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QUASI MEAN REVERSION IN AN EFFICIENT
STOCK MARKET: THE CHARACTERISATION OF
ECONOMIC EQUILIBRIA WHICH SUPPORT
BLACK-SCHOLES OPTION PRICINGH*

Stewart Hodges and Andrew Carverhill

This paper is concerned with the behaviour of the risk premium on the market
portfolio of risky assets. It provides a characterisation for the evolution of the
market risk premium in a simple economy where the variance of the equity
market return and the risk free interest rate are both constant. These are
precisely the assumptions which enable index options to be valued using the
Black and Scholes (1973) option valuation model.

This analysis is motivated by recent empirical studies (for example, Poterba
and Summers (1988), Fama and French (1988), and Lo and MacKinlay
(1988)) which suggest some degree of predictability related to mean reversion
in equity returns. Apparent observed mean reversion might be due either to
market inefficiencies, or to systematic variation in the equilibrium risk
premium.’ Until now it has been impossible to construct tests to distinguish
between these two alternatives, as we have had no theory to explain what kinds
of variation in risk premia might be experienced within an equilibrium model.
That is what this paper provides.

We assume that the market asset has price § which follows the process:

%S=#(S,t)dt+odz. (1)
For option pricing, the rate of drift u(S,t) is essentially arbitrary: it is
eliminated in the derivation of the Black—Scholes formula. The purpose of this
paper is to characterise what behaviour for u(S,¢) is required for consistency
with equilibrium. For convenience we shall prefer to work with
_ (S, —r
(Z(S, t) - o (2)
which measures the instantaneous reward per unit of risk\,\wherc r is the risk free
interest rate. The kind of equilibrium which we are concerned with here is that
characterised by a single representative investor. Thus we assume agents
maximise expected utility over utility functions which are not state dependent.
Their demands aggregate to the demands of a single representative agent who
holds the market portfolio at all times. The main result of the paper is that we
derive a non-linear partial differential equation which equilibrium alphas must
* We are grateful to Dr Michael Selby, FORC, for introducing us to the literature on Burgers’ equation,

and to Dr Les Clewlow, FORGC, for further assistance with this equation.
1 See, for example, Cechetti et al. (1990).
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satisfy. The equation is known as Burgers’ equation. It occurs in a number of
other contexts such as models of the flow of viscous fluid, and the flow of traffic,
and closed form solutions are possible depending on the boundary conditions
imposed. The question we address has previously been studied by Bick (1990).
Parts of our analysis are very similar to his.> Our assumption of the constancy
of the variance rate enables us to obtain stronger results.

The development of the paper is as follows. We first provide a formal
description of the type of equilibrium that we assume. We assume an
equilibrium of a conventional kind which can be characterised by the utility
function of a representative agent (see, for example, Huang and Litzenberger
(1988)). Together with our other assumptions, and following the related
literature of Cox and Leland (1982), Dybvig (19884, 4), and Bick (1990), we
demonstrate particular path independence and monotonicity properties. The
following sections show the strength of those properties. We illustrate them first
within a binomial context, and show that they imply that alpha must satisfy an
unusual difference equation. Taking the limit for small time increments results
in the partial differential equation known as Burgers’ equation. A more
satisfactory, but less intuitive, derivation is possible in a continuous-time
framework using the Girsanov formula for the change of probability measure
associated with moving between the objective probabilities and the risk neutral
ones. The following section describes the nature of solutions to Burgers’
equation, and their implications for our understanding of the dynamics of the
risk premium in capital markets. Finally, the paper concludes by discussing
possible alternative kinds of equilibrium which would not have the properties
described in this paper, and makes some suggestions for future research.

