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Abstract

This empirical study is motivated by Dupire (1992) and Derman and Kani (1998)
models. We investigate the number and shape of shocks that move implied volatility
smiles and subsequently we look at their correlation with changes in the underlying
asset. Principal Components Analysis is applied to the changes of implied volatilities

~ over time, for fixed ranges of days to maturity. Two different metrics are used: the
strike and the moneyness metric. In contrast to earlier papers in the interest rate
literature, we decide on the number of components by using Velicer’s non-parametric
criterion. Subsequently, a ” Procrustes” type rotation is performed in order to inter-
pret the retained components. Similar results are found in both metrics. Two principal
components explain the dynamics of smiles. After the rotation the first one is inter-
preted as a shift and the second has a Z-shape. The correlations for the first principal
component depend on the metric, while for the second are positive under both metrics.

JEL Classification: G13

Keywords: Dynamics of Implied Volatilities, Implied Volatility Smiles, Principal
Components Analysis, Procrustes Rotation.

1 Introduction

The Black-Scholes formula (B-S) [4] is used widely to price and hedge options due to its
tractability. It is based on several assumptions, such as costless trading takes place in con-
tinuous time, the short term interest rate is constant, the underlying asset pays no dividends
and that the underlying asset follows a geometric Brownian motion d B with constant volatil-
ity o , i.e.
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% = udt + 0dB (1)
Reparameterizing option values by using the B-S model yields the implied volatilities. The
empirical evidence shows that at any given date and for any given maturity, implied volatil-
ities vary across strikes by exhibiting smiles and skews (see for example, Rubinstein [21],
and Sheikh [23]). An implied volatility smile is in contrast to the B-S model prediction of
a constant implied volatility, and it implies that one or more of the B-S assumptions are
violated.

One of the potential explanations for the existence of smiles is offered by stochastic
volatility models (see among others, Hull and White [14], Johnson and Shanno [16], Scott
[22], Wiggins [28]). These models are motivated by the empirical evidence that shows that
the variance of the underlying asset changes randomly over time (see Kon [17], Scott [22],
Bodurtha and Courtadon [5], Hull and White [14]). However, the limitation of these models
is that they do not fit the data well. Furthermore, they rely on the specification of the
market price of risk of volatility, and hence they allow only for equilibrium pricing that is of
no practical use.

As a response, Dupire [10] and Derman and Kani [9] proposed models that allow for
arbitrage pricing with stochastic volatility, with no need for any volatility risk premium to
be specified (see Skiadopoulos [24] for review of these models). This is achieved by using a
methodology that is similar to the Heath, Jarrow, Morton [12] approach. More specifically,
they assume a process for the forward (rather than the instantaneous) variance Vr of the
form

dVr(t,S)
Vr(t,S)
where dW; is the 7th Brownian motion.

Using this process either implicitly (Dupire), or explicitly (Derman and Kani), they can
price and hedge standard and exotic options by Monte Carlo simulations. Their models seem
to be promising, but there are three issues that have to be dealt with for implementation
purposes. These are (a) the specification of the number 7 of stochastic shocks appearing in
equation (2), (b) the estimation/interpretation of the volatility parameters b(.), and (c) the
estimation of correlation of the shock in the asset process with each one of the shocks in the
forward variance process. This is necessary for the joint simulation of the underlying asset
price and the forward variance.

In this paper we answer (a) and (b) by applying Principal Components Analysis (PCA)
on sets of the differences of implied volatilities. Then, we use the results from the PCA to
answer (c)!. One of the contributions of the paper is that we use a non-parametric criterion
(and not rules of thumb as in other studies) in order to answer the first question and we
develop a method which enables us to answer the second question and subsequently the third
one.

The remainder of the paper is structured as follows. In the second section, we describe
the data set that we use and the way that we filter it. In the third section, we describe the

alt, S)dt + 3 bi(t, S)dW; )

i=1

1 By studying implied volatilities, we implicitly assume that they provide us with all the required informa-
tion to specify the forward volatility process. This is a reasonable assumption because the implied volatility
is just the expected average of the forward volatilities (see Derman and Kani [9]).
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PCA technique and how this can be applied to the analysis of smiles. In the fourth and
fifth sections, we apply the technique to the differences of implied volatilities when these
are classified into two different sets of variables (metrics) for given maturity buckets: the
strike and moneyness metric. We decide on the number of components to retain by following
several steps which include Velicer’s criterion. Next, we try to interpret them by using the
idea of a Procrustes type rotation method. In the sixth section, we calculate the correlations
between the changes of the principal components and the underlying asset price. The last
section concludes.

2 The Data Set and the Filtering Method
2.1 The Data Set

The data that we use is daily closing prices of futures options on the Standard and Poor
index (S&P 500) obtained from the Chicago Mercantile Exchange (CME) for the years 1992-
95. The primary source database for this study is the transaction report ”Stats Database”,
compiled daily by CME. This database contains the following information for each option
traded during a day: the date, the style (call or put), the options and futures expiration
month, the exercise price, the number of contracts traded, the opening, closing, low and high
future’s and option’s price, the opening, closing, low and high bid-ask future’s and option’s
price and the settlement price. We are going to use the closing options and futures prices,
since we regard those as containing more information than the opening, low, or high ones.
In addition we use London Euro-Currency interest rates (middle-rates) on the US dollar,
collected from Datastream in order to approximate the riskless rate in our option pricing
model. We collected daily interest rates for 7-days, one-month, three months, six months
and one year and for other maturities we interpolated linearly.

