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Abstract

The HJM bond option valuation framework is very flexible; we present an efficient
numerical implementation, which uses a Monte Carlo simulation technique, with
carefully chosen Martingale Variance Reduction variates. These variates make the
simulation technique up to about 16 times faster, to achieve a' given standard error. We

also show how to ensure that the model avoids negative interest rates in this context.
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erm structure models have contrasting strengths

and weaknesses when applied to valuing options

on the term structure. The Heath, Jarrow, and

Morton [1992] model is more flexible, and takes
as its inputs the initial term structure, and the volatility
of the term structure. This is convenient for the user,
who can directly observe the initial term structure and
can estimate, or take a view on, the volatility.
Moreover, the HJM model gives the option value ele-
gantly as an expectation involving these inputs, and
does not require the risk premium of the market for
this. The model is thus reminiscent of the classical
Black Scholes model for equity options.

The equilibrium (or factor) models, which
begin with the models of Vasicek [1977] and Cox,
Ingersoll, and Ross (CIR) [1985], by contrast, start
from a collection of randomly evolving state variables
(or factors, which usually include the short rate).
These, together with a risk premium associated with
each one, are taken to characterize the entire term
structure at any time. Thus, the term structure and its
volatility structure are outputs, and not inputs, in the
equilibrium model. This can be inconvenient to the
user, because these outputs may not perfectly match
what is observed or desired. This can lead to the model
returning values that are clearly inaccurate, because
they are appropriate to the model and not what is
empirically observed or desired.

At the same time, option valuation is often easier
in the equilibrium models than in more general versions
of the HJIM model. The former require solving a diffu-
sion equation similar to the Black-Scholes equation,
while the latter most generally require a Monte Carlo
simulation, or a related numerical integration technique.
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We attempt to combine the advantages of the
HJM model and the equilibrium models. Our approach
is to retain the HJM framework and Monte Carlo pro-
cedure, and to make it more efficient by using careful-
ly chosen martingale variance reduction (MVR) vari-
ates. The MVR technique is standard in the field of
stochastie simulation, and we summarize it in the
appendix. The technique has been used by Carverhill
and Clewlow [1994] (see also Clewlow and Carverhill
[1994]) for equity-based exotic options.?

Our approach contrasts with that in much of the
related literature. Usually the approach is to extend the
equilibrium model to be more general, as in Hull and
White [1990, 1993], Fong and Vasicek [1991],
Longstaff and Schwartz [1992], and Duffie and Kan
[1993, 1994], or to specialize the HJM model so that
the Monte Carlo technique is unnecessary, as in Ho and
Lee [1986] and HJM [1990, 1992].3 Extensions of the
equilibrium model tend to be incomplete, however,
and specializations of the HJM model tend to detract
severely from its generality.

The model of Duffie and Kan is perhaps the
closest counterpart to our approach. Duffie and Kan
take an exogenously given initial term structure and
volatility structure, and then derive state variables (or
factors) that will provide these structures through the
equilibrium model. They have to contend with the
highly non-linear character of this procedure, and to
get a close match they may need many factors.

We concentrate here on the European call (or
put) with strike price X and maturity date s, written on
a bond with coupon payments Cys sesy €, AL HIMES Gy onss
q, beyond time s. The time O value of this option is
given in the HJM model by the formula

Ey [{£ {(¢q Pt Rg™M + ... +
ca B8" Rg%") — X By Rg*}] 1)

where E, denotes the risk-neutral expectation at
time 0, and

R = exp {El j;=o[vg;q dawj - %(vgq)z dp:” )
J=

in which {v4 }i=t,...m;e<q 1S the volatility structure, and
we take “+” for a call and “~” for a put. See HM
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[1992] or Carverhill [1995b].
The volatility structure is defined by the Ito
equation

ndt + 3 vidqw 3)
=1

dpPd/PY =

in which P} is the time t price of the pure discount
bond to mature at time q; I is the short rate at time ¢;
and dW},...,dW™ are the differential increments of
independent standard Brownian motions.

