,( ) are the respective instantaneous spot interest

rate processeszs. s( ) is a deterministic function which we suppose can be written
in the form

M
s(M,t) = ]: B(m,t)dm (6)

for some function R( ) , and whose role will be discussed further below.
0,C ), ©,( ) are essentially bounded predictable processes relating, in some
way26, to the 'price of interest rate risk" on bonds issued by the two sectors.
0,C ), 0,( ) are also predictable processes, representing bond price volatilities;
and Z,( ), Z,( ) are standard Brownian motions whose innovations have the
predictable correlation process given by:

dz,(t).dzZ,(t) = p(t) dt (7)

Babbs [1990],[1991a] has shown that such Ito processes can be constructed in a
well-defined manner, and that bond prices converge to par at maturity, with
probability one.27

The role of s() relates to the required return differentials which we will define
formally in the next subsection. A portion of these is, of course, reflected in the
spread between the parts of expected returns represented by the instantaneous
spot rates ro( ), r,( ) . However, this applies to all bonds independently of
maturity, and thus cannot reflect any maturity-dependence of required return

differentials. Maturity-dependence therefore gives rise to the additional return
term s( ).28

25 The instantaneous spot interest rates are of course equal to the yields on immediately maturing
bonds:

InBe(M,t
eulf) = - Tmotedhibl,

’ k= ’
Mt M-t g.p

26 We elucidate this relation fully in 4 Remark II below.

27 The presence of s() in (4) requires a slight extension of the construction in Babbs

[1990],[1991a]. The key is to regard B,(M,t) as composed of two factors, one of them being:

exp{— ./:M'f:mﬁ(m, u)dudm}

and the other "underlying" process being constructed as set out in Babbs. The rest of the extension
is trivial. The presence of a similar term in (5) would give rise to an arbitrage anomaly; in (4)

however the effect is offset by the required return differential D() - see (16).

28 The precise relationship is determined in 4 Theorem I as equation (16).
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A significant implication of the presence of s() can best be seen by considering
the deterministic case, 0,( ) = 0,( ) = O . The evolution of the "private"
sector term structure is then, of course, determined by its initial state. In
particular, the instantaneous spot interest rate at each date, r,( ), equals the
initial instantaneous forward rate for that date:

r,(M) = —aiMlan(M,O) (8)

Due to s(), the corresponding equation for the "government" instantaneous spot
rate is:
0

M
ry(M) = —fo B(M,u)du -5-1nB,(M,0) (9)

where the relation between s() andR( ) is given by (6). Without s() therefore,
both instantaneous spot rates would be given by the initial forward rates, with
possibly implausible consequences for the spread between them. Thus the
presence of s() implies that, even in the deterministic case, the initial term
structures alone do not dictate the future course of the spread between the
instantaneous spot rates.

Equation (6) ensures that the instantaneous spot rate matches the yield on
immediately maturing bonds; its particular form ensures that the government term
structure possesses instantaneous forward rates for all dates and at all times.

3.3 REQUIRED RETURN DIFFERENTIALS

Due to a variety of factors discussed in the introduction, agents require return
differentials between the "government" and swap term structures. Since these
differentials may be maturity specific we model them by means of the family -
indexed by M - of predictable processes D(M,t) which we treat formally as
attaching to returns at time ¢ on the "government'2? pure discount bond maturing
at M. The total returns achieved from holdings of "government" bonds are
obtained by adding the required return differential to the bond returns. Thus, the

29 1t turns out that we must attach the differential to the "government' rather than the "private"
sector term structure in order to ensure that a contingent claim between two agents, which
happens to promise a fixed payment from one to the other, is valued by discounting the payment

using "private" sector rather than "government" discount factors.
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total return over the period from ¢ to ¢+ df from holding one unit nominal of
the "government" bond maturing at M is:

dB,(M,t) + B,(M,t) D(M,t) dt (10)

We assume that the risks associated purely with the price volatility of
government bonds are rewarded through the price dynamics of those bonds
rather than being reflected in the required return differential. More formally:

Assumption D( ) has no direct dependence on the anticipated volatility o,( )

34 TRADING STRATEGIES

We adopt what is essentially the most general possible formulation of the

concept of a trading strategy, adapted slightly to cope with the required return
differential.

As HK were the first to point out, some restriction must be placed on trading
strategies to eliminate arbitrage and - a stronger condition - to ensure viability;
HK restricted agents to "simple" strategies, involving a finite set of trading dates,
which ensured inter alia that the corresponding normalized value processes were
martingales under a risk adjusted change of probability measure - an "equivalent
martingale measure" (EMM). Restrictions sufficient to give this latter property are
commonplace in the subsequent literature to prevent arbitrage opportunities.
Babbs [1990] (chapter S, pp129-40), [1991b] showed that the martingale property
suffices also for viability with the more general class of trading strategy allowed
here; following him therefore, we commence with a provisional definition, adding
the EMM-related restriction later once the existence of a (unique) EMM has
been established in Section 4.