I. PATH INDEPENDENCE AND MONOTONICITY RESULTS

We begin by considering an economy with a single asset whose price S, follows
the process

d—g= [r+oa(S,t)] dt+ o dz. (3)
For simplicity we shall also assume that within the time horizon H of interest
to us no dividends are paid and that the instantaneous riskfree rate r is constant.
The question posed is how must (S, f) behave if we require this economy to
correspond to an equilibrium characterised by individuals maximising the
expected utility of their wealth at dates greater than or equal to H. Following
Harrison and Kreps (1979), we note that any arbitrage-free price system can
be sustained as a competitive equilibrium characterised by a single rep-
resentative agent. For any economy which does not permit arbitrage, there
exists a risk neutral probability measure under which the rate of drift of all
assets is the risk free rate, . We shall define P as the objective probability
measure, and @ as the risk neutral one. The ratio of the risk neutral density to

% Since completing this paper, our attention has been drawn to the related important work completed
independently by He and Leland (1991).
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the objective one (i.e. the Radon-Nikodym derivative dQ/dP) gives the state-
price density which defines the marginal utilities of this agent.

Dybvig’s Probability Distribution Pricing Model (1988a, 5) pushes this
analysis one step further. One of Dybvig’s main results is to demonstrate that
a state-dependent pattern of terminal wealth is efficient if and only if it is
decreasing (non-increasing) in the terminal state-price density. The meaning of
efficiency in this context is that of first degree stochastic dominance. In other
words a probability distribution of wealth is said to be efficient if it maximises
expected utility for some (non-state dependent) and strictly increasing von
Neumann—Morgenstern utility function. No assumption of risk aversion is
required. Within the simple assumptions we have already made, Dybvig’s
results imply that for equilibrium, the state-price density function must be
monotonic decreasing in § at every ¢ < H. This also means (loosely stated) that
any two paths with equal probabilities under P also have equal probabilities
under Q. This is a path independence property which seems to have been first
noted in the work of Cox and Leland (1982), and is also utilised in Bick’s (1990)
analysis. More generally and precisely, dQ /dP itself must be a path independent
function of S and ¢. We show in the next section how this characterisation leads
directly to Burgers’ equation for the evolution of alpha.

We should also note that while efficient wealth payoffs for an investor must
always be monotonic decreasing in the state-price density, within more
generally specified economies (e.g. with stochastic interest rates and/or

volatility) the value of the market portfolio need not be monotonic in the state-
price density.?

II. BINOMIAL EXAMPLE AND DERIVATION

Fig. 1 shows the basic binomial tree of our analysis. The single state at time zero
is labelled state o. The two states at the next time instant d¢ are labelled 1 and
2. At each of those states, s, the objective probability of § increasing to S is
denoted by p,. The probability of a down move to dS is p, = 1 —p,.

The nature of the restrictions imposed by the path independence property of
equilibrium is best illustrated by a numerical example. We suppose § = £100,
u = 1'10, d = 0'go and that the risk free interest rate r is zero. Thus at the state
labelled 1, the index value is £110 and at that labelled 2 it is £g90. Our choice
of u and d ensure that the state prices are equal, i.e. ¢; = ¢, = 1 etc, as it costs
£o0°5 in state o to construct a £1 payoff in state 1. The equilibrium market
clearing condition therefore implies that the objective probability of « followed
by d exactly equals that of 4 followed by u.

In other words

bor = Dobs-
As a result, if the risk premium is known for states 1 and 2, this condition tells
us what it must be for state o. At any state s the percentage expected return is
just 20p,— 10, which is also the risk premium (since r = 0). Suppose p, = 06
and p, = 08, so after one period if the index is at £ 110 the risk premium is 2 9,

8 See, for example, Dybvig (19884) footnote 6.
© Royal Economic Society 1993
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Fig. 1. Binomial tree.

but if the index has fallen to £qgo the risk premium becomes 6 9%,. We might
perhaps have thought that the state o risk premium could be anything, or
maybe a simple average of 49,. Both conjectures are false. The path
independence condition implies that

Do x 04 = (1—p,) X 08,
s0 p, = &, giving a state o risk premium of 33%,. In fact p, is a weighted average
of p, and p,, with p, itself providing the weighting:

bo = pobpy+ (1—hyo) po-

If at some horizon date H we can specify how the risk premium depends on the
level of the market index, then it is uniquely determined for all earlier dates
under this averaging equation.

