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Abstract

This paper investigates the relative performance of alternative covariance matrices for

models with over-lapping observations commonly used in the finance literature. The

alternative covariance matrices used are those of Hansen (1982), Newey and West (1987)

(Bartlett and Quadratic Sprectral (QS) weights) and Andrews and Monahan (1992) (QS

weights). All matrices produce standard errors which are too small, yielding empirical size

probabilities above their corresponding theoretical values, even in large samples. Empirical

examples, such as testing efficiency in the foreign exchange market and mean reversion in

stock prices, show that the choice of covariance matrix can affect the outcome of a

hypothesis test. (JEL C15 and C22)

Abbreviated Title: Alternative covariance matrices

" The authors would like to thank an anonymous referee and James Lothian for helpful

comments.



The use of quantitative expectations data in macro economics increased through the
1980s as part of the interest in investigating the efficiency of markets. This was especially
true in the foreign exchange market where papers by Frankel and Froot (1987), Goodhart
(1988) and Froot and Frankel (1989), led the way. These papers considered equations of

the form,

Se, ek~ Se=a+p (ftk_st)“Lthg (1)
where, s, is the logarithm of the exchange rate in period t, s, is the logarithm of the

expectation formed in period t of the exchange rate in period t+k, £ is the logarithm of

the forward rate of the exchange rate at time t for period t+k and &% is the error term.

Under the null hypothesis of an efficient market, « =0 and p=1.
For many studies using equations of the form of (1), data are sampled more finely
than the horizon length of the expectations, for example Froot and Frankel (1989) using

weekly data considered expectations for up to 3 months ahead. The effect of over-lapping
observations is that the error term in equation (1), €%, is serially correlated, following a

moving average process, and conventionally programmed OLS standard errors are incorrect.
Consequently, reported standard errors are invariably corrected for the presence of serial
correlation, using a Generalised Method of Moments (GMM) estimator.

The first of the GMM estimators that was used in this framework was that suggested
by Hansen (1982). The covariance matrix for the vector of parameters in equation (1),

&= (a, B),is calculated as

V(8) = (X'X) 18, (X'X) 1,

m T
where, $,=Q,+Y [Q,+Q"], Q,= Y e.xix, .e. ., x is the vector of explanatory
F=1 t=j+1



variables and e, the residuals. This GMM method is used in Hansen and Hodrick (1980),

and they note (p.836) this procedure has greater power than an alternative solution, which
involves constructing new series y;, x; made up of non-overlapping observations of the

original series y, X, and undertaking the analysis using standard OLS on this subsets of
observations. Gruen and Smith (1994) use both the Hansen (1982) method to correct the
standard errors and non-overlapping data to estimate equations of the form of equation (1).

Hansen’s (1982) method does not ensure that the covariance matrix is positive
definite. Newey and West (1987) proposed an alternative method for obtaining serially
correlated heteroscedasticity consistent standard errors, with a positive definite covariance
matrix. This new procedure modified the Hansen (1982) GMM estimator by weighting the

sample autocovariance function, such that the weights decline as j increased. For the Bartlett

weighting method, $.=Q,+Y o (7, m) [Qj+Q/j] , where @ (7,m) =1-[7/ (m+1)].
=

n-1
Alternatively, for the Quadratic Spectral (QS) weights, S,=Q,+Y @ (7) [Q;+Q"],
7=

where @ (7) = —22 (sin(6nu/5)

T 2m2u? 6nu/5 _COS(6’TU/5)>aand u=3j/ (m+1) .! The Newey-

West method with Bartlett weights has been used by Frankel and Froot (1987), however,
there are few examples of an application of Newey-West with QS weights.

Finally, Andrews and Monahan (1991) extended the class of GMM estimators, by
first prewhitening the series and then using the Newey-West covariance matrix with QS
weights on the prewhitened series. The prewhitening entails fitting a Vector AutoRegressive
model of order b (VAR(b)) to the series z, = x, e, In their study Andrews and Monahan
(1991) use a VAR(1) model to approximate both autoregressive (AR) and moving average
(MA) processes.