Given that futures options on the S&P 500 are American-style options, implied volatil-
ities o;mp were calculated by the Barone-Adesi, Whaley [3] quadratic approximation which
explicitly takes into account the early exercise premium. However, even if the market uses
the Barone-Adesi Whaley model, the calculation of implied volatilities will be subject to
other sources of errors. These are described in the following section.

2.2 Filtering the Data

Harvey and Whaley [11] and Roll [20] have shown that in the presence of non-synchroneity
and bid-ask spread effects, respectively, spurious negative serial correlation is induced in the
volatility changes if closing option prices are used. The trading hours for the S&P 500 Index
are 8.30 a.m. till 3.15 p.m. (Chicago time), while those for the S&P 500 Index Options on
futures are 8.30 a.m. till 3.15 p.m., but the option can be exercised until 7.00 p.m. on any
business day the option is traded. Furthermore, deep in-the money and out-of the money
options are rather illiquid and they trade less frequently than those nearer to the-money.
This implies that for those options the option market has closed some time before the asset’s
market. Therefore, there are measurement errors in the calculation of our implied volatilities
that need to be filtered out.



In the first stage a preliminary screening of the data is done by excluding the data that
violate the arbitrage boundary conditions. The arbitrage boundary conditions are given by:

C>F-K 3)

P>K-F (4)

where C (P) is the American call (put) option price, F' is the futures price and K is the
strike price. We also exclude options having a price of less than 0.01 cents, and we eliminate
short term options with less than 10 days to maturity because they are very sensitive to
small errors in the option price.

In a second stage we exclude from our data sets in-the-money (ITM) calls and puts and
we construct our smiles by using for the left part of the smile out-of-the-money (OTM)
puts and for the right part OTM calls. We do so because the delta of ITM options is high.
Hence, their implied volatilities are prone to measurement errors. This is not going to bias
the results of the subsequent analysis because the implied volatilities for both calls and puts
should be the same if the put-call parity is to be respected. Moreover, we only keep the
implied volatilities calculated from options having a vega bigger than eight. The idea is that
the vega evaluated at the quoted implied volatilities is equal to the ratio of the measurement
errors in the option price over the errors in the implied volatilities. Hence, the interpretation
of our vega constraint (as we will call it hereafter) is that if the given measurement error AC
is required to produce an error in the calculation of o;m, less than Aoy, then vega has to
be greater than a certain cut-off point.

. . F
The advantages of the vega-constraint over the constraint on — that other researchers

have used so far, are that (a) the cut-off point is not determined exogenously, but endoge-

F
nously as we will explain in a while? and (b) the ratio — remains constant regardless of the

days to maturity of the option, while the calculation of the vega-constraint takes explicitly
into account the days to maturity.

The cut-off point of eight was chosen by looking at the trade-off between accuracy and
number of observations that we throw away. The more we want to constrain the errors Aoy,
the greater vega has to be. On the other hand,the greater vega is the more information is
thrown away. Therefore, we had to experiment with different values of vega, in order to see
the number of observations that we were excluding and how noisy our data was. The chosen
cut-off point retained a sufficient amount of data, while the amount of noise was checked by
what we call the ”accuracy graph”3.

An accuracy graph is constructed as follows: a specific expiry date contract is chosen
and it is followed from the point that it has 30 days to expire down to 27 days to expire.
Hence, four implied volatilities are obtained for each strike. In the case that the data is not

2Rubinstein [21] eliminates options with a ratio (S/X) less than 0.75. Sheikh [23] replicating Rubinstein’s
paper applied the same criterion. Canina and Figlewski [7] eliminate options that are more than 20 points
in or out-of-the money. Xu and Taylor [29] eliminate options when X < 0.85 or X > 1.25. However, no
justification is given for this range of values.

3The retained amount of data for a given level of vega differs across maturities and years and between
calls and puts. Setting the vega constraint to eight retains 52%-30% of the call observations and 90%-50%
of the put observations.



noisy, then for each strike the implied volatilities should not differ a lot over such a short
time interval, i.e. for each strike the standard deviation should be small. Therefore, for
each strike the average of those four implied volatilities and their standard deviation are
calculated. Then, the average and plus, minus one standard deviation are plotted.

Figure 1 shows such a graph for a call contract that expires in 9309 when no filtering
has been applied. It is obvious that the implied volatilities of ITM calls have very big
standard deviations, i.e. they are very noisy something which was expected because of the
non-synchroneity effects. Similar figures were constructed for both calls and puts for the case
that only the vega constraint was imposed (i.e., ITM calls and puts were not eliminated). The
figures were examined for values of vega v = 1,2,4,8,16. We found that the vega constraint
trims the extreme strikes, i.e. the deep ITM and OTM options, but the large amount of noise
for the ITM options remained. This justifies the elimination of the ITM options as we have
already explained. Moreover, such figures were constructed for the case that vega equals 16.
There is of course a further reduction in noise, but it is not that significant compared to the
amount of informaton that is discarded as vega increases and to the fact that there is still
noise for ITM options despite the value of vega. Hence, the data dictate that the cut-off
point for the vega constraint should be eight. Figure 2 shows a recovered from OTM options
implied volatility skew. It confirms that the filtering procedure is satisfactory.