We allow a trading strategy to involve trading any finite number of securities in
an arbitrary fashion, subject only to: some obviously necessary exclusions; budget
constraints; and some modest technical regularity conditions. To formalize this, let
I be an index to the collection of securities traded in the markets, excluding
"government” debt. We initially restrict I to cover only pure discount bonds
issued by the "private" sector, but we will word our definition to assist our later
generalizations to cover trading in contingent claims:

Provisional definition A trading strategy is: some finite selection of maturity dates
M,,.... My ; a finite selection of securities, indexed as a,,...,a, € I ; together
with  k-dimensional and  n-dimensional real valued stochastic  processes
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y : [0,T]1xQ - Rrand y : [0,T]xQ - R . The ith component, v, , of
the former process represents time-state-dependent nominal holdings of the

"government” pure discount bond maturing at M, ; the jth component, ¢; , of the
latter process fulfils the same role for security a; . The processes must satisfy the

following requirements:
@) Y, v are predictable30;

(ii) the stochastic integrals in (12) are well-defined;31

(iif) no short spot positions in government bonds:
v, (1) = 0, Vit

(iv) v (1) = 0O Vit>M;. Similarly, ¢ ;(t) = O if security a;

‘matures strictly before t;

v) "self-financing"™: Vt,w :

k n
V(t) 2%@&@%0+ 2%@3&) (11)

n t
veoy + Y [ v wads,w
j=1
k t
+ ZfYi(u){ng(Mi’u)+Bg(Misu)D(Mi!u')dt} (12)
i=170
where S;:[0,T]1XQ - R s the price process of security «,

(vi)  terminal value in the terminal consumption space:
V(T,w) € X (13)

30 A process is said to be predictable if it is measurable with respect to the sub-sigma-algebras
generated by left-continuous adapted processes. Making this requirement prevents arbitrage

opportunities arising from exploiting price jumps (see Harrison and Pliska [1981] p237).

31 Babbs [1990] achieves this condition by means of the stronger requirement that holdings of
securities are locally bounded (see eg Elliott [1982] Definition 6.37 p58). The benefit of the present
approach is that, as Harrison and Pliska [1981] pointed out, the replication of even some bounded
contingent claims in eg the Black-Scholes economy requires strategies which are not locally
bounded.
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Remark  Requirement (v) above adapts the usual definition of "self-financing"
strategy by including the required return differential in the returns on
"government” bonds in defining the value process of a trading strategy. This
implicitly suggests that the differential returns are immediately realised in cash.
We must think in terms of funds being transferred between the trading strategy’s
portfolio and some kind of reserve. We feel that our formulation is clear and
reasonable, and that formalizing a transfer process would add to the technical
complexity of our model without benefit to its substance.

4 VIABILITY AND PRICING BY ARBITRAGE; COMPLETENESS

We normalize security prices and trading strategy wealth processes by dividing
through by the price of a numeraire security. We select for this purpose the
"private" pure discount bond maturing at 7. The key technical device in HK is
the "equivalent martingale measure", which we now define in our context:

Definition I A probability measure P~ on (Q,F) is said to be an equivalent
martingale measure (EMM) if and only if the following three conditions hold:

(i) P° and P are equivalent, ie have the same null sets. A necessary and
sufficient condition for this is that the Radon-Nikodym derivative

dpP’

apr

be strictly positive32.

(i) after adjusting for required return differentials33, normalized security price
processes are martingales under P~

(i) P
-dP

L3(Q,F,P) (14)

32 Note that since P, P’ have the same null sets, we may use the term "almost surely" without

qualification as to which probability measure is intended.

33 No adjustment is required for holdings of "private" sector bonds; for the "government' pure

discount bond maturing at M, the adjusted price process (before normalization) is
t

B,(M,t) exp{f D(M,u)du}
0

obtained by "re-investing" the required return differential in the bond.
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It is convenient at this stage to re-express Z,( ), Z,( ) in terms of two

independent standard Brownian motions W ,( ), W,( ) where
az,(t) = dWw,(t) (15a)

dZ,(t) = p()dW (t) + 1-p%(t)dW (1) (150)
Theorem I  The model specified in Section 3 has at most one EMM.

If this EMM, P~ , exists, then

D(M,t) = r (t) - r (t) - s(M,t) (16)
and
_ : t0,(u)-p(u)6,(u)
g(t) = exp{—fo{GP(U)—OP(T,LL)}CWKU) -fo \[Tz(u)p dl,(u)
R ) o . {8g(W)-p(u)0,(u))? }
2]0 {0,(u)-0,(T,u)} o7 du
is a P-martingale, with £(T) € L%(P) (17)
and P~ has Radon-Nikodym derivative
dP*
—> ~ &) (18)

Conversely, if (16) and (17) hold, define a probability measure, P~ , by (18). Then
a sufficient condition for P~ to be an EMM is that:

t . 1 [
eXp<j; {OP(M,U)_GP(T,U)}dWI(U) — EL {op(M’u)_op(T,U)}zdu>

is a P -martingale VMe[O,T] (19)
and that

exp{fo<og(M,u)p(u)—op(T,u»dW’;(u) « o, (M, w0 T=p2wyaw s ()

~ %fo{og(M,u)p(u)—o,,(T,u>>2+o§<M,u)<1—pz(u)}du}

is a P -martingale VYMe[0,T] (20)

where W1( ), W3( ) are standard Brownian wmotions under P~ , given by
(A15a)-(AI5D).