For these alternative covariance matrices the choice of the bandwidth parameter, m,



is important for obtaining good standard error estimates. Hansen and Hodrick (1980) use
a bandwidth parameter, m = order of the moving average process. Frankel and Froot (1987)
consider two values of m, m = order of the moving average process and m = twice the

order of the moving average process.” Recently, Andrews (1991) developed a method for

choosing the optimal bandwidth parameter, Z.., according to the type of weighting scheme

used. For Bartlett weights, o (7) =1-(7/Z,), Z,=1.1447 (& (1) T) /3, where

D A2 Al
4p aoa

(1_ﬁa)6(1+ﬁa)2
p &t
3 Ver——

a=1 1_pa)4

a

0, a=1
1, a#l

&(1) _ a=1

and w,=

}: {(i5 ar aa), a=1,.., p} are the

parameter estimate and innovation variance of an AR(1) model fitted to each of the series

formed as the product of the p explanatory variables, x,, and the residuals, e, For the QS

weights the parameter u is calculated as u=7/Z, where Z,=1.3221 (& (2) T) /5, and
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This paper investigates the performance of these alternative methods for calculating

the standard errors in models when the data are over-lapping.

I. Method

A variety of experiments are considered allowing for different orders of MA errors,
from an MA(0) to an MA(12) (which corresponds to having weekly data and forecast
horizons varying from weekly to 3 monthly), different sample sizes (T = 50, 75, 100, 200),

and altering the process generating the explanatory variable, x,. The basic model is:

where, « =0, B=1 and 02=1. The explanatory variable, x,, is assumed to be generated by



n

ye=a+Px,+u., u,=y e, ;, n=0,..,12, &,~N(0, 0?) (2)
5=

an AR(1) process, thatis, x,=p+dx, ,+n,., n.~N(0,02) and E(e ., 1 ,) =0.Interms

of equation (1), x, represents the forward discount rate and y, the expected appreciation

(depreciation) in the spot exchange rate. If the exchange rate is in equilibrium, then one

might anticipate the forward rate for k periods ahead, £.5, deviating from the spot rate, S

by a random error, that is, $=0, x,=p+mn .. However, if the exchange rate is believed
to be over- or under-valued then the forward discount will be highly serially correlated until
the actual exchange rate adjusts towards its equilibrium rate, ¢ > 0. Gruen and Smith (1994)
present evidence for Australia over a considerable period in the 1980s to suggest that the
Austrlian dollar ($A) may have been suffering a type of ‘peso’ problem, with the forward
rate at a continual discount and highly serially correlated. In fact, over the period from 1985
to 1988 the correlogram for the forward discount is well represented by an AR(1) model
with ¢ =0.88. Consequently, we use a range of values for ¢, $<=(0.0, 0.1, 0,2, .., 0.9).
An alternative interpretation of equation (2) is as the model used by Fama and
French (1988) to investigate the issue of mean reversion in stock prices. Defining R, as the

one-period return on the stock market index, the Fama and French (1988) model can be

written as
k k
ZRt+i=a+BERt—i+1+ut (3)
i1 i1

In terms of equation (2) this implies that y, is the sum of stock returns over the next k
periods and x, is the sum of stock returns over the previous k periods. Under the null

hypothesis of a random walk, ¢« =0 and B=0.



In estimating this model Fama and French (1988) used the method of White (1980) and
Hansen (1982) to correct for heteroscedasticity and serial correlation. Using a model to
explain realised volatility in stock returns, Lamoureux and Lastrapes (1993) used the
Newey-West (with Bartlett weights) covariance matrix estimator to address the problem of

over-lapping observations.

II Results from Simulation

A variety of alternative covariance matrix estimation methods are considered:
standard OLS (OLS), OLS with non-overlapping observations (N-O), Newey-West with
Bartlett weights and m = order of MA process (NWB), Newey-West with Quadratic
Spectral weights and m = order of MA process (NWQ), Newey-West with Bartlett weights

and m chosen using Andrews (1991) procedure (NWAB), Newey-West with Quadratic

Spectral weights and Z, chosen using Andrews (1991) procedure (NWAQ), the Andrews

and Monahan (1992) method with QS weights and Z_. chosen using Andrews (1991)
procedure (A-M), and the Hansen (1982) method (HAN). The results are based on 5000
replications.