We first show how to improve the Monte Carlo
simulation to solve (1) by using martingale variance
reduction variates. We implement our procedure in the
context of the familiar Fong and Vasicek [1991] model.

Ensuring that the interest rates stay positive in
the model is an important consideration, and not just
from a purist point of view. Rogers [1994] points out
that even a small probability of negative interest rates
can have a large effect on prices, for long terms to -
maturity. In fact, in implementations of the HJM
model, the volatility is often assumed to be non-ran-
dom, i.e., independent of the term structure itself,
although this leads directly to the possibility of negative
interest rates. We show how to ensure that interest rates
stay positive in our procedure, and implement it in the
context of the Longstaff and Schwartz [1992] model.

I. MVR VARIATES FOR MONTE CARLO
SIMULATION OF THE HJM MODEL

The Monte Carlo technique is to simulate, for
many independent trials, the vector (Rg*, Rg%', ...,

Rg%") as given in (2), and thence the magnitude
& {(c PO REY + .. +
¢ Bi" Rg®) — X B RG*}Y 4)

This magnitude is the discounted payoff of the qption,
and each trial involves taking a sample of the m-dimen-
sional Brownian trajectory {(W?, ..., W) hejo.s)r in 2
suitable time discretization. The “naive” Monte Carlo
estimate of the option value is then just the mean of (4)
over the many trials.

In general, the MVR variates associated with a
Monte Carlo simulation are a vector of martingales starting

THE JOURNAL OF FIXED INCOME 71



from zero, which are generated simultaneously with the
trials themselves. Our choice for these variates is the vector

{Rg" — LRGY — 1,.,Rg™ = D} p0q ©6)

(Note that the Rj%s are exponential martingales, so

long as the volatility v-i‘q is bounded over t, j, ¢ — see
Carverhill [1995b].)

The variance-reduced trial is then

{£ {(c; By* Rg¥ + .. +

ca Bo" Rg¥) — X B R} -
By R = D + By (Rg¥ - 1) +

.t B (RGI = 1)} (6)

The Bs here are chosen to minimize the variance of (6)
(see the appendix). The MVR technique works
because (6) must have the same expectation as (4), since
Ey [Rg¥ - 1] = 0 for each i.

Our choice of MVR variate is efficient because
the R ;%s have already been calculated for (4). Also,

with these Rg%s, the procedure will automatically
give the correct value (without any random error), if
it is applied to valuing the bond itself, which corre-
sponds to X = 0 in the call valuation. In fact, in this
case the variance is clearly reduced to zero by taking
Bi = ¢ Bg'in (6).

This variance-reduced Monte Carlo procedure
can be implemented directly, when the volatility struc-
tures {v{'q}tsq; j=1,...m 3T€ non-random, i.e., they do not
depend on the term structure itself. Also, this proce-
dure works, provided only that the volatility structures
are bounded, and it will be valuable for volatility struc-
tures for which the model cannot easily be reduced to
a finite dimensional factor (i.e., equilibrium) model.*

A case in point would be with volatility of
the shape:

1,t+7

v = V(1) = (p - Mexp {~at} + 7

)

VAT = vi) = n/2 + (- exp {~0T}) (8)
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which we might expect to obtain from a principal

components analysis of the term structure of volatility.®
A simple and reasonable way to allow for

stochastic volatility is simply to replace (3) by

r,dt + o, ‘):1 v gw )
J=

dp3 /P8 =

where O, represents the general level of volatility, and
satisfies an Ito equation

do, =€ (o) dt + 1 () dWt (10)
where dWt is the increment of standard Brownian
motion, .with constant correlation coefficients, say,
dW,.dW; = p,dt, with the basic factors.