The General Derivation

It is convenient to choose the parameters z and d so that the risk neutral
probabilities ¢, from each state are all equal to 3. We may do this by choosing

u = exp [(r—1id?) 8t+o+/ (80)], (4)
d = exp [(r—10?) 8t—a+/ (1)]. (5)

(see for example, Jarrow and Rudd (1983)).
Next we need to find the relationship between p, and the price of risk, a,. The
expected return from state s is given by

1+ E(R,) 0t = p, exp [(r—30?) 0t+ o/ (01)]
+(1—p,) exp [(r—30°) dt—a+/ (61)].  (6)

© Royal Economic Society 1993
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Expanding this as a Taylor series gives
1+E(R,) 8t = p,[1+ (r—10%) 8+ 0/ (8t) + 102 8t + O(8£)]
+(1=p,) [1+ (r—10%) 8t— v/ (8t) + 102 8t + O(6£)]

= 1+7r0t+ (2p,— 1) 0/ (0%). (7)
Hence the price of risk, «,, is given as
a, = E(Rs) -r )
0-.
_ (2p,—1) » (8)
v/ (6%)
S0 ps=%[1+as\/(8t)]'J

We are now in a position to derive the difference equation which restricts the
evolution of a; through time. '

For our tree, the crucial path independence condition is simply that

bob = bope- ‘ (9)

Substituting our previous expression for p; gives:
[1+0 v/ (0] [1—ay v/ (80)] = [1 =0 vV (80)] [1 +a, v/ (81)] (10

and solving for «,, we find that
ooV (0t) [1—0y v/ (88) + 14y 1/ (88)] = 140y 4/ (0f) —1+0, /(88), (11)
a, +a,
oy = . 12

0T 2=V () =
This is our key difference equation, which determines the evolution of a,

throughout the entire binomial tree. We notice that it is similar to the usual
diffusion equation which would give

_oc1+oc2

0‘0—“—2_a (13)

but the extra 4/ (8¢) (¢, —a,) term makes a significant difference.

Note that path independence in every up-down down-up ‘diamond’ of the
binomial lattice ensures path independence between every pair of points of the
lattice. Thus the difference equation we have obtained is necessary and
sufficient for path independence.

The difference equation we have obtained can be used as a numerical
scheme if we are able to specify the values of o at some later date H. We shall
report some numerical results later in the paper. It remains in this section to
take the limit of our difference equation as 8¢ o to obtain the corresponding
partial differential equation for a.

Burgers’ Equation

It is convenient, first of all to introduce a change of variables. Instead of
working with S, we shall work with the transformed variable

x,=In S,— (r—30%)t. (14)
© Royal Economic Society 1993
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Whereas S, evolves as

Serar = Sy €XP [(7_%0'2) dtt o/ (0t)] (15)

x, evolves as
Xppae = %, £ 0V (01). (16)
We now examine the evolution of «(x, ) from the difference equation (12).
a(x,t—0t) = jla(x+ o€, t) +a(x— o€, )] [1 —lea(x—oe, t)
+3ea(x+oe,t)+0(e¥)], (17)
where e = 4/ (8%).

Expanding further as a Taylor series, ignoring terms in €* and higher, and using

the notation «,, a,, a,, to denote the appropriate partial derivatives of «
evaluated at (x, ), we obtain:

a—e’a, = (a+30%€%a,,) (1+0€e’,). (18)

The zero order terms cancel, and collecting the terms in €® we conclude that
— 1ol

Ay = 730 Uy — OA,. (19)

This is Burgers’ equation.
A more elegant and rigorous derivation can be obtained in a continuous time
framework, using the formula for the change of measure between the objective

probability measure and the risk-neutral one @. This is shown in the Appendix
at the end of the paper.