Table 1 reports the empirical size probabilities for a number of these alternative
estimation methods when the errors follow an MA(3) process for alternate values of ¢ and
T.? For this reported model and all other models considered the OLS estimation method
yields size probabilities closer to their theoretical value compared with the GMM methods,
irrespective of the MA process and the sample size, for ¢ close to zero. For all of the
GMM estimation methods the empirical size probabilities are too large, although as the
sample size increases so the empirical size slowly approaches the theoretical size. For larger

values of ¢, OLS performs markedly worse than the alternative estimators, although all

5



estimators over-reject the true null hypothesis in finite samples.

For the GMM procedures the choice of the bandwidth parameter is important. Two
alternatives are compared here, the first sets the bandwidth parameter, according to the
order of the MA process (m = 3), the second sets the bandwidth parameter using the results
of Andrews (1991). Comparing columns 5 (NWB) and 6 (NWAB) it is clear that for larger
values of ¢ and T, the Andrews method yields superior size results using Bartlett weights,
for T =200 and $=0.8, NWB = 12.7 and NWAB = 11.2. For QS weights, there is no
unambiguous outcome, with a bandwidth parameter of m = 3 yielding similar size
probabilities to those obtained from the Andrews procedure.

Increasing the bandwidth to equal twice the order of the MA process as suggested
by Frankel and Froot (1987) yields less satisfactory results for HAN and NWQ. For NWB
for large T and increasing values of ¢, choosing m equal to twice the order of the MA
process does, on the whole, produce size probabilities which are slightly closer to their
theoretical level. An explanation for why choosing m equal to twice the order of the MA

process in the NWB might produce better standard errors is provided in Figure 1. This
figure plots the distribution of the bandwidth parameter, Z,, obtained by the Andrews

(1991) procedure as a function of ¢ for T = 100. As ¢ increases so the distribution of the

bandwidth parameter, Z, > shifts to the right. For $=0.1, 0.2 the mode of the distribution

is around 1 whereas, for ¢$=0.9 the mode is around 7 or 8. Therefore, for larger values
of ¢ the optimal choice for the bandwidth parameter can be much larger than the order of
the MA process.

Comparing the weighting schemes in the Newey-West estimation method, it appears
that QS is superior to Bartlett, and this superiority increases with T and ¢. Of the
alternative GMM procedures, not surprisingly, we find that as T increases so the flat

6



weighting scheme of HAN tends towards the theoretical 5% size value at a quicker rate
than the Newey-West matrices with either the Bartlett or QS weights (regardless of how the
bandwidth parameter is chosen). For larger values of ¢, even at small sample sizes HAN
produces size probabilities closer to their theoretical values, and its relative performance
improves as T increases. Somewhat more surprising is the strong performance of the A-M
procedure for nearly all sample sizes and all values of ¢, even when compared with HAN.*

As ¢ increases the empirical size probabilities increase for all the alternative
standard error estimates, so that for $=0.9 and T = 200, NWB = 13.3, NWAB = 11.8,
HAN = 8.3, and A-M = 8.1.° However, these size probabilities are too large, and are larger
than the corresponding size values obtained from the use of non-overlapping observations,
reported in column 4. In general across all values of ¢ and all sample sizes the calculated
standard errors are too small, a fact which could possibly account for the frequent rejection
of the market efficiency hypothesis in the foreign exchange market, see, for example,
Goodhart (1988) and Gruen and Smith (1994). However, Fama and French (1988) use T
= 720 and the results obtained here suggest that the size bias of the HAN procedure will

only be small even for large values of ¢.