It would also be easy, but more complicated, to
assign different Os to each random factor. Our MVR

procedure can accommodate this extra volatility factor
if we replace (2) by

59 _
Rg* =

= H
exp 21 fo=0 X
J=

: ; 1 .
[op vpt awp’ - — o5 (vi3)? dp}} (11)

(See HJM [1992] and- Carverhill [1995b).)

The Fong and Vasicek (FV) [1991] model can be
cast in this form, as in fact can all the Gaussian models,
and we present numerical results for our variance-
reduced Monte Carlo procedure applied to this model.
The FV model starts from the equations

dr, = 0 - g)dt + v, dx, (12)
dv, = (V = v)dt + &v, dy, (13)
for the short rate r, and vaﬁance vV, = 0'? , in which

dx, and dy, are standard Brownian motions with*corre-
lation p, i.e., dxdy, = pdt. FV then solve this model in

the form P2 (r,v) =exp {-tD (q—t) + VF (@ —t) + G
(q —t)} for certain functions D, E and G, and from this
we can write
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EXHIBIT 1 B Simulation Results B Fong and Vasicek Model

Three-Year European Call on Six-Year Pure Discount Bond

20 Steps/Year, 50,000 Simulations 100 Steps/Year, 50,000 Simulations
Strike 0.738147  0.745603 0.753059 Strike 0.738147 0.745603 0.753059
Moneyness 99% 100% 101% | Moneyness 99% 100% 101%
Simple MC 0.010815  0.007504 0.004889 Simple MC 0.010872 0.007599 0.004998
(std. error) 0.000058  0.000049 0.000040 (std. error) 0.000059 0.000050 0.000042
MC with MVR  0.010766  0.007463 0.004855 MC with MVR  0.010953 0.007665 0.005050
(std. error) 0.000027  0.000027 0.000026 (std. error) 0.000028 0.000028 0.000027

Three-Year European Call on Six-Year 10% Semiannual Coupon Bond

20 Steps/Year, 50,000 Simulations 100 Steps/Year, 50,000 Simulations
Strike 0.989276  0.999269 1.009262 | Strike 0.989276 . 0.999269 1.009262
Moneyness 99% 100% 101% | Moneyness 99% 100% 101%
Simple MC 0.014142  0.009687 0.006197 Simple MC 0.014215 0.009809 0.006338
(std. error) 0.000075  0.000063 0.000052 (std. error) 0.000076 0.000065 0.000053
MC with MVR  0.014090  0.009644 0.006164 | MC with MVR  0.014359 0.009933 0.006439
(std. error) 0.000014  0.000016 0.000017 (std. error) 0.000015 0.000016 0.000017

- V. D@ - 9dx, +
&JV—tF(q—

corresponding to (9).6 (Also, (13) corresponds to (10),
if we translate from Vv to G = «[\7 2

Exhibit 1 gives results for this model, with
parameters 0. = 1.5, Y= 1.0, £E=0.1,p=0.5, 1= 0.1,
f =0.1,v,=0.01,and Vv =0.01. From these results
we see that the variance reduction works better for the
coupon bond than for the pure discount bond; the
reduction in standard error is on the order of four,
rather than two. These factors four and two indicate
savings on the order of about sixteen and four, respec-
tively, in the number of iterations required to achieve a
given standard error.

The reason that the variance reduction is more
effective for the coupon bond is simply that there are
more control variates, because there are more coupons.
Recall, however, that using these variates incurs hardly
any extra cost, because they have already been calculat-
ed in the Monte Carlo procedure itself.

We have chosen to implement the FV model
simply because it is familiar. The strength of our proce-
dure is its flexibility, however; it will work for a very
general volatility structure, which can be chosen or
estimated directly, and when there is no analytic solu-
tion and no easy reduction of the model (such as Duffie

dP3/P} = r dt

t) dy, (14)
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and Kan seek, and which the Fong and Vasicek model
provides) to a set of factors such as (r, V) of Equations
(12) and (13).