3 Principal Components Analysis and Smiles

The natural technique to identify the number and the interpretation of stochastic shocks
that affect implied volatility smiles, is Principal Components Analysis (PCA). We describe
it briefly to explain why it is appropriate and to introduce the notation we will use.

PCA. has been constructed to answer the following question: How can we explain the
systematic behavior of the observed variables by means of a smaller set of computed but
unobserved latent random variables? From a purely mathematical viewpoint the purpose of
a population principal component (PC) model is to transform p correlated random variables
to an orthogonal set which reproduces the original variance-covariance structure. This is
equivalent to rotating a p-dimensional quadratic form to achieve independence between the
variables.

Consider n observations on p random variables represented by the (nx1) vectors z;, s, . . .,
Zp, where for simplicity we assume that the means of these vectors are zero, i.e. T7 = 73 =

. =T, = 0 and an estimator S of the variance covariance matrix is given by S = X' X
where X is a (n X p) matrix. Construct now linear transformations Z; for i = 1,2...,p so
that

Z=XP (5)

where Z is a (n x p) matrix and P is a (p x p) matrix with the ith column the P, vector

ﬂ-’ = (P14, D2, - - - Ppi), for 2 = 1,2,...,p. The ith column Z; is the ith principal component
(PC hereafter). The elements of the vector P, are the coefficients of the ith PC and they
are called the loadings. o

The variance of the Z; PC is given by Var(Z;) = P, X'X P, and the PCs are constructed
such that Cov(Z;, Z;) = 0 for Z; # Z;. o



The purpose of the PCA is achieved by determining the unknown fixed loadings, so as
to maximize sequentially the variance of the PC’s, starting from the first one up to the pth,
under the constraint that P'P = I where I is the identity matrix. The first order condition
of this maximization problem results to

(X'X -I)P=0 (6)

where [; are the lagrange multipliers.

From equation (6) it is evident that the PCA boils down to the calculation of the eigen-
values /; and the eigenvectors of the variance-covariance matrix X' X. S is now represented
as

S=PLP (7)

where L=diag(ly,ls,...,l,) and the sum of the variances of the PCs equals the sum of the
variances of the X variables. Moreover, it can be proved that if the covariance matrix is
diagonal, then there is no gain in performing the PCA.

As Basilevsky explains (Basilevsky [1] page 143), it is better to work with the standardized
variables of X s and therefore with the correlation matrix, rather than the covariance matrix
of X's. For the purposes of our study, standardized variables and PCs are used.

From Equation (5) standardizing the PCs to unit length yields a new matrix Z* =
ZL"t = XPL3. Hence,

X=zA (8)
where

A=L:P 9)
When both variables and components are standardized to unit length, the elements a;; of A’

are correlations between the variables and PCs and they are called correlation loadings. If
r < p PCs are retained then

X = Z{y Ay + €0 (10)
where () is a (n x p) matrix of residuals and the other matrices are defined as before having
r rather than p columns. The percentage of variance of X; (i = 1,2,...,p) that is explained

by the retained PCs (communality of X;) is calculated from the correlation loadings. Hence,
after retaining 7 < p components that explain a sufficient amount of the original variance-
covariance structure, we use equation (10) to check the magnitude of communalities and the
interpretation of the retained components.

Since we want to determine the number n of shocks that appear in the stochastic differ-
ential equation (2) we apply the PCA to the first differences of implied volatilities. This is
the natural thing to look at, if we work with a discretized version of equation (2).

The variables that we apply the PCA to will be measured in two different ways (metrics):
(a) we will consider as variables the first differences of implied volatilities classified across

strikes (strike metric) which is the natural metric to look at, and (b) we will consider as

K—-F
variables the first differences of implied volatilities classified across moneyness i.e.

*

100 (moneyness metric). The reason for choosing this metric is that there are theoretical



reasons that support that smiles are a function of moneyness (see Heynen [13] Taylor and
Xu [25]).

Moreover, since the purpose of this paper is to analyze only the smile dynamics (and not
the dynamics of the whole implied volatility surface) our analysis is applied to fixed buckets
of days to maturity that are as fine as possible, so as to isolate the maturity effect. We fix
six such intervals: 30-10, 60-30, 90-60, 150-90, 240-150 and 360-240 days to maturity. The
maturity buckets were chosen, so as to cope with two constraints: (a) getting a sufficient
amount of data for each range in order to perform the PCA, and (b) treating the missing
observations that occur due to the filtering procedure that has been applied. The literature
on treating missing observations is vast, but as Anderson et al. [6] note ”The only real cure
for missing data is to not have any”. Therefore, the missing values are not replaced since
we do not know whether this will bias the results. Instead, listwise deletion is applied, i.e.
the whole day for which at least the observation for one variable (strike or moneyness) is
missing, is deleted.