III Empirical Results

Table 2 reports the results from estimating equation (1) for a number of the
alternative covariance matrices considered in this paper, using data from Gruen and Smith
(1994). The data are weekly and for a four week forward discount horizon, over the period
March 1985 to September 1987 for the $A relative to the US dollar ($US) (T=128). In
addition, results from estimating equation (3) are reported (using four period over-lapping

observations) for both monthly stock returns on the UK FTA All Share index from January



1978 to December 1992 (T=180) and annual returns on the US S&P 500 index from 1879
to 1986 (T=108).

While Table 2 reports coefficient estimates and t-ratios for both & and P, attention
will focus on the slope coefficient. The t-ratios on B differ markedly according to both the

covariance matrix used and the choice of the bandwidth parameter, m (or, in the case of
Andrews, Z,). The methods of Hansen with (m=6), and Newey-West with QS weights and

the bandwidth parameter chosen according to Andrews yield similar sized t-ratios on B ; and
these are generally smaller than those obtained from Newey-West with Bartlett weights
(irrespective of the bandwidth) and Newey-West with QS weights and bandwidth chosen
according to the order of the MA process. The Andrews and Monahan (1992) procedure
yields the smallest t-ratios, although these are still, in general, larger than those obtained
from the non-overlapping regressions.

For the exchange rate example, the null hypothesis of =1 is rejected at the 5%
significance level for all covariance matrix calculations, with the exception of A-M and the
non-overlapping regressions. For the U.K. stock return data, the null hypothesis of p =0
is rejected across all covariance matrices at the 5% significance level (with the exception
of the non-overlapping regressions). In contrast, the U.S. data accept the null hypothesis,
B =0, at the 5% significance level regardless of the covariance matrix utilised (with the
exception of one non-overlapping case), although at the 10% significance level this null
hypothesis is rejected by HAN (m=3), NWB (m=3), NWB (m=6) and NWQ (m=3).

Across all three empirical examples we find that the conclusions from hypothesis
testing are dependent upon the choice of the estimation method used. In all cases the non-
overlapping regressions yield larger standard error estimates (and smaller t-ratios) compared

with the GMM estimation methods. For both the exchange rate and the UK stock return



examples the use of non-overlapping regressions actually leads us to accept the null
hypothesis, while the alternative covariance matrices in general lead us to reject the null
hypothesis. Given the simulation results show that the GMM standard errors reject the null
hypothesis too frequently compared with the non-overlapping regressions, tests of
rationality, efficiency or mean-reverting behaviour using equations similar to (1) or (3)
ought not to rely heavily on any one covariance matrix. Rather, results from an array of
alternative covariance matrices ought to be presented in an attempt to appeal to robustness

arguments.

IV Concluding Remarks

This paper investigates the performance of alternative estimation methods for models
with over-lapping data. A number of alternative GMM estimation methods due to Hansen
(1982), Newey and West (1987) (with Bartlett and QS weights and different bandwidth
parameter) and Andrews and Monahan (1991) are compared. For highly correlated
explanatory variables the GMM estimators of Hansen (1982) and Andrews and Monahan
(1991) perform the best, although these still perform worse than the non-overlapping
regressions. For all procedures there exists a strong tendency to over-reject the true null
hypothesis even for large sample sizes, T = 200. While asymptotically these estimation
procedures do yield consistent standard errors, in finite samples the standard errors can be
markedly misleading. The empirical illustrations support the finding that the choice of the
method and the bandwidth can affect the decision rule and that researchers ought to be wary
of reporting results based on just one of the alternative covariance matrix calculations
presented in this paper. Consequently, researchers should eschew reliance on just a single

covariance matrix estimator; rather, they ought to report the range of possible test statistics



(based on alternative covariance matrix calculations) and discuss the robustness of their
findings. Recently, researchers have moved away from focussing attention on standard error
calculations and conduct inference based on the empirical distribution of the regression

coefficients derived from bootstrapping the data, see, for example, Kim, Nelson and Startz

(1991) and McQueen (1992).
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Table 1: Empirical 5% Size Results For Alternative Estimation Procedures