II. ENSURING NON-NEGATIVE
INTEREST RATES

Perhaps the simplest way to ensure that interest

rates cannot go negative is to throw a factor \/_r: into
the volatility, replacing Equation (1) by

ndt + AL 3 viTdwl  (15)

=1

dpd /Pd

and keeping V{'q non-random. We could also throw in
a factor G, but we omit this for the sake of clarity.
Then, following HJM [1992], we have

m » .
df = rolde + 4 3 ok dW) (16)
j=1 .
where
: 0 . m . .
off = -o-wf, ol = - viet  (17)
q j=1
SO
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L(E=f)=f + ;=o L 0 dt +

m 5 .
> [t . okt aw] (18)
J=

Also we have

Bg® =
exp {31:1 I;=0'i\/; vg;qug - -%rp(vg,'Q)zdp:'} (19)
i

The idea is now to simulate the Rg%s and r, simulta-
neously as t evolves over [0, s], using (18) and (1 9), and
continue the MVR procedure.

From (18) it is impossible for r, to go negative,
as long as the initial forward rates {f(;;}qZO are never
negative. Also, if r, is never negative, then neither is f2
for any t, q; this can be seen since the RHS always
decreases in the equation

exp {=[¢L, fdt} (= P?) = E[exp {-[L, rdt}] (20)

The Longstaff and Schwartz model fits indirect-
ly into this framework, and we present numerical results
for this model. Again, we have chosen to implement
our procedure for this model simply because it is famil-
iar, but the strength of our procedure is its generality.
The formulation above, using the square root of r, will
work as long as the volatility structures {v}4 }tsq in (15)
are all bounded.”

The Longstaff and Schwartz model starts from
the equations :

dx, = (y - 8x,)dt + 4/x, dW? @1)
dy, = (M = ey)de + Ay, AW (22)

where (x,, y,) are related linearly to (r,, v,) via the equa-
tions r = 0x + By and v = o®x + B2y, and w0, W} are
orthogonal Brownian motions. Longstaff and Schwartz
obtain functions A, B, C, and D such that

P! (V) = A? (q—t) BM(q—1t) X
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exp {K(q—t)+C(q—t)r+D(q—t)V}

inwhich k =y @ +¢) +1 (v +¢), 0= 2a + 82,

¢ = \IZB + vz,andvisaconstant.

From this we see that

dP3/PS = rdt + vx a X

[C(@ -t + a[D(g - 9]dW°? +

JyBIC(G - ©) + BD(q — &) dw!
(23)

With parameters o, = 0.05, B = 0.06, v = 0.8,
3=08,€=05m1=0.9, and v = 0.5, the results are
given in Exhibit 2. Our conclusions for the LS imple-
mentation are essentially the same as for the FV imple-
mentation. The variance reduction is better for the
coupon bond, and requires fewer iterations for a given
standard error, by a factor of about nine.

1. SUMMARY AND COMMENTARY

Our implementation of the HJM model for valu-
ing options on the term structure is efficient and flexi-
ble, and can avoid the possibility of negative interest
rates. To ensure flexibility, our implementation is basi-
cally Monte Carlo simulation; we have made this more
efficient by using martingale variance reduction variates.

The MVR technique is well-established in the
field of stochastic simulation, and our contribution has
been to make an appropriate choice of MVR variates.
When valuing a coupon bond option, our MVR vari-
ates are associated with the pure discount bonds that
make up the coupons. These must be calculated when
simulating the option payoff itself, so using these MVR
variates essentially imposes no extra cost in calculation.
To ensure that interest rates never become negative, we

insert the factor +/r; in a way that mimics the CIR model.