III. BURGERS’ EQUATION

The equation we have derived was proposed by Burgers in 1948 as a model for
the one dimensional flow of a viscous fluid. It also occurs in a number of other
applications including modelling traffic flows. Properties of this equation and
solution methods may be found in Bland (1988), Klevorkian (1990) and
Whitham (1974). As with the usual diffusion equation, for stability we must be
solving the equation backwards in time. In other words, for the signs of the
equation to look more conventional, we should measure time from our horizon
date as

T=H—1t. (20)

With time measured in this direction the equation now becomes:
— 1.2
a, =30°a,,+oaa,. (21)

We will look at some simple properties of this equation and see how solutions
may be obtained from initial conditions for a specified as «(x, 0). Note first that
if a(x, 0) is a constant then all the space derivatives are zero and so it keeps this
same constant value for all time. It is well known that this solution corresponds
to a representative investor with constant proportional risk aversion (see Bick
(1987)). The coefficient of o attached to the final expression of the equation is
necessary in order for the equation to take the same form independently of the

© Royal Economic Society 1993
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scale to which 7is measured. For example, if we make a further change of the time
variable (for example to measure time in months instead of years) so we
introduce 7" = k7, the natural dimensions in which to measure ¢ become u’ =
kup, while the natural dimensions in which to measure ¢ are as 6’ = v/ko. Thus
the rescaled « is scaled by 4/k to become a’ = 1/ka. The equation becomes
transformed to:

o, =30"%a,,+o'da, (22)
and has the same form independently of the time metric. For small time steps
the effect of the diffusion term is also small, and the last expression can
propagate discontinuities backwards in time. Over larger time spans the
diffusion element becomes more important.

Another property of Burgers’ equation is that a(x,0) > o is sufficient to
ensure that a(x,7) >o for all 7> o0. This means that the monotonicity
condition of the state-price density function is automatically satisfied : provided
the boundary condition makes the state price density monotonic in x, the same
monotonicity is assured at all earlier dates.

Solution Method

In 1950 and 1951, Hopf and Cole showed independently how an analytic
solution to Burgers’ equation could be derived using a clever transformation
which reduces the problem to a conventional diffusion equation. We shall show
how that may be applied to the equation in our notation.

For the Cole-Hopf transformation we set

vx
a=0-". (23)
Cole and Hopf showed that if »(x, 7) satisfies the diffusion equation
vr—%o-zvzx =0 (24')

then the resulting «(x,7) from equation (23) solves Burgers’ equation (21).
To solve for a(x,7) from a particular boundary condition giving values for
a(x,0) we note that

_ u(x0) _ d
a(x,0) =0 050) oo [In v(x,0)]. (25)
Therefore
| J. a(x,0) dx = o ln v(x,0) (26)
0
so v(x,0) is defined up to an arbitrary constant ¢ as cg(x) in the equation
v(x,0) = c exp [éf a(s,0) ds] = ¢g(x). (27)
0
Finally then, a(x,7) is obtained from equation (23), after evaluating v(x,7) as
_ 0 _ (x_5)2
v(x,7T) = f_wg(s) exp[ Py ds. (28)

© Royal Economic Society 1993
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Fig. 2. Solution of Burgers’ equation.

Some Examples

We can take as our first example the case where a(x,0) is given as

a(x,0) = a—bx, (29)

where b is a non-negative constant. The g(x) function is therefore determined
by integrating equation (29) as

g(x) = exp{(ax—3b2*)/7}. (30)

Next, v(x,7) is found by integrating g(x) over the normal kernel as in equation
(28). This has a convenient (though rather messy) closed form solution and
it can also be differentiated to give v,(x, 7). Their ratio multiplied by o gives
a(x,7) which simplifies to

a—bx

oc(x,'r)=m. (31)

It is easily verified that this satisfies Burgers’ equation with our initial
conditions.

Fig. 2 shows the results of numerical calculations starting from more
complicated S-shaped initial conditions. The initial condition for alpha is
shown with a solid line, the dashed line shows alpha three years earlier, and the
dotted one three years before that. Note that the direction in which alpha
moves depends on the slope of alpha as a function of x.

IV. CONCLUSIONS AND POSSIBLE EXTENSIONS

We have shown that a necessary condition for economic equilibria which
support the Black—Scholes option valuation formula (in its usual lognormal
form) is that the risk premium on the market portfolio must follow a non-linear
partial differential equation known as Burgers’ equation. The equation can be
solved analytically in some cases and numerically in others. As far as we know,
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this is the first finance application of the equation, though Merton’s (1971)
paper on optimum rules for consumption and portfolio investment contains
-some equations with related non-linear terms. The analysis provides new
insights into how the price of risk can behave within an efficiently functioning
market in equilibrium. This has potential applications in empirical work, for
example on observed mean reversion in capital markets. Representative agent
equilibrium implies that although the risk premium can vary it must evolve
according to Burgers’ equation. It may be possible to devise econometric tests
of this restriction.

The assumptions we have made are quite strong, and it is worth discussing
briefly how far they might be relaxed. Our derivations could obviously be
generalised to deterministic but non-constant r and o. The path independence
results derived by Cox and Leland (1982) include dividend payments, and thus
suitable extensions can probably be found to include at least some kinds of
dividends and intermediate consumption. It also appears that in some cases we
can handle a stochastic interest rate. These extensions are not very different
from the generalisations to Black and Scholes given by Merton (1973).
However, it seems much more doubtful that a worthwhile extension to the case
of stochastic volatility could be found.

Understanding the behaviour of the market risk premium is a problem of
fundamental importance for fields such as portfolio management. Even if
empirical work did not support a single representative agent equilibrium it
might be difficult to refute an overlapping generations model which could
introduce more complex time dependent effects. An example will illustrate this.
We could imagine an economy which has two classes of investors: class 1 are
risk neutral and their investment horizon is at time 1; class 2 have constant
proportional risk aversion and a longer investment horizon, time 2. In such an
economy alpha will be zero until time 1, when it will jump to the level required
to attract the second risk averse investors. It is clear that there is no
conservation equation which can hold across the time 1 event, and the market
portfolio is no longer an undominated investment for long term investors.

Financial Options Research Centre, University of Warwick
Hong Kong Unwversity of Science and Technology
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APPENDIX: CONTINUOUS TIME DERIVATION

Again we shall work in terms of the transformed variable x,. While x, is a Martingale
under @, it follows

dx, = a(x,t) cdt+odB (32)

under the objective measure P.

The Girsanov formula (see, for example, Oksendal (1989), p. 102) tells us that the
change of measure is characterised by the Radon—Nikodym derivative (or state-price
density function)

ﬁ—cxp( Z,), where

(33)
JV[ (%, 7) dr+ct(x, T) dB,].

The path independence property which holds within our economy requires Z, to be a
single valued function of x and ¢ and it is not allowed to depend on the path followed
to a particular (x,f) combination. Substituting dx into the integrand of this equation
in place of dB, and equating to the expression for dZ from It6’s Lemma we find:

d
a—o—’_c—éaz dt=2Z,dt+Z, dx+30°Z, dt. (34)
We can therefore identify
Zz = CZ/O', and Zt+%0-2 za::c = _%az' (35)

We need to manipulate these two equations to eliminate Z and provide instead a
partial differential equation for .
Differentiating Z, again by x we get:
Z..=ao,/o, and hence Z,=—3joa,—3a’. (36)
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Finally, we can differentiate Z, by x and Z, by ¢ and then eliminate Z,, from each
equation
Z

=X - =
tz — 20 %y — A, = Clz/(T - Z:ct' (37)
This again gives us a complete derivation for Burgers’ equation:

o, = —iota,, —oac,. (38)
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