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Abstract

The results presented in this paper show how, under certain conditions, the parameters of the
short interest rate process are related to one another. Short rate volatility, as a function of the
short rate, is shown to be critical in determining the deterministic part of short rate
movements. Sufficient conditions are established for the short rate to be mean-reverting.

The long rate is investigated. Conditions for it to be constant are stated.



I. , Introduction

Three distinct approaches to modelling the term structure of interest rates have appeared in the
literature. Each concentrates on modelling some specific aspect of the term structure, allowing
other aspects to be contingent upon this feature. For instance the earliest models, such as that
of Vasicek [12], modelled the short rate process. Bond prices are taken to be contingent upon
this factor, and the term structure is taken directly from the bond prices. Unfortunately these
models possess an arbitrarily determined price of risk. Because the price of risk is exogenous to
the model there is no guarantee that mis-specifying it might not lead to arbitrage. '

A second approach due to Cox, Ingersoll and Ross [4] models an economy as a whole. This
approach overcomes a weakness of simpler models, such as Vasicek, by endogenously
determining the price of risk within the model. Both the interest rate process and associated
prices of risk arise from the existence of an equilibrium within an economy whose agents have
known utility functions. Cox, Ingersoll and Ross presented as a special case of their general
economic model an economy where the short rate is the sole determinant of bond prices, but
where the price of risk itself is a function of the short rate. The model is guaranteed to be
arbitrage free.

The third approach has been to model the term structure as a whole. Due to Heath,
Jarrow and Morton [7], who improved and generalized a discrete time model of Ho and Lee [8],
and independently due to Babbs [1], these models have theoretical and practical attractions. The
Heath, Jarrow and Morton model was originally formulated in terms of the evolution of the term
structure of forward rates. However it may equivalently be formulated directly as the evolution
of the term structure of spot rates, or indeed of bond prices.

Empirical validation of models of any type has been problematical. For instance, a number
of studies have attempted to estimate parameters for the Cox, Ingersoll and Ross model; recent
examples are [6] and [11]. Chan, Karolyi, Longstaff and Sanders [2] compare a variety of models
of the short term interest rate. Using a Generalized Method of Moments they estimated the
parameters for the models and reached conclusions about the success of the models in fitting
their data set. They found that the most successful models allowed the volatility of the short
rate to be dependent on the level of the short rate.

Set in a context equivalent to a Markovian version of Heath, Jarrow and Morton, this paper
presents some results concerning the long rate, the short rate, and the term structure of
volatility. Along with Hull and White [9] the volatility function may fluctuate through time. The
volatility function is explicitly allowed to be a function of the short rate and of the corresponding
spot rate. The results allow the consequences of changing assumptions about.the way in which
volatility depends upon the short rate to be explored. Because the formulation here is in terms
of spot rates, rather than forward rates, it is easy to derive results about specific interest rate
processes. In fact we obtain explicit results for the long rate and the short rate process. These
expressions are in terms of the volatility function and a price of risk function.

Starting from a general specification of the process followed by spot rates, the spot rate
drift is re-expressed in terms of exogenously given volatility and price of risk functions, and
other values that depend upon the term structure. A differential equation is obtained that



II. The Interest Rate Process

In this section we write down a very general form for the spot rate process. It is then recast
into a form suitable for future analysis: the drift is expressed as a function of the volatility
functions, a price of risk, and the current term structure of interest rates. The initial
formulation is appropriate for empirical estimation of the volatility functions. The recast version
allows an explicit formulation of the short rate process to be derived.

The existence of a complete set of pure discount bonds is assumed.

The following notation will be used. Current time is denoted by t. T is a time of maturity,
and T is time to maturity so that t=T - t.

Bt(T) value at t of a time T maturity pure discount bond.
rt(T) the yield to maturity at time t of a time T maturity pure discount bond.
-r (T).(T-t)
Bt(T) = e

rt(T) is the time T maturity spot rate at time t. We shall also write Rt(-:) = rt(t + 7).

Zt = rt(oo) = lim rt(T) is the short rate at time t.

T—t
L =r(0) = lim r (T) is the long rate at time t.
t t T—o t
ft (T) is the forward rate at time t for time s > ton a T maturity bond.
s

it (T) "is defined implicitly as:
s

t
-f (T).(T-s)
B(T) = B(s)e S
t t
ft is the instantaneous forward rate at t for time s > t, so that
s
f af @ =1m 1D
3 s T—>t s
)»t(T) is the market price of risk at time t on the time T maturity bond Bt(T).