Methods

® T OLS N-O | NWB [NWAB [NWAQ| HAN | A-M
50 5.74 7.62 9.28 7.84 7.86 | 14.68 9.94
75 5.40 6.34 8.54 8.08 8.08 | 11.14 9.16
0.0 | 100 4.52 5.92 7.52 7.20 7.28 | 10.40 8.34
150 4.56 6.00 6.36 6.18 6.50 7.94 7.34

200 5.44 5.96 6.48 6.74 6.82 6.78 7.12
50 7.06 7.52 | 10.80 9.46 924 | 1534 | 10.44

75 7.96 6.10 9.50 9.10 9.08 | 11.70 9.42
0.1 | 100 7.20 5.74 8.16 7.98 7.94 | 10.46 8.68
150 6.70 5.98 7.08 7.26 7.38 7.86 7.50

200 71.48 5.88 6.98 7.58 7.52 7.00 71.26
50 9.92 7.46 | 11.92 | 1134 | 1090 | 15.50 | 10.70

75 10.84 6.08 | 10.48 | 10.58 | 10.14 | 12.04 9.54
0.2 1 100 9.56 5.66 9.34 9.44 9.14 | 10.60 8.76
150 8.80 5.88 7.84 8.02 7.76 7.96 7.42

200 9.72 2.92 7.60 8.28 1.78 7.02 7.28
50 12.12 7.58 | 1328 | 12.76 | 1190 | 15.82 | 11.12

75 13.50 632 | 1142 | 11.80 | 11.10 | 12.12 9.98
0.3 1 100 12.26 588 | 10.74 | 10.86 | 10.10 | 11.08 9.18
150 11.72 5.74 8.80 8.92 8.54 8.12 7.44

200 12.36 5.88 8.32 8.54 7.94 7.02 6.94
50 15.06 752 | 14.62 | 1428 [ 1336 | 16.50 | 12.10

75 16.00 640 | 1266 | 12.80 | 11.82 | 12.72 | 10.18
0.4 1 100 15.46 6.02 | 12.12 | 12,06 | 1134 | 11.92 9.64
150 14.62 5.62 9.70 9.70 8.96 8.34 7.74

200 14.92 6.06 9.04 8.82 8.10 7.18 6.84
50 18.32 7.64 | 16.12 | 16.30 | 15.08 [ 16.82 [ 13.02

75 19.74 6.52 | 13.82 | 13.84 ( 1290 | 12.90 | 10.38
0.5 1 100 18.54 598 ( 13.32 | 1330 | 1230 | 12.36 9.88
150 18.08 546 | 10.82 | 10.42 9.46 8.60 7.78

200 18.04 6.10 9.82 9.32 8.36 71.64 71.36
50 21.74 790 | 1790 | 18.14 [ 16.80 | 17.36 | 13.94

75 22.54 6.48 | 15.06 | 14.76 | 13.58 | 13.56 | 11.02
0.6 | 100 | 22.12 572 | 1454 14.16 | 12.86 | 12.46 | 10.68
150 | 21.62 552 | 11.80 | 10.92 9.80 8.78 7.90

200 21.42 638 | 10.74 9.74 3.80 8.04 7.38
50 25.18 798 | 19.14 | 19.14 | 18.16 | 17.88 | 14.76

75 25.64 628 | 16.86 | 16.06 | 14.92 | 13.78 | 11.00
0.7 1 100 | 24.54 6.12 | 1588 | 1524 | 14.02 | 12.84 | 10.62
150 | 25.82 580 | 12.62 | 11.70 | 10.28 8.82 7.88

200 24.84 6061 11.62 ] 1046 9.16 3.02 7.30
50 28.32 7.66 | 20.16 | 20.58 [ 19.86 | 18.32 [ 15.58

75 29.20 632 | 1740 | 17.00 | 16.12 | 1430 | 11.06
0.8 | 100 | 28.46 596 | 1626 | 15.66 | 1456 | 12.80 | 11.04
150 | 28.86 580 | 1334 | 1222 | 11.16 9.56 8.76

200 28.50 6141 12701 1120 1030 8.34 1.66
50 29.94 7.56 | 21.68 | 22.52 [ 2240 | 19.04 | 18.86