Proof see Appendix.
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Remark I By the Novikov condition34, (19) and (20) will always be fulfilled if

volatility is deterministic. Thus (16) and (17) are sufficient for the existence of a
unique EMM for that case.

Remark I We can now clarify the roles of 6,( ), 6,( ) as prices of risk.
Using (15a)-(15b) and (16), we can re-express (4) and (5) as:

dB,(M,t)

B, MDA+ oy (M,De(DdW, (1)

+ 0,(M,t) 1-p?(t)dW ,(t) (21)
where
W(M,t) = r,(t) = D(M,t) - s(M,t) + 0,(t)o,(M,t)p(t)

eg(t)—p(t)ep(t)og(M,t)m (22)

V1-p2(t)
and
M = {r,(t)+6,(t)o, (M,t)ydt + o, (M,t)dW  (t) (23)
BP(M,t) p p p D

Thus 6,( ), ©,( ) jointly specify the price of the (statistically independent)
risks corresponding to innovations in W ,( ) and W,( ).

If we now impose the following:

Rggularily‘ Condition  The conditions (16), (17), (19) and (20) of Theorem I are
fulfilled.

and impose on trading strategies an additional requirement:

Definition Il = Define a trading strategy by the Provisional Definition in Section 3.4
above, supplemented by the following additional requirement:

(vii)) V(t) / Bo(T,t) is a P -martingale

then we can derive a further important result:

34 see eg Karatzas and Shreve [1987] Corollary 3.5.13 p199
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Theorem I1 Our model is viable. Arbitrage opportunities and 'suicide" strategies

are precluded. Moreover, every contingent claim is uniquely priced by arbitrage at a
value:

S, = B, (T.0) ET[ x ] (24)

where x € X is the payoff of the claim at the terminal date of the economy35,
and E° denotes expectations under P~ . Indeed, our model is complete in the
sense that every contingent claim can be attained by an admissible trading strategy.

Proof By the above Regularity Condition, Theorem I holds, and so there exists
a unique EMM.

As we noted in Section 3.4 when introducing our Provisional Definition of
trading strategy, HK established a link between the existence of an EMM and
viability, under the restriction that agents pursue only "simple" trading strategies.
Babbs, however, ([1990] pp129-40; [1991b]) has strengthened this result by
showing that it suffices merely that the normalized value processes of trading
strategies be martingales under the EMM. The requirement (vii) applied to
trading strategies by DefinitionI of the present section therefore now gives us all
that we require to establish viability.

Requirement (vii) from Definition I is also readily shown to preclude arbitrage
and suicide strategies.

The pricing formula is simply the pricing system corresponding to the (unique)
EMM.

Completeness follows from the fact that any square-integrable random variable,
measurable with respect to a Brownian filtration, can be represented as the
terminal value of a stochastic integral with a predictable integrand (see Elliott
[1982] Theorem 12.33 p144)36. g

Finally, we can now relax our initial restriction that the index I of traded
securities other than "government" bonds covers only "private" bonds, to admit the
trading of contingent claims:

35 Claims whose payoffs occur before T are included by assuming that any such payoffs are

reinvested in the numeraire security: the private sector pure discount bond maturing at 7.

36 We can ensure that our prohibition of short spot positions in government bonds is met by

appropriate use of forward contracts.
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Theorem III  Let the Regularity Condition above hold. Define P~ by (17) and

(18). Let all contingent claims have measurable and adapted price processes.
Expand the index I of traded securities to admit such claims.

Then the model is viable if and only if the price process of the contingent claim
giving a payoff x at T is of the form:37
S,(t) = B, (T,t) E;J[ x ] Vte[0,T] (25)

Proof By Theorem I, P~ is the sole candidate EMM. Equation (25) is

precisely what is required to ensure that the discounted price processes of
contingent claims are P~ -martingales. The result now follows by the existence
of a unique EMM, just as in Theorem Il above. j

S HETEROGENEOUS REQUIRED RETURN DIFFERENTIALS

We noted earlier that the factors, which lead "private" agents to require a return
differential between the "government" and swap term structures, may bear more
heavily on some "private" agents than on others. We now proceed to show that
allowing for this possibility does not disrupt our model; moreover, all "private"
agents assign the same values to contingent claims.

We note from 4 Theorem I that, even in the present extended context, there
remains just a single candidate EMM, since the Radon-Nikodym derivative of P’
given by (17)-(18), is independent of required return differentials. Thus the sole
candidate price system for all contingent claims is that given by (24) in
4 Theorem II. Certainly therefore, if the model remains viable, all agents assign
the same values to contingent claims.