When we have cast the models of Fong and
Vasicek [1991] and Longstaff and Schwartz [1992] in
our framework, and apply our variance-reduced Monte
Carlo procedure, we get more variance reduction when
there are more coupons. The reason is that there are
then more MVR variates. For a three-year option on a
six-year bond that pays semiannual coupons (so that

SEPTEMBER 1995



EXHIBIT 2 M Simulation Results B Longstaff and Schwartz Model

Three-Year European Call on Six-Year Pure Discount Bond

20 Steps/Year, 50,000 Simulations 100 Steps/Year, 50,000 Simulations
Strike 0.646075  0.652601 0.659127 | Strike 0.646075 0.652601 0.659127
Moneyness 99% 100% 101% | Moneyness 99% 100% 101%
Simple MC 0.020339  0.017744 0.015321 Simple MC 0.020581 0.017977 0.015545
(std. error) 0.000113  0.000104 0.000096 (std. error) 0.000113 0.000105 0.000097
MC with MVR 0.020390  0.017791 0.015363 | MC with MVR  0.020552 0.017951 0.015522
(std. error) 0.000057  0.000056 0.000055 (std. error) 0.000057  0.000056 0.000055

Three-Year European Call on Six-Year 10% Semiannual Coupon Bond

20 Steps/Year, 50,000 Simulations 100 Steps/Year, 50,000 Simulations
Strike 0.879675  0.888560 0.897446 | Strike 0.879675 - 0.888560 0.897446
Moneyness 99% 100% 101% | Moneyness 99% 100% 101%
Simple MC 0.025770  0.022224 0.018932 | Simple MC 0.026076 0.025518 0.019213
(std. error) 0.000142  0.000131 0.000120 (std. error) 0.000143 0.000132 0.000120
MC with MVR  0.025858  0.022305 0.019005 | MC with MVR  0.026056 0.025501 0.019199
(std. error) 0.000046  0.000047 0.000047 (std. error) 0.000047 0.000048 0.000048

there are seven MVR variates, corresponding to the
number of coupons plus the option payment itself), the
standard error for a given number of simulations is
reduced by a factor of about four. This translates to a
reduction in the number of simulations by a factor of
about sixteen to achieve a given standard error.

The motivation for applying our procedure to
these models is simply that they are familiar. The
strength of our procedure is that it will work very gen-
erally — we require only some regularity conditions on
the volatility of the term structure.

Is our HIM implementation preferable to its
rivals, the equilibrium (factor) models? This depends
on the priorities of the user. If flexibility and accuracy
in fitting market data are needed, our approach is valu-
able. Factor models such as Duffie and Kan [1993] can
achieve this flexibility by including more factors,
although this may be difficult because of the basically
non-linear character of this procedure. The time taken
to solve the factor model will grow geometrically with
the number of factors, while the time taken by the
Monte Carlo procedure will grow less dramatically as
the number of factors increases.

APPENDIX H The Martingale Variance
Reduction Technique

In its “naive” form, the Monte Carlo technique may
be expressed as: Suppose we want to estimate the mean, |,
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of a probability distribution, and we are able to generate
independent random samples (trials) {y;, y,, ...} from the
distribution. Then the simple Monte Carlo estimator of I,
based on M samples, is just the sample mean

(A-1)

=%
M 2 Yi

If we denote the variance of each y, (and hence of the distri-
bution) by Var (y), then by the central limit theorem, the
variance of [ (i.e., its standard error squared, as an estimator
of W) is given by Var (y)/M. Also, if we can achieve a certain
variance with, say, M samples, to reduce this by a factor of,
say, X, will require us to generate XM samples.