4 PCA on the Strike Metric

4.1 Number of Retained Principal Components and a First
Interpretation

The variables for each year and within a given range, on which we will perform the PCA
were chosen so as to get (a) a sufficient number of strikes (say not less than 7 ideally) so as
to examine a wide range of the smiles, (b) a sufficient amount of observations (say no less
than 100), and (c) a satisfactory correlation between them, since the higher the correlations
between the variables, the greater the gain from the PCA. The overall level of correlation
was measured by the Kaiser-Meyer-Olkin (KMO) measure. It was found to be between 0.7
and 0.9. The fact that correlations are high, is not only encouraging for the application of
the PCA, but it is also a necessary condition for the selection of a linear PCA model. In
the case that there are nonlinearities, a set of highly related random variables can exhibit
low correlation, unless the nonlinearities are taken explicitly into account (see Basilevsky [1],
page 162).

Next, we decide on the number of components to be retained and their interpretation.
In order to do so, researchers usually use rules of thumb (see for instance, Litterman and
Scheinkman [18]). For example, they keep the components that explain 90% of the total
variance, or they omit the correlation loadings which are smaller than 0.20 (for a description
and discussion of the several rule of thumbs see Jackson [15]). As Basilevsky notes ”such
practice is statistically arbitrary, and seems to be prompted more by intuitive concepts
of practicality and ”parsimony”, than by probabilistic requirements of sample-population
inference.” We determine the number of components to be retained by applying Velicer’s
[27] non-parametric criterion, looking at the communalities that the retained, according to
the criterion, components explain, and examining sequentially the noisiness of the correlation
loadings. If any PC appears to be just noise, then we prefer to reject it.

Velicer proposed a non-parametric method for selecting nontrivial PCs, i.e. components
which have not arisen as a result of random sampling, measurement error, or individual



variation, based on the partial correlations of the residuals of the PCs model, after » < p
components have been extracted*. The idea of the criterion can be described as follows: Let

Basilevsky [1] shows (theorem 3.13, page 132) that X'X = AA'. Hence, the variance-
covariance matrix of the residuals ¢(,) is given by the following expression

EI(T)E(T) = X,X — A(T)AI(T) (12)

Let D = diag(sl(r)a(r)). Then, R* = D‘%E'(T)E(T)D_% is the matrix of partial correlations
of the residuals. If r}; represents the ith row, jth column element of R*, then the Velicer
statistic is given by

7._’] 1
=2 ; p(p R 2_; p(p ) (13)
and lies in the interval 0 to 1.

One might expect that as we retain more PCs, f. — 0. However, this is not the case. f;,
decreases until a number 7* and then it increases again (see Velicer [27] for the explanation
of this behavior). Velicer suggests that » = 7* should be the number of components to
be retained. The idea behind this is that as long as f,. declines, there is still space for
the additional components to capture part of the covariance of the residuals. Since it is
obvious from the formula of the partial correlation that f,. declines as long as the partial
covariances decline faster than the residual variances, Velicer’s procedure terminates when,
on the average, additional PCs explain more of the residual variances than their covariances,
i.e. when they explain unsystematic rather than systematic behavior.

Table 1 shows that the number of retained PCs according to Velicer’s criterion varies
across the maturity ranges. In general, we should not accept more than two components.
This is in contrast to the mean eigenvalue rule of thumb I which retains the PCs having
eigenvalues greater than the mean eigenvalue. We can see that the mean eigenvalue rule
keeps in many cases one PC more than Velicer’s criterion. We also show fy, a second
summary statistic that is useful for comparative purposes. fy is the usual Velicer’s statistic
when no PCs have been retained. If f; > fy then no components would be extracted and
the explanation to that lies in the behavior of Velicer’s criterion. Table 1 shows that f; < fy
in all the cases. Hence, the PCA can extract a limited number of components®.

4 Application of the Bera-Jarque test showed that the null-hypothesis of univariate and hence of multivari-
ate normality was rejected. This necessitates the use of a non-parametric test. Another aspect of rejecting
multivariate normality, apart from not being able to apply parametric tests for the PCA analysis, is that we
can not use any of the existing tests for eliminating outliers (for a review of the techniques about dealing
with outliers, see Barnett and Lewis [2]). PCA is very sensitive to their presence (see Basilevsky [1]). This
makes necessary the use of filters on the data set, as we have already demonstrated.

SReddon [19] evaluated the type-I error (reject the null while it is true) rates of this test. Towards this
end, he specified the null hypothesis of Velicer’s test as the reduction in dimensionality. Then, he carried