The "threats" to the viability of that pricing system are twofold. Firstly, agents
applying large required return differentials derive correspondingly large total
returns (ie after adjusting for the differential) from the government bonds
concerned. This suggests that they might obtain excess returns (corresponding to
trading strategies whose normalized value processes are submartingales under the
EMM) by holding relevant government bonds. Secondly, agents applying small

37 Like the corresponding result in HK, this result covers a claim expiring before T, by defining x

to be the time T result of reinvesting the expiry proceeds of the claim in the numeraire security.



page 21

differentials would derive inferior returns from holding the government bonds

concerned, suggesting they might obtain excess returns by shorting them. We
proceed to show both these avenues to be closed.

Suppose that there are K classes of "private" agents, applying different required
return differentials D;( ), i=1,....,K . To avoid the possibility of trading
strategies, involving long positions in government bonds, having normalized value
processes which are submartingales under the EMM, it is easy to show that we
must expand 4 Regularity Condition by assuming that (16) holds with:

D(M,t) = max Dy(M,t) (26)

i=1,...,

representing, for each bond and at each date, the largest differential applied by
any of the K classes of agents.

The remaining “"threat" to the viability of the constructed price system is, as
indicated above, the possibility of obtaining excess returns by shorting bonds. We
have prohibited short spot positions in these securities (3.4 Provisional Definition
(iii)), but it might appear that the effect of this restriction is undermined by the
unfettered scope to take short forward positions via trading in contingent claims.
This avenue also proves to be closed, since under the candidate price system, all
contingent claims have martingale normalized price processes. Viability follows38,
provided that in equilibrium, all government bonds in issue are held at all times
by agents then applying to them the largest required return differentials, ie for
whom

D,(M,t) = D(M,t) (27)

This is easily established in the form of the following proposition.

Proposition Under the constructed price system, the ith agent will not hold at
time t the "government" bond maturing at M unless (27) holds. Conversely, all
"government" bonds in issue will be held at all times by agents then applying the
largest required return differential. '

38 To make this step fully rigorous, in terms of the analysis of Harrison and Kreps [1979], we
suppose that agents prefer claims to one another on the basis of their costs under the candidate
price system, and we "endow" agents with trading strategies which distribute the government bonds
in issue among the agents so that they are always held by those applying the greatest required

return differential. No agent then has any incentive for further trade.
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Proof Inclusive of the required return differentials D( ), the discounted value
process of any trading strategy is a P -martingale. Inclusive of any smaller
differential therefore, the discounted value process, N (t)/B,(T,t) of any
strategy involving holding "government' bonds is a P “-supermartingale3?; in
particular, the initial cost/proceeds N(0) of the strategy satisfies

N(0) > B, (T,t) E'[N(T)] (28)

But the RHS of this equation represents the price of the terminal payoff N(T),
as constructed. Thus it would be cheaper to purchase the payoff as a contingent
claim than to generate it by the trading strategy. The result follows.

For the converse, we recall that we assumed above (footnote 18) that the
aggregate endowments of the ‘private" sector suffice to hold all government
bonds in issue, and that holdings can be funded by borrowings. J

6 ILLUSTRATION

To illustrate our general framework, we consider the special case where the
volatility and correlation processes are deterministic and the former can take the
form:

0,(M,t) = {Ga(M)=-G,(1)} A, (1) (29a)
0,(M,t) = {G,(M)-G,(t)} A (1) (290)
where the functions on the RHS are essentially arbitrary. Babbs [1990] (chapters
4 and 6-7, especially ppl126-8, ppl158-60, and pp175-81) has established the
significance of this form by showing that it is precisely the deterministic form
required if the future behaviour of each individual term structure is to be
described under the EMM in terms of a single Gaussian state variable. We will

suppose here that G,( ), G,( ) are twice differentiable and that the first
derivatives are bounded below away from zero.

Of particular note are the implications for the processes for the instantaneous
spot rate of interest:

G, "(t
dr,(t) = p, ({t)dt Gp,((t)){up(t)—Fp(t)}dt - G, @)dY () (30)
where
no(t) = fp(t) + Gp'(t)j;{Gp(t)—Gp(u)}Ki(u)du (3la)

39 We use, of course, here the restriction that holdings of "government" bonds are non-negative.
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dy ,(t) = 0,(ON,(t)dt + N, (1)dZ,(t) (31b)
and f,( ) is the initial instantaneous forward rate curve:
0
fp(M) = -5-InB,(M,0) (31¢)
The process for the "government" spot rate is similar except that (49c) becomes:
M o 3
Fo(M) = —:L B(M,u)du —5—InB,(M,0) (31c¢”)

These equations look complicated, but on closer inspection can be seen to
represent generalized mean-reverting random walks, where the means are adjusted
versions of the initial forward rate curve. They may therefore be regarded as
making the mean-reversion model of Vasicek [1977] comnsistent with whatever
initial term structures are actually observed, while simultaneously liberalizing the
mean-reversion, volatility, and risk parameters.