Now, suppose that in parallel with generating {y,, y,,
...} we also generate the antithetic varates {2 v b
which are also independent and of the same distribution as
the ys, but negatively correlated with them. Then the vari-

= 1/2(y; + y;) will again have mean [, but they

will have variance Var () = 1/2 Var (y)[1 + Corx (y,y B
[€ 1/2 Var (y)]. Moreover, the sample mean

ates Y;

(A-2)

ﬁ"' ?i

n Mz

S
M;

will have variance less than half that of [i. If the pair y,, y;*
is less than twice as expensive to generate than y,, calculating
},L will be a more efficient way to estimate |L than calculat-

ing [i. This is the antithetic variate technique.®
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The martingale variance reduction technique is to gen-
erate simultaneously with the samples {y;, ¥,, ...} the ii.d. vari-
ates {x,, X,, ...}, where each x; is an m-vector (x,, wXi)
(the symbol T denoting “tmnsposc "), whose increments have

zero mean, i.e., they are martingales. Thus, the (m + 1)-vec-
tors (y, x) are independent for different values of i, but their
components are correlated among themselves in a constant
way. Then for any m-vector &, the quantity

(A-3)

will also be an estimator of |1, and the variance of this is min-
imized if we choose & so that

2 E=E, (A-4)
where Z_ is the covariance matrix of x, and X - is the m-
vector of covariances between x and y.

If we know the matrix X_ and vector z - then
Equations (A-3) and (A-4) let us use the control variates X to
reduce the variance in our simple Monte Carlo estimation (A-2)
of . If we do not know Z_ and E the procedure to obtain

B

the variance-reduced estimator [i. is: Find [3 = ([30,

to fit, in a least squares sense, the system of equations

X B =y, i=1.. (A-5)

where X; = (1, x!,...,x"). Then ([Ail,..., ﬁm) is the choice
of €, ..., &) that will minimize the variance of the estima-
tor (A-3), and Py is the corresponding variance-reduced

estimator M. of [L.

In fact, [3 can be calculated simply as

p =& X" Xy, (a-6)
provided none of the control variates is redundant. If some
of the control variates are redundant, or highly collinear,
then XTX will be singular, or nearly singular.? In this case,
however, because XTX is symmetric, we can work with its
pseudo-inverse, which is obtained by projecting along the
directions given by the eigenvectors with zero eigenvalue.

The m X m matrix XTX and m-vector X"y can be
calculated conveniently as the simulation proceeds, usmg
the equations

P + _n+
= (Xp Xpjk + Xj Xy

(Kot Xnst)jk A-7)
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(X:H Yn+1)_j = ( n Yn>_| + X Yn+1 (A"S)

where XSH =1
ENDNOTES

1Technically, the HJM model is not separate from
the equilibrium models, but rather includes them as special
cases. The HJM model takes the initial term structure and
volatility structures, but does not attempt to explain them in
terms of state variables.

2In these articles the approach to the design of
the MVR variates is different; thc design is based on the
delta-hedge.

3This is a retrospective interpretation, since Ho and
Lee [1986] predates HJM [1992]. The most common imple-
mentations of the HJM model use the volatility of the
Vasicek [1977] model or the Cox, Ingersoll, and Ross [1985]
model. See HJM [1990, 1992]. Carverhill [1994] shows that
if the volatility is time-homogeneous and non-random, and
if the short rate is Markovian (which is necessary for com-
patibility with a one-factor model), then the volatility must
be as in Vasicek. Rogers [1993] makes the point that practi-
cable implementations of the HJM model often push the
model into a formulation that would more conveniently start
from a factor model.

4See the Appendix to Carverhill [1995b].

5The significant aspect of this volatility structure is
that (8) represents a tilting of the term structure. Such a tilt
seems to be difficult to incorporate into a factor structure in
a time-homogeneous way.

6FV obtain the functions D, F, and G from a series
of transformations. Selby and Strickland [1993] obtain them
as series expansions. To implement our procedure, we must
transform to orthogonal Brownian motions.

’See the Appendix to Carverhill [1995b]. Note,
however, that we cannot replace J; with, say, r, in (15),
because we would not then be able to ensure that r,, given
as a solution corresponding to (18), and Pg itself, is well-
defined and non-explosive.

8We have implemented this technique in the HJM
framework, but we do not report the results here,\bccause
the variance reduction is quite feeble.

9This tends to be the case when applying this tech-
nique, because the bonds corresponding to the coupons are
highly correlated. .
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