Year | f, f; f f3 r* |l | 1st PC | 2nd PC | 3rd PC
30-10 92 0.2863 | 0.2835 | 0.2843 | 0.2847 | 1 | 2 | 57.60 16.70 5.80
93 0.3156 | 0.3131 | 0.3138 | 0.3143 |1 |1 | 61.30 16.30 6.30
94 0.2586 | 0.2557 | 0.2563 | 0.2567 | 1 | 2 | 55.90 14.00 8.70
95 0.3125 | 0.3074 | 0.3088 | 0.3096 | 1 | 1 | 60.00 17.30 6.40
60-30 92 0.1383 | 0.1377 | 0.1377 | 0.1377 | 2 | 3 | 39.30 18.20 9.30
93 0.1210 | 0.1205 | 0.1204 | 0.1204 | 2 | 2 | 34.90 24.00 7.70
94 0.0999 | 0.0995 | 0.0994 | 0.0994 | 2 | 3 | 28.00 23.40 14.60
95 0.3323 | 0.3297 | 0.3304 | 0.3310 | 1 | 1 | 64.40 11.40 8.10
90-60 92 0.1736 | 0.1718 | 0.1720 | 0.1723 | 1 | 2 | 46.40 15.80 9.90
93 0.1529 | 0.1516 | 0.1516 | 0.1518 | 2 | 2 | 43.20 18.80 10.70
94 0.1266 | 0.1253 | 0.1252 | 0.1254 | 2 | 2 | 36.90 17.70 10.60
95 0.1044 | 0.1024 | 0.1022 | 0.1027 | 2 | 2| 39.20 21.10 60.30
150-90 | 92 0.2296 | 0.2283 | 0.2285 | 0.2286 | 1 | 4 | 50.30 8.60 7.30
93 0.1528 | 0.1519 | 0.1519 | 0.1520 | 2 | 3 | 41.20 14.70 8.80
94 0.1845 | 0.1835 | 0.1835 | 0.1836 | 2 | 4 | 44.00 14.00 7.60
95 0.1910 | 0.1896 | 0.1898 | 0.1900 | 1 | 2 | 46.60 15.50 7.00
240-150 | 92 0.3452 | 0.3441 | 0.3442 | 0.3444 | 1 | 2 | 61.80 9.70 7.50
93 0.3063 | 0.3053 | 0.3054 | 0.3055 | 1 | 2| 58.10 12.10 6.50
94 0.2886 | 0.2877 | 0.2878 | 0.2879 | 1 | 2 | 56.70 10.80 6.90
95 0.1551 | 0.1543 | 0.1544 | 0.1545 | 1 | 2 | 42.30 21.40 10.60
360-240 | 92 0.3177 | 0.3168 | 0.3169 | 0.3172 |1 | 2| 61.90 18.70 9.60
93 0.3712 | 0.3696 | 0.3698 | 0.3701 | 1 | 2 | 64.90 13.20 8.40
94 0.4062 | 0.4054 | 0.4053 | 0.4055 | 2 | 2 | 66.30 18.50 7.00
95 0.2234 | 0.2217 | 0.2222 |1 0.2226 | 1 | 2 | 56.30 20.10 11.50

Table 1: Principal Components in the Strike Metric: r* = the number of components retained
under Velicer’s criterion (minimum of 0,...f3), 1 = number of components retained under rule
of thumb, with percentage of variance explained by components 1-3.




Table 1 also shows the percentage of variance that the first three PCs explain, despite of
the fact that Velicer’s criterion does not retain the third PC. This is so that we can compare
it to the corresponding component found in the interest rate literature (see Litterman and
Scheinkman [18]). However, the decision on the number of retained components there, has
not been justified by any testing procedure, but it was based only on the grounds of the
amount of variance explained by the retained components.

From Table 1 the average variance across the maturity buckets can be calculated for each
year. We find that the first PC explains on average 41%-62% of the total variance, and the
second PC explains on average 13%-19%. The explained average cumulative variance lies
between 59% and 80%C. The first PC approaches its upper variance limit in the shortest
and longest maturity options. The second PC approaches its upper limit for the first three
ranges, then it dies down, but it comes up again for the longest range. In general, the first
two PCs together explain most of the variance in the shortest and longest maturity options.

We consider Velicer’s procedure as the first step in order to decide how many components
we should retain. The second step is to look at the interpretation of the first three PCs’.
The interpretation of the PCs can be revealed by looking at the correlation loadings A in
equation (8). Hence, the first three columns of A’ reveal the impact on implied volatilities
of the first three PCs, respectively.

Plots of the correlation loadings show that the first PC looks roughly as a parallel shift
with an attenuation at the edges in the range 30-10 days to maturity and for all the years
(the terminology ”shift” and ”slope” is used in the same spirit as Litterman and Scheinkman
have already established). In the range 60-30 and for the years 93 and 95 the first PC still
moves implied volatilities to the same direction. However, for all the other ranges and the
years 92, 93, and 94 the first PC does not have the interpretation of a shift, because it has
both negative and positive correlation loadings. In fact, it looks more like a slope. For the
year 95 in all the ranges the first PC is a shift.

Regarding the interpretation of the second PC the figures reveal that for the range 30-10
over all the years the second PC has the interpretation of a slope (in fact it is like a Z-shape).
For the range 60-30 the same is true with the exception of year 94, while for the rest of the
ranges and for the years 92, 93, and 94 the second PC seems to have a triangular shape.
However, for the year 95 and for all the ranges to maturity, the second PC seems to have
the slope interpretation.

out simulations using data generated from populations having unit variances and zero covariances and he
found out that Velicer’s test made excessive type-I errors in the cases where the number of observations did
not exceed two times the number of variables. As the number of observations increased beyond two times
the number of variables, the type-I error rates rapidly became zero. Since the number of observations that
we use is far more than twice the number of variables, we feel comfortable with the results from comparing
f o with f 1-

6These results are very different from the interest rate literature corresponding ones. For example,
Litterman and Scheinkman [18] had found that on average the first PC explained 89.5% of the total variance,
the second PC explained 8.5% and the third 2%. In total, the three retained PCs explained there, 98.4% on
average.

"In fact, we looked also at the communalities that the retained (according to Velicer’s test) PCs explain.
This is because we would like the number of retained components to explain a sufficient amount of the
variability of the implied volatilities dynamics. The results showed that two PCs provide a satisfactory

communality. The inclusion of a third PC increased the explained variance significantly, only in a limited
number of cases.
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Figure 3 shows the correlation loadings of the first and second PCs for the years 92 and 93
over the different maturity buckets (for each range, interpolation has been performed across
the missing strikes). In general, the figures for the third PCs’ correlation loadings reveal
that for all the years and for all the ranges, the third PC does not have a typical pattern,
and therefore it can be treated as noise. This is consistent with Velicer’s criterion results.
Hence, we decide to retain two PCs in the strike metric.

However, even though we were able to get the shift and slope interpretation for the shorter
maturity options in some years and over all the ranges in year 95, we would like to have
this simple interpretation for the remaining ranges and years. This would help to implement
equation (2)%.

4.2 The Rotation Method

In the case that interpretation of the resulting PCs is not straightforward, people usually
apply the standard technique of rotation, i.e. the cartesian coordinates are moved to such
an angle so as a simple interpretation to be possible. Effectively, a rotation (this is the
second rotation after the PCA) is performed on the characteristic vectors, producing some
new ”components” that may be useful, although they are obtained by a different criterion
from PCA.

Given that we want to get a simple interpretation of the retained PCs and since the
intuition coming from the Taylor series expansion tells us that the first PC should have a
level (shift) interpretation and the second PC a slope interpretation, we use a ”Procrustes”
type rotation’. The question that a ”Procrustes” type rotation addresses is the following:
Let two (pxr) matrices, A and B. What (r x r) transformation matrix T will best transform
A into B? In other words, what matrix T will make AT most like B%? B is called the target
matrix, and in our case it will be the (p x 2) matrix of rotated loadings which will give the
parallel and the slope character for the first and second PC, respectively. Therefore, the task
is to determine 7" in such a way, as to get the desired result.

The way that we construct our rotation method is by using the general properties of
orthogonal rotations as outlined in Basilevsky [1]. Then, we regress a vector of constants on
the vector of loadings of the first two PCs. The latter determines the elements of the first
row of the matrix T" and combining this with the former we get the elements of the second

8In our case, in order to implement equation (2) it does not matter whether we have a simple (or even any)
interpretation of the retained PCs, since the correlation loadings are the estimates of the b;’s coefficients.
However, in order to estimate the b;’s by another econometric technique, their functional form should be
specified. A simple interpretation of the PCs will help us in achieving this. Intuitively thinking, it is possible
to interpret the first PC as a level and the second as a slope. This is because any well-behaved function can
be approximated by a Taylor series expansion of first order, where the zero order expansion is the level, and
the first order expansion is the slope.

9Before trying to apply ”Procrustes” type of rotation, we applied the most popular rotation methods, i.e.
the varimax, the quartimax and the oblique method. However, none of these methods produced the desired
interpretation because of the way that they are constructed. For more details on these methods, see Jackson
[15].

10Tn Greek mythology, when Thesus was cleaning up Greece’s highways of criminals, one of those he killed
was Procrustes, the Stretcher. Procrustes had an iron bed on which he tied any traveller who fell into his
hands. If the victim was shorter than the bed, he or she was stretched out to fit; if too long, Procrustes
chopped off what ever was necessary.
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row!!. Doing so, we force the first rotated PC to look like a shift but we do not know a

priori how the second rotated PC is going to look like.

Figures 4 and 5 show the first two rotated PCs loadings for the years 92 up to 95.
These graphs have been produced by working with unstandardized variables and PCs, and
consequently we do not look at correlation loadings, but just at loadings. We can see that
for the intervals 30-10, 60-30 and 90-60 and for all the years the first rotated PC can be
interpreted as a shift, while the second rotated PC is interpreted as a slope (it has a Z-shape
with large loadings for the implied volatilities in the small strikes and small loadings for the
implied volatilities in the big strikes). For the intervals 150-90, and especially for 240-150 and
360-240 the rotation was not successful for the first PC as it does not have a consistent shape
over the years. However, it was successful for the second PC as it brought up a Z-shape, for
all the ranges of days to maturity and for all the years.

In Table 2 we show the percentage of variance that the first and second rotated PCs
explain. We also show the percentage of the variance that the first unrotated PC explains
and the cumulative percentage variance. From the properties of the orthogonal rotation, the
cumulative variance explained by the first two PCs remains the same as before the rotation;
however, the percentage of the total variance that each rotated PC explains has changed.
The first rotated PC explains on average 26%-59% of the total variance, while the second
PC explains 16%-36%. These indicate that the first rotated PC explains less variance than
the unrotated one, while the second rotated PC explains more. In fact, once a rotation is
performed, the second rotated PC may explain more variance than the first one (e.g., see
range 90-60). However, it is still true that the percentage variance that the first rotated PC
explains, is bigger for the shortest and longest maturity options, as it was for the unrotated
first PC, but this is no longer true for the second PC.

Another way of interpreting Figures 4 and 5 is by examining whether the effect of the
retained components is greater on the shorter, or the longer maturity options’ implied volatil-
ities. These figures show that the first rotated PC affects more the longer maturity options’
implied volatilities (e.g., 90-60 days), than the shorter maturity ones (e.g., 30-10). Regarding
the effect of the second rotated PC over the different maturity buckets, it seems as if the
effect of the second rotated PC over the maturity buckets is the same, and this picture is
repeated for all the years.

5 PCA on the Moneyness Metric

5.1 Construction of the Moneyness Metric

In the strike metric, PCA is performed on fixed variables that are dictated by the option

K; - K
7 L %100 (we

contract specification. However, in the moneyness metric the variables

11 Notice that we apply the rotation to P and not to A’, because of the property that the rotated eigen-
vectors remain orthogonal that is used to construct our method. This property is not valid for rotated
correlation loadings (see Basilevsky [1]).
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Year Unrot. 1st PC | 1st PC | 2nd PC | Cumulative
30-10 92 57.60% 57.50% | 16.90% 74.40%
93 61.30% 61.10% | 16.60% | 77.70%
94 55.90% 55.90% | 14.00% | 69.90%
95 60.00% 59.90% | 17.40% | 77.30%
Average | 58.70% 58.60% | 16.20% | 74.80%
60-30 92 39.30% 26.80% | 30.70% | 57.40%
93 34.90% 33.60% | 25.40% | 59.00%
94 28.00% 23.50% | 27.90% | 51.40%
95 64.40% 64.40% | 11.40% | 75.80%
Average | 41.65% 37.10% | 23.90% | 60.90%
90-60 92 46.40% 16.00% | 46.20% | 62.20%
93 43.20% 24.70% | 37.20% | 61.90%
94 36.90% 28.10% | 26.50% | 54.60%
95 39.20% 35.70% | 24.60% | 60.30%
Average | 41.43% 26.10% | 33.60% | 59.80%
150-90 |92 50.30% 16.40% | 42.50% | 58.90%
93 41.20% 30.80% | 25.10% | 55.90%
94 44.00% 43.00% | 15.00% | 58.00%
95 46.60% 46.00% | 16.10% | 62.10%
Average | 45.53% 34.10% | 24.70% | 58.70%
240-150 | 92 61.80% 59.50% | 12.10% | 71.60%
93 58.10% 13.30% | 56.90% | 70.20%
94 56.70% 24.70% | 42.90% | 67.60%
95 42.30% 42.20% | 21.40% | 63.70%
Average | 54.73% 34.90% | 33.30% | 68.30%
360-240 | 92 61.90% 61.30% | 19.40% | 80.70%
93 64.90% 31.80% | 46.30% | 78.10%
94 66.30% 36.60% | 48.20% | 84.80%
95 56.30% 46.50% | 29.90% | 76.40%
Average | 62.35% 44.10% | 36.00% | 80.00%

Table 2: Percentage of Variance Explained by the Unrotated first PC and by the Rotated
PCs in the Strike Metric.

13



will call this the ”"natural” moneyness metric) for i« = 1,2,...,s where s is the number
of strikes and ¢ measures the calendar time, are different from day ¢ to day ¢ + 1, as the
futures price changes from F; to Fi,;. This means that for every day we have different
variables, and therefore we can not apply the PCA. The only solution to this is to fix the
moneyness variables before starting the analysis (we will call these fixed moneyness variables
the ”artificial” moneyness metric). Then, for each day, we interpolate across the implied
volatilities for these ”fixed” variables.

The spacing between the variables of the ”artificial” moneyness metric (step-size) was set
so that between any two consecutive variables of the ”"natural” moneyness metric, there will
be only one variable of the ”artificial” moneyness metric. Otherwise, the implied volatilities
created by the interpolation of both of the ”fixed” variables, would depend on the same two
consecutive values of the "natural” moneyness metric and consequently they would exhibit
spurious dependence, something which of course would distort the results of our subsequent
analysis!?.

It still holds, as in the strike metric, that the variables that we are going to use, should
give us a sufficient amount of observations after the listwise deletion, and a satisfactory KMO
correlation measure. KMO ranges between 70% and 90%, just as it was the case with the
strike metric.

5.2 Number of Retained Principal Components and a First
Interpretation

In order to see how many PCs we retain, we use once more Velicer’s criterion.

Table 3 shows that Velicer’s criterion keeps either one or two PCs depending on the
maturity range that we look at, but in any case, it does not keep more than two PCs'3. Again
in all the cases, fy > fi something which confirms that we can reduce the dimensionality
of the variables that we work with. We show also the percentage of variance that the first
three PCs explain.

From Table 3 we can calculate for each year, the average variance that each PC explains
across the maturity buckets and subsequently we can look at the range that the average
variance lies in across the years. The first PC explains on average 45%-80% and the second

12The step-size was calculated by tracing the minimum futures price for each year, and looking at the
spacing between strikes for each maturity bucket. However, the bigger the moneyness-step size, the fewer
are the variables to perform PCA on. Hence, before deciding on the step-size, we had to check the number
of variables that correspond to any given step-size. We dealt with this by finding for every day the minimum
and maximum moneyness and then we constructed distribution graphs for them (the moneyness variables
were classified in bins with a spread of 1%, since this should be the spacing between most of the variables in
the natural moneyness metric). Subsequently, the range was set by taking the right tail from the distribution
of the minimum moneyness and by taking the left tail from the distribution of the maximum moneyness.