The implied behaviour of the spread rgpreaa = T'p — T, between the

government and private instantaneous spot rates is somewhat complex, depending
in general on the level of interest rates as well as on the current spread.
However, in the special - but not at all implausible - case that the government
and swap term structures exhibit identical mean reversion:
Gg(') = Go( ) = G(C ) say, then the spread exhibits generalized
mean-reverting behaviour similar to that of the two spot rates themselves:

G (1)

drspread(t) = U’spread’(t)dt G,(t)

{uspread(t) - rspread(t)}dt

— GT(1)AY spreaa(l) (32)

where
Koproaa(t) = f,,<t>—fg<t)+c'(t)fo{G(t)—G(u)}{xi(w—xi(u)}du (33a)
AY preaa(t) = {0 (DN, (D) =0,(ON,(D))dt + A, (t)dZ (1)

- Ag(HHdZ () (33b)
but with instantaneous standard variance:
{G7(1))? {NZ(t) = 2N, (Dp(OAL() + AN} (34)

which, for realistic parameter values40, will be very much lower.

40 Informal empirical investigation on the correlation of US dollars swap rates with yields on
government bonds, for example, suggests that p( ) exceeds 90%; volatilities in the two markets are

comparable.
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We will now derive a readily computable valuation formula for european-style
contingent claims - on either or both term structures - defined as follows:

Definitionn A european contingent claim produces a single payoff at some fixed
date, which is a function of the prices, at that date, of some fixed finite collections
of "government" and 'private” pure discount bonds. Thus, formally, it consists of:
some fixe Me[O,T] ; collections Mg <...<Mgy;, Mp1<...<M_ xC[M,T] ;
and a payoff function:
x( By(Mgy M),....By(My;, M), B,(Mp,M),.c., B, (Mo, M) )
satisfying the regularity condition:

X

Form < 3

Theorem A european contingent claim is priced by arbitrage at:

& X
S,.(0) = B,(T,0) E I:m:l (36)

which can conveniently (for many purposes) be re-expressed as
S$.(0) = B,(M,0) E“[x] (37)

where E) denotes expectations under a probability measure P on (Q,F y)
equivalent to P, and having Radon-Nikodym -derivative

dP(M) M
L= - oo~ [ 0,0, uaw, @
MO, (u)-p(u)b,(u)
== dlv
]; '_—1—p2(u) 2(u)
_1rm _ 2, {8,(W)—p(u)0,(u))? }
zfo {0, (w)-0,(M,u)} P du (38)
Proof The theorem follows from 4 Theorem II by straightforward

manipulations. For details of these in an analogous result see Babbs [1990]
(6.3.1 Theorem, ppl154-6).

Remark - The above Theorem holds in general, not just for the volatility and
correlation structures assumed in this example. It can be thought of in terms of
working in terms of an equivalent probability measure under which expected spot
prices at M equal current forward prices for settlement at that date. In a
stochastic interest rate setting, the concept of risk neutrality requires qualification
as to whether risk is measured in current value terms or in terms of forward
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values at some horizon; Babbs and Salkin [1989] have therefore argued that this
"current forward equals expected spot" idea can be regarded as more fundamental

than the celebrated "risk neutrality" insight into option pricing, due to Cox and
Ross [1976].

Proposition For european contingent claims, and with the deterministic
specifications of volatility and correlation assumed in this Section, the general
formula (25), given by 4 Theorem III, for the price process S.( ) of a
contingent claim giving a payoff x at T , reduces to:

S () = B,(M,t) EM™[ x(h,,h,) ] (39)

where Hg, h p are respectively J- and K-dimensional vectors with representative ith
elements:

By(Mgy,t)
9% T B (M,t)
M
exp{{Gg(Mgi)—Gg(M)}Xg+f a(Mgi,u)—a(M,u)du> (40a)

B,(Mp;,t)

hpi = B_,,(meXp( {Gp,(Mp)-G (M)} X,

. .
~5{Go(Mp) =G (M)} EPPIXT] ) (400)

representing B (Mg, M) and B, ,(M,;, M) respectively, where

a(L,u) = s(L,u) + p(u)o,(M,u)o,(L,u) - %oﬁ(L,u) (41)

and where X,, X, are bivariate Normally distributed under P’ with zero means
and the following (co-)variances:

EM[X2] = foﬁ(u)du (42a)

EMXx?] = foz(u)du (42b)
p 7 p

EMix_Xx_1 = fo (wWp ()N (uw)du (42¢)
g p i g P

Proof see Appendix.

6.1 WORKED EXAMPLE

We take as our example a 6-month european-style option to enter a 2-year
interest rate swap, with a notional principal amount of $50mn, under which the
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option-holder would receive semi-annual fixed interest at a rate 0.5% higher than
the yield, at the expiry of the option, on a 7.75% government bond maturing 1
year and 11 months later. A theoretically coherent valuation model for such an
instrument, consistent with the observed initial term structures, has hitherto been
lacking; we will demonstrate that it can be valued quite easily under our model.
In our model, the value of the option is given by equation is (39) in 6
Proposition; it is this equation we need to compute.