75 32.40 6.62 | 17.68 | 17.78 | 17.64 | 13.08 | 10.38
0.9 1 100 31.88 630 | 16.74 | 16.78 | 1574 | 11.86 | 10.86
150 31.46 5.66 | 14.52 | 13.18 [ 1230 9.40 9.00
200 3134 6101 13281 11761 1084 834 808
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Table 2: Efficiency in the Foreign Exchange Market and Mean Reversion Tests

Exchange Rate U.K. Stock U.S. Stock
Equation Market Market

Method ! B2 ol B! o' B!
_— 0044 618 | 0070 024 | 054 031
(-3.63) (-430) | (843) (-3.30) | (11.22) (-3.44)
- 0038 541 | 0063 016 | 04l  -0.02
(1.53)  (-1.91) | (3.59) (-1.01) | (430) (-0.10)
N 0050  -8.09 | 0065 019 | 051 026
240) (273) | (3.89) (-126) | (535) (-1.05)
NS 0.048 660 | 0076 034 | 063 053
(1.82) (212) | (5.07) (238) | (9.39) (:3.24)
N 0.034 480 | 0074 029 | 048  -0.13
(139)  (172) | @421) (195 | (5.13) (-0.68)
| 0044 618 | 0070 024 | 054 031
HAN(=3) 1 (197)  (2.64) | (5.42) (2.44) | (636) (-1.68)
— | 0044 618 | 0070 024 | 054 031
HAN(m=6) | (187) (248) | (523) () | (5.77) (-1.40)
| 0044 618 | 0070 -024 | 054  -031
NWB (m=3) | 539) (320) | 641) (251) | (7.99) (1.91)
[ 0044 618 | 0070 024 | 034  -031
NWB m=6) | 513) (2.84) | (5.88) (3.04) | (687) (-1.66)
. | -0044 618 | 0070 -024 | 054 031
NWAB® | (192) (-258) | (5.69) (-3.68) | (6.54) (-1.58)
— | 0044 618 | 0070 024 | 054 031
NWQ=3) | 519) (293) | (5.93) (241) | (749) (-1.80)
. | 0044 618 | 0070 024 | 054  -031
NWAQ™ 1 (181) (242) | (537) (-420) | (6.13) (-149)
o | 0044 618 | 0070 024 | 054 031
NRAQ (-1.82) (2.45) | (5.45) (-4.08) | (6.19) (-1.50)
P 0.044 618 | 0070 024 | 054 031
0.77)  (-092) | (459 (-3.82) | (5.82) (-138)

Notes:
1. Coefficient estimate and t-ratio for testing H,: @ =0 or H,: B =0.

2. Coefficient estimate and t-ratio for testing H,: f=1.

3. The number of observations used by the N-O method is 32 for exchange rate, 45 for the
UK stock market equation and 27 for the US stock market equation. White’s (1980)
heteroscedasticity consistent standard errors are used.

4. Z,=13 .54 for exchange rate equation, Z,=9 .94 for UK stocks and Z,=9.37 for US
stocks.

5. Z,=12.91 for exchange rate equation, Z,=8.47 for UK stocks and Z,.=8.68 for US
stocks.

6. This uses covariance terms up to Q2.
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Notes

1. The QS weighting scheme uses covariance matrix terms up to Q__,. We also consider
the QS estimator when only terms up to Q ., were [Z;] is the integer part of Z,.

2. Frankel and Froot (1987) only report standard errors corresponding to a bandwidth equal
to twice the order of the moving average process as these were larger.

3. The number of observations used for N-O are T = 12, 18, 25, 37, and 50.

4. Similar results are obtained from the A-M procedure when only weighted sums of
Qi+ Q'S,j=1,2, ., [Z;], where [.] refers to the integer component are used.

5. While results are only presented for the MA(3) process, higher ordered MA processes
yield empirical size probabilities even further from their theoretical values. However, the
ranking of the alternative estimators remains the same irrespective of the assumed MA

process.
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