13Regarding the comparison between Velicer’s test and the mean eigenvalue rule of thumb, the tests give
identical results for the ranges 30-10, 90-60 and 360-240 and they agree for most of the years in the range
60-30. In the remaining ranges, the mean eigenvalue rule retains one more PC than Velicer’s, as it was the
case with the strike metric.
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Year | fj f; ) f3 r* |l | 1st PC | 2nd PC | 3rd PC
30-10 92 0.4818 | 0.4792 | 0.4801 | 0.4807 {1 | 1| 73.30 11.00 5.50
93 0.5521 | 0.5491 | 0.5500 | 0.5508 | 1 | 1 | 77.80 8.10 6.00
94 0.6959 | 0.6936 | 0.6946 | 0.6949 | 1 | 1 | 85.70 6.40 2.30
95 0.4764 | 0.4735 | 0.4745 |1 0.4752 |1 [ 1| 73.00 11.10 5.90
60-30 92 0.1816 | 0.1812 | 0.1810 | 0.1811 | 2 | 2 | 39.60 30.30 8.10
93 0.2065 | 0.2058 | 0.2058 | 0.2059 | 2 | 2 | 44.60 28.70 7.70
94 0.2761 | 0.2747 | 0.2751 | 0.2753 | 1 | 2 | 53.60 22.90 5.30
95 0.2189 | 0.2183 | 0.2183 | 0.2185 | 2 | 2 | 47.60 25.50 8.70
90-60 92 0.2291 | 0.2276 | 0.2274 | 0.2278 | 2 | 2 | 48.80 27.30 9.00
93 0.2164 | 0.2133 | 0.2132 | 0.2137 | 2 | 2 | 46.80 30.60 9.70
94 0.2168 | 0.2153 | 0.2152 | 0.2154 | 2 | 2 | 44.20 29.60 7.40
95 0.1395 | 0.1383 | 0.1381 | 0.1384 | 2 | 2 | 39.70 25.50 9.50
150-90 | 92 0.2326 | 0.2313 | 0.2316 | 0.2317 |1 | 2 | 51.50 16.80 7.50
93 0.1989 | 0.1969 | 0.1972 | 0.1975 | 1 | 2 | 48.10 16.90 8.90
94 0.2578 | 0.2560 | 0.2563 | 0.2565 | 1 | 2 | 54.20 18.00 8.00
95 0.2008 | 0.1985 | 0.1988 | 0.1991 [ 1 | 2 | 48.80 18.10 8.50
240-150 | 92 0.4314 | 0.4302 | 0.4303 | 0.4307 | 1 | 1| 69.20 11.90 7.60
93 0.4334 | 0.4322 | 0.4324 | 0.4327 (1 | 2| 68.70 10.40 6.50
94 0.3595 | 0.3585 | 0.3588 | 0.3590 [ 1 | 2 | 63.40 16.90 7.40
95 0.3224 | 0.3211 | 0.3213 | 0.3215 |1 | 2 | 60.70 12.80 7.30
360-240 | 92 0.5668 | 0.5653 | 0.5657 [ 0.5663 | 1 | 1 | 77.90 14.10 4.40
93 0.4933 | 0.4917 | 0.4922 [ 0.4928 [ 1 | 1 | 75.10 16.90 4.10
94 0.6852 | 0.6826 | 0.6839 | 0.6844 [ 1 | 1 | 85.10 7.80 2.50
95 0.5932 | 0.5874 | 0.5894 | 0.5911 |1 | 1 | 80.90 6.80 5.80

Table 3: Principal Components in the Moneyness Metric:
retained under Velicer’s criterion (minimum f0,...f3), | = number of components retained
under rule of thumb with percentage variance explained by components 1-3.
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PC explains 9%-28%. In total, the first two PCs explain 68%-91%. Hence, the retained PCs
in the moneyness metric, explain about 11% more of the total variance than in the strike
metric. Moreover, similarly to the results that we got for the strike metric, the first PC
approaches its upper explained variance limit in the shortest and longest maturity options.
The second PC approaches its upper limit for the first three ranges and then it decreases
(this was not the case for the strike metric). The first two PCs together explain most of the
variance in the shortest and longest maturity options, as it was the case in the strike metric.
However, as we did in the strike metric, we consider Velicer’s procedure only as the first step
of deciding on the number of PCs to retain. The second step is to look at the interpretation
of the first three PCs!*.

The plots of the correlation loadings revealed that for the ranges 30-10 and for all the
years the first PC is like a parallel shift with an attenuation at the edges. In the range
60-30, it has positive correlation loadings for all the years but 92. In the other ranges and
for all the years, it has both positive and negative correlation loadings (it is like a Z-shape),
especially for the two longest ranges. This is the interpretation that we would like to give
to the second PC (but not the first one), where the shape of the shock varied across ranges
and across years within each range.

Regarding the shape of the second PC, in the ranges 30-10 and 60-30 and for all the
years, it is like a Z-shape. However, in the range 90-60 it has positive correlation loadings
for 92, 93, 94 (that is the interpretation that we would like to give to the first PC, but not
to the second one). In the year 95, it has both positive and negative loadings. In the range
150-90, it has positive correlation loadings in all the years but 94. In the range 240