The first step is to formulate the payoff function x precisely. Assuming that the
bond pays coupons semi-annually and that yields are expressed in like manner,
the yield y just specified equates the value of the outstanding cashflows on the
bond with the sum of their present values discounted at y. Thus, measuring time
in years,41 y is defined by:

(1) 38
l?.?Si(1+l ) 6 . (1_,_1 ) 13
2700 &\ 27 5

17.75 < i 5 1 5 1

= ——— —+—, = 2—,= 43

27100 ;Bg(2+12 2) N Bg( 12 2) (43)

and, using (3), the payoff to the option holder is, per unit nominal:
1 . 1 1 11

X = max{-z—(y+0.5/6);Bp(§(L+1),5) + BP(ZE’E)’ O> (44)

Our valuation result (ie 6 Proposition) directs our attention next to the joint
S

distribution, under P’ | of the various Bg(é+5,%) and BP(%(HI),%) ;
this is given by (40a)-(42c). One method of computing the option value now
readily presents itself:

6)) Once the volatility functions G,( ), A,( ), G,( ), A,( ), the

correlation function p( ), and the addition return function s() have been
numerically specified, the various integrals of combinations of these functions,
needed in equations (41)-(42c), can be obtained either analytically or, failing
that, numerically.

41 purely for ease of exposition, we treat every month as being exactly a twelfth of a year. We

make similar simplifying assumptions below in respect of swaps.
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(i) Replace the correlated variables X,, X, with independent standard

Normal variates Y ,, Y., where:

X, wfﬁixg(u)du Y (45a)

fz)\g(u)p(u))\p(u)du
'XP = . 1 Yl
Al foz)xg(u)du
1 2
: ([ Kg(u)p(u))\p(u)du)
+ fkf,(u)du— £ L (45b)

1
2
/; AZ(u)du

(iii) For any value of Y, , we may obtain y from (45a), (40a) and (43).

Then, for any value of Y ,, we can use this value of y to derive the option
payoff x from (45b), (40b) and (44).

These steps can be incorporated into a simple quadrature scheme to evaluate
EM[x], and hence, via (39), the option value S,(0) . We now illustrate this
procedure by means of our example. As that example is essentially only
illustrative, we will adopt one of the simplest specifications consonant with
plausibility, and supply stylized numerical values. We suppose that

1-e7%*

Co(x) = Gp(x) = — (46a)
Ag(x) = N (x) = e «x (46b)
with

£ = 0.1531; x = 0.01449 (46¢)

We also suppose that the instantaneous correlation between the term structures is
constant:

p = 0.9 (47)
The significance of (46a)-(46b) is that the instantaneous spot interest rates both
follow "Vasicek-type" dynamics, consistent with whatever the initial term
structures. By this we mean here that they exhibit constant variability, with a



page 28

constant rate of reversion towards deterministic means. To see this, we substitute
(46a)-(46b) into (30) to obtain:
dr,(t) = p, ()dt - &{pu,()-r,(t)}ydt

- 0,(t)xdt - xdZ,(t); l=g,p (48)
The values chosen for &, x are annualized versions of the values reported in

a study of US government bond data by Dybvig [1989]42. We further suppose
that the initial term structures are flat, with:

B,(m,0) = %™ ym (49a)
B,(m,0) = e ®%* ™ vm (49b)

Finally, we suppose that the required return differential between government and
private sector bonds increases gradually with maturity. (16) indicates that this is
one way of viewing the role of s(). In turn, (6) suggests we specify s() via
R(C ) ; we choose to set

B = -0.03% (S0)
so that the required return differential on zero coupon bonds, for example, rises
by 0.03% for every year of their tenor.

We have now assembled a detailed specification of all the ingredients we require.
All that remains is to carry out the steps (i)-(iii) above, and apply a numerical
quadrature scheme to evaluate the expectation on the RHS of our valuation
equation, (39). As these computations are now purely mechanical, we shall simply
state the result: the value of the option described above is $132,500; equivalent
to 0.265% of the notional principal amount.

7 REPOS

We have assumed that the interest rates for freely available borrowing are those
on the "private" sector term structure. Where a repo market exists, such as that
- in US Federal Government securities, it might appear that an alternative - and
cheaper - means of funding exists, since short-term quoted repo rates are usually
significantly lower than interbank rates, being more akin to Treasury bill yields.

That this is not the case can be seen by considering a purchase of bonds, using
repo funding. As soon as the bonds are purchased, they are pledged as collateral
for a loan from the repo counterparty. The proceeds of the loan are used to

42 In Dybvig’s notation the parameters ¥, 7 for which he reports estimates on p13.
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supply the purchase price of the bonds43 The initial flows of both bonds and
cash therefore cancel out. At the maturity of the repo, unencumbered title to the
bonds is recovered by repaying the repo loan with interest. The net effect is
therefore essentially identical to that of entering a contingent claim in the form
of a forward contract to purchase the bonds, on the maturity date of the repo,
and for a sum equal to the repayment cost of the repo loan. By our results on
the viability of our model - specifically 4 Theorem III - therefore, no theoretical
anomaly arises. Nevertheless, the practical issue remains, of whether models
within our framework suggest short-term repo rates closer to government than
private sector rates.

Under the family of models discussed in Section 6, the formula in 6 Proposition
readily gives the fair forward price at time zero to purchase, at time M, one unit
nominal of the "government" pure discount bond44 maturing at M’ as:

By,(M",0) M .

——  exp f s(M",u)-s(M,u)du
B,(M,0) 0

+fM{og(M’,u)—cg(M,u)}{p(u)op(M,u)—cg(M,u)}du>- (S1)
0

Dividing this forward price by the spot price of the bond, and expressing the
ratio. as a continuously compounding funding cost, y, over the period [0, M] , we
obtain:

1 M
y = —ﬁlnt(M,O) + Mfo s(M”,u)-s(M,u)

+ {o,(M",u)-o,(M,u)}y{p(u)o,(M,u)-o,(M,u)} du (52)

which, since the yields on immediately maturing bonds equal the instantaneous
interest rate (see footnote 25), by the continuity of the integrand4S, and by (6),
> 1, 0) + s(M",0), as M-0 (53)

43 In practice, the repo loan would be slightly less than the value of the bonds, in order to

provide a greater margin of security for the loan. The outcome of the argument is not, however,
affected by such details.

4 The analysis for coupon bonds follows readily from the observation that a coupon bond is a

linear bundle of pure discount bonds.

45 Strictly, the integrand will only be continuous if we exclude essentially pathological behaviour of
BC ), 0, ) and o,( ).
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Thus, provided the maturity-dependence of required return differentials - which
we recall from (16) is precisely what s() represents - is small, this family of
models within our general framework gives short-term repo rates close to
government rates.

An interesting converse of (53) is that, at least for the family of models
discussed in Section 6, the dependence of short-term repo rates upon the
maturity of the government bonds in question is a possible source of evidence on
the maturity-dependence of required return differentials.

8 LUDING REMARK

In this paper, we have argued that interest rate swaps are contracts contingent
on future borrowing rates of banks then of good credit worthiness, and that
differences between the term structures for default-free bonds and for swaps are
therefore more appropriately modelled in terms of "required return differentials"
rather than of default risks. We then constructed a theory for the joint evolution
of the two term structures, consistent with their initial positions, and for pricing
contingent claims on either or both structures. It was shown that our models are
compatible with a complete markets general equilibrium. We explored a class of
models within our general framework, and exhibited a readily computable
valuation formula for european-style contingent claims; and provided a concrete
example.

This paper has not discussed the valuation of frequently resettled claims, such as
futures and options margined like futures, or offered proposals for the concrete
evaluation of american-style contingent claims. We conjecture that these could be

handled satisfactorily by appropriate extensions of the single term structure results
in Babbs [1990].

We have employed only a single stochastic factor for each term structure,
implicitly supposing perfect instantaneous correlation between movements in
different parts of each individual term structure, while the correlation between
movements in the two structures are independent of the maturities concerned.
This could be avoided - at a computational price - by introducing additional
stochastic factors, whose influence - as specified by the corresponding volatility
function - varies with tenor in a different fashion from that of the existing
factors. It would be theoretically interesting, though mathematically considerably
harder, to make the function s() stochastic, so that the dependence of the
required return differential upon maturity could be subject to random variation.
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Notwithstanding the previous two paragraphs, we believe we have developed a
theory of the joint evolution of the default-free and interest rate swap term
structures, and for the valuation of contingent claims, which is of considerable
generality. The most pressing task is to investigate empirically whether a model
encompassed by our framework provides a useful description of the reality!

APPENDIX
Pr f 4 Theorem Suppose that there exists an EMM, P~ . By definition
of an EMM,
dP” 2

Al
ar ¢ L AL
Hence

dP”

t) = E A2
n(t) [ 9P F i| (A2)
is a square-integrable P-martingale with

dpP”

0) = E = 1 A3

n(o) [ 9P :| (A3)

Using 3.1 Assumption, we can apply martingale representation theory#® to obtain
that

t t
nit) = 1 + j;(xl(u)dh/‘l(u) + foaz(u)dwz(u) (A4)
for some predictable P-square-integrable processes a;( ),a,( ).
By (5),

d{B,(M,t)/B,(T,t)}
B,(M,t)/B,(T,t)

= {0,(M,t)-0,(T,t)}

X [{0,(t) =0, (T,t))dt+dW,(t)] (AS)

46 see eg Liptser and Shiryayev [1977] Theorem 5.5 pl62 - essentially the Kunita-Watanabe

Representation Theorem.
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Since p* is an EMM, B,(M,t)/B,(T,t) is a p* -martingale; implying47
that B,(M,t)n(t)/ B,(T,t) is a P-martingale. Applying Ito’s lemma,
d{B,(M,t)n(t)/B,(T,t)}

B,(M,t)/By(T,t)

= {0,(M,t)=0,(T,t)} [a,(1)+{0,(t)-0,(T,)yn(t)]dt

+ [a, () +{o,(M,t)-0,(T,0)}n()1dW (1) +a,(t)dW (1) (A6)
Now an Ito process is a martingale only if48 it has zero drift. Thus we require
a,(t) + {0,(t)-0,(T,t)}n() = O (A7)

Now consider a "buy-and-hold" strategy in the "government" bond maturing at M,
modified to reflect the required return differential arising from the existing
holding by "re-investing" it in the bond. The value process of this strategy is the
price process of the bond, adjusted for required return differentials:

V(t) = exp{/:D(M,u)du> B,(M,t) (A8)

Hence, following normalisation, applying Ito’s lemma and substituting (A7) gives
us:

a{V(n(t)/B,(T,t)}y _ ) )
V() /Bo(T.0) = v(t)dt = nt){8,(t)-0,(M,t)p(t)}dW (1)

+{n)o, (M, V1 -p2(t)+a,(1)}dW,(t)  (A9)

which cannot be a P-martingale unless
v(t) A, ()0, (M, )y 1-p?(t)

N [rg(D)+s(M, 1)+ DM, t)—r (1) +0,(M,t){0,(t)-p(t)6,(t)}]

Il

=0 (A10)
Now, n( ), a,( ) are independent of M, and by 3.3 Assumption D() is
independent of o,( ); so we deduce that (16) must hold, and that

N({0,(D=p(1)0, (1)} + ax()V1-p*(t) = O (All1)

47 see eg Liptser and Shiryayev [1977] Lemma 6.6 p226.

48 1t is well known that this condition is necessary but not sufficient. Its necessity flows from the
result that, on a finite interval, a continuous local martingale of finite variation is constant (see eg
Elliott [1982] Lemma 11.39 pl21, bearing in mind that continuity implies predictability - op. cit.
Theorem 6.32 p56).
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Combining (A7) and (A1l),

dn(t) B,(8)—p(L)O,(1)

——— 2 = —(0 (- T,0)YdW ,(t) - dlw ., (t Al2
~O) {0,(t)—0,(T,t)}dW () o) 2(1) ( )
whose solution is

nC ) = &C) (A13)

whence (17) holds.

Thus, if P° is an EMM, then %( ) is a P-martingale with

dP”
dP

§(T) = n(T) = L?(P) (A14)

Conversely, if the condition (17) in the theorem is fulfilled, then, by the
Girsanov Theorem4?, (A1) defines a probability measure P~ equivalent to P,
under which

Wi(t) = W,(t) + ft{ep(u)——op(T,u)}du (AlSa)
0

and

% t0,(u)—p(u)o,(u)

Wo(t) = W,(t) + d A15b

(0 = e [ (A15b)

are standard Brownian motions, and we may re-express the discounted process

(AS) as

d{B,(M,t)/B,(T,t)}
B,(M,t)/B,(T,t)

= {0,(M,t)~0,(T,t)}dWi(t) (Al6a)

Similarly, the price process for the government bond maturing at M, after
adjusting for required return differentials, and normalisation, can be re-expressed
as
d{V(t)/B,(T,t)}
V(t)/ B,(T,t)

= {0,(M,)p(t)-0,(T,t)} dWi(t)

+ 0 (M, )V 1-p2(t) dW,(t) (A16b)

49 see eg Karatzas and Shreve [1987] Theorem 3.5.1 p191
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The unique solutions of (Al6a) and (Al6b) are the respective
P -supermartingales:

B,(M,t)  B,(M,0) t ) .
Bo(T.t)  B,(T,0) eXp{fo{"P(M’“) 0,(T,u)ydW(u)

B %LI{UP(M,U)—OP(T,u)}Zdu} (Al7a)
and

V()  V(0) t ) )
Bo(T.t)  B,(T,0) exP{fo {0,(M,u)p(u)=0,(T,u)}dW(u)

+ftog(M,u) 1-p?(u)dW,(u)
0

“%fl(og(Msu)p(u)“Op(T,u)}2+0§(M,u){1 —pz(u)}du} (A17b)
0

If (19) and (20) hold, the RHS of (Al7a) and (Al7b) are, in fact,
P -martingales; thus P~ is an EMM as required. |

Proof of 6 P iti By Girsanov’s theorem, we can re-express (4) and (5),
via (16a)-(16b) as:
aB,(L.u) {ro(u)+s(L,u)+o (M, w)pw)o (L,u)} du
BQ(L,U.) g ’ p ’ p g ’
+ p(uw)o,(L,u) aw{™(u) + Y1-p?(w)o,(L,u)dW " (u) (Al18a)
and
M = +0 (M,u)o,_ (L,u)} du
BP(L,U,) (rp(u') p( ’ ol ’

+ 0,(L,u) dW () (A18b)
where W™, W are standard Brownian motions under P’ | defined by:
wM(s) = W, (s) + fs{ep(u)—op(M,u)}du (Al9a)

0
sO,(u)-p(u)d,(u)
wWM(s) = W,o(s) + f ¥ P “du (A19b)
2 ( ) 2( ) - m
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By applying Ito’s lemma, we can now derive, by means of extensive but entirely
straightforward manipulations, that, for each cashflow date on which the payoff
function x depends:

By(My;sM) = hyyw k=g.,p (A20)
The result follows. |
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