Writing B (T) = uBt(T).Bt(T).dt + oBt(T).Bt(’I‘).dw, 2(T) is defined to be

uf(T) ~ .
A(T) =
t o T
NG
where dw = (dwl, dw2,..., dwn) is a vector of Wiener processes and th(T) a vector of
functions. The correlation matrix p, where p.dt = {dwi'dwj}i,j -1 .n is assumed to be
> = 3 °

2 T
constant. g Bt(T) = OBt(T) .p.oBt(T) is the global volatility function.



d t d (1t
n@ = g5l M)y + g3 M)
The differential of the forward rate is just
t t
(1) -1 (1) (-7

L (f M), - tim
ds” "5 |s=t T s =t . s-t STt

d 1
Write E—S( lS(T) )ls=t = pt(T), so that we have

rt(T) -T

T-t
We now relate pt(T) to the process followed by a T maturity bond. Because the bond price is a

t

n (D) = + p (D). (3)

known function, (1), of the T maturity spot price, the process for Bt(T) can be written in

terms of the process for rt(T):

dB (T) = uP (T).B (M)dt + oP (T).B (T).dw,
t t t t t

where uB 1:(T)
o® (M)

The volatility dependency of the drift of rt(T) comes entirely through g_t(T).

F(M) + WT0 S (D - (T-Ou(T)
t t t

-(T-t).0 (T).
t

The risk premium kt(T),

B
ut(T) - Zt

v (4)
gBt(T) )

is a function of uB (T) and %3 (T), which in turn are functions of ut(T) and gt(T). Substituting
t

A (T) =
t

for uBt(T) and gB t(T) into (4) and comparing to (3), we obtain a formula for pt(T) in terms of
A (T) and o (T):
t t

M = WI-0g @ - *(T.c (D
t t t t

This proves (i) and (ii). For (i) we convert from a rate-for-maturity context, to a
rate-to-maturity context. In fact:

ar (T)
dR (@)= dr (t+) = dr (T) + ——.dT
t t t 0T
R (v)
= dr (T) + —.dt

t JT

or (T) aRt(r)
since dT = dt, and —t o & e Thig gives us (iii).

oT ot

~d



may also be solved directly since in their model both kt(t) and gt(r) are proportional to JZt. pt(‘t)
decomposes into a product of Zt and p't(‘t) where p't(‘t) depends only on t and t, and there is no

Rt(‘t) dependence. The solution (7) therefore applies.

III. The Long Rate

Equation (2) can be simplified if we assume that g and A depend upon maturity time T only
through time to maturity. This assumption is appropriate to describe an equilibrium situation
where there is a degree of time homogeneity. It implies that investors are sensitive to risk onlty
through the time to maturity, and risk is not related to specific future dates. From now on we
will write gt('r), )\.t('l:), pt(-c), etc. .

We now seek to describe some of the behaviour of the term structure as it evolves through
time. A useful starting point is to search for values of the spot rates for which their drift is
zero. This is a set of 8(t) such that nu(6(x),r) is zero for each t. In general this set will depend
upon the current term structure. These zero drift states are important because if a given spot
rate reverts towards some value, then this will be a state with drift zero. In some sense the
zero drift states reflect the shape of the term structure by providing a measure of the location of
the probability density function of the spot rate at each maturity. In general, however, the
zero drift value will not equal the mean of the spot rate distribution for that maturity.

Suppose 6(t) is a set of interest rates such that n(8(x)x) is zero for each v 6(tr) could depend
on gt(-:) and kt(-:). 8(t) represents a set of potential reversion states. A zero drift state 8 € 6(1) is

a reversion state if perturbations from 6 tend to revert back to 6. For instance if

ouR)
aR g

<

then small perturbations in R away from 6 will tend to be driven back towards 6. This is
sufficient to make 6 a local reversion state. Large perturbations away from 6 may not revert back

towards 6. If 6 is also the unique zero of n(R(x)r) then it is a global reversion state, and R(z) will
always revert towards 6(<). ‘

The differential equation (2) is broadly specified and without further assumptions little progress
can be made. However, because the underlying variables are interest rates it is possible to make
a number of restrictive assumptions that allow sighiﬁmnt simplification. Perhaps the chief
assumption we make is that interest rates are Markovian, although this restriction is not
required by all the results that follow. '

We make the following assumptions:
i) For all feasible term structures Rt('r), Rt(-c) is differentiable in <.

The limit Rt(o,a) = iMoo Rt('t) exists and is finite, O < Rt(eo) < oo,

For all pairs (t R), =2 feasible term structure exists that passes through (r, R).
ii) gt(t) and )»t('c) are Markovian. They are at least twice differentiable in all their arguments.



We have seen that the drift term for Rt(‘t) has three components:

2 R () -2 aRt(t)
a liquidity term, 'no t(1:) - gt(‘l:).)\.t(‘t); a slope term, —————; and a tangent term,

dt

Proposition 1.

For every feasible term structure RI(T)’ the long rate L = R(eo) has zero drift and zero volatility.
b
If the limiting function ut(R,oo) has a unique, constant, zero, then the long rate is constant,

U(L)”)=0-
t t

-1
Along any feasible term structure Rt(-:), both ut(Rt(‘t),‘t) and g(Rt(r),-r) tend to zero at least as fast as t

as T — o,
Proof Consider the relationship

Rk -2 aR (z)
Pt(Rt(T)sT) = L LI L + '/n.gz(-c) - oA

T at
As T — o the tangent term must go to zero strictly faster than r_l or the long rate ‘would be
unbounded. The slope term must also go to zero with leading order at least 1:-1. Furthermore,
T.gzt(Rt(T),T) must tend to zero for all feasible term structures: by assumption there exists a pair

(tp»Rp) such that ut(Rt('c),t) < 0 for all T> 7, and Rt(-c) > Rp. This implies that as T — o9,

2
ut(Rt(-c),-c) s 0 for Rt(-c) > Rp. But E%S:—) + @- is positive and so is %#tg (), so for large R and T
2 Zt -1
Yo (1) < ol + - If gt(Rt(‘t),t) — 0 slower than t = it is not possible for ut(Rt(-c),t) to become
negative for large Rt(‘t). So _c_xt(Rt(’\:),-:) — 0 at least as fast as 1-1. All the terms on the right hand

side go tu zero at least as fast as 1:_1, so ut(Rt(-c),t) must also go to zero at least as fast as 1:_1.

We have shown that the long rate has zero drift and volatility.

Note that the true long rate may not appear within the range of maturities accessible with data.
from the financial markets. A term structure that appears ‘normal may invert only at maturities
of several decades, depending on when g settles down to its limiting behaviour. In the absence
of bonds of large maturities only limited deductions may be made. Even when perpetual bonds
exist only limited inferences may be drawn, since the term structure curve requires the
imputation of prices of pure discount bonds.

11



n= p(lz [jp(z) < —. [p(z)_ aR - Ip(z) (Ao).dZ ] (8)

where P(Z) is the integrating factor
00
I— %— s ﬁ .dz
P(2) = ~

Proof See Appendix.

This proposition defines the short rate process in terms of g(t) and A Equation (8) is of the form

n@) = c + 1(2)), where I(2) is the integral and c is a constant of integration. When goft)

P( Z)
and A are specified I(Z) may be computed. This implies that oft) and A and the short rate process
may not be independently specified in term structure models. They are related through (9) and
(10). Furthermore, under our assumptions, oft) and A are sufficient to determine the short rate
process. No other factors, such as forward rates, need be explicitly known.

Note that n is determined separately at each time t. This means that the constant of integration,
¢, is determined separately at each t. Therefore ¢ can be a function of time t, c - c‘.

We illustrate the proposition with some examples:

Example 1 oft) has no R or Z dependence, A is a constant.
(The Vasicek is an example of this sort.)

In this case it is easy ™. formally integrate the differential equation. We obtain

(2 % 5
B < I g’ 917'
=x(6-7 ),
00
where k = - =" 6—:, nd k.8 is the constant of integration.
. . 99 . p 1-e” ™
The process is mean reverting if = ° 0. In the Vasicek model oft) = - —— 0 o0) =
0o pa .
— = —=—_. The reversion rate x is o
9T 2

Example 2 oft) has no R dependence.
_( 2 99
Thenn-—I 5 2 - i
When g (t, Z) decomposes into a product of a function of time and a function of Z,
g (n 2) = x(1)£(Z), this becomes

nEE & xz).%“z - A0)I2).

If n=al - 2), with a and b constant, f must be of the form:

13



the sharing the same volatility and price of risk.

0
In these examples, when F_ is negative n is found to be monotonically decreasing in 2, and to

possess a unique zero. These features are certainly not guaranteed to occur. More complex

assumptions about the form of the volatility function can result in more complex drift functions.
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Appendix
Proof of the Proposition
The Ito differential of n is

_ ou u our op
d].lt(‘r) = ?.dt + ﬁdR + 'aD.dD + aZdZ
2 ' 2
o u ou Jdu
+ l/z_ZdeR + ‘/z—Z-dZdZ + .dR.dZ.
3R o7 dZdR

(Other terms wvanish). Under mild regularity conditions [10],

du [}
dD = E.dt + E'dw’

3R (v)
and dZ = p(0).dt + o0)dw = (2. t a0 g.k).dt + o0).dw.

at
- 2
Since n = T + D + Vg - Ag the first order differentials are:
o 1 3
R = 1R - 0o,
7}
e _
aD
u 1.,
-—=——+/z':— ) - 209
> =T L ()

The drift is thus

-u(
an ) - ( EO D R - 209) + a0 LD - S09)

2
u du 2 9 2 o un d

t ot @t ke . > +‘/~0_(0).—2 + o(0).o0. 5 ).dt
aR YA F:Y4

+(.Q(T);.Q(O) . o()(‘/zr.—-(_) f)g)) + o0 ¥ 2@2)_ %(k_,)) + % ).dw.

In the limit as t — 0, we obtain the process for dp,(0)

, 2 2 2
a 2 d d d
dny(0) = ( L PR O 2500 + “=09) + ¢ O yz.aR; + % aZ; * 623 ) )-d‘
+ (z.% Y alR(xg)+ %(xg)) dw
a
(2 iy - L9+ 09)
2
+ 92.(*/2.62 +%.a;+_a; )).dt
aR oz
2.% —(p+u_,)- ol - (xg)+ aaz(kg))).dw.

There is no explicit Dt(T) dependence, this depends only on Z. Therefore the coefficient of dw

a
must equal a—;.g and n(0) satisfies the differential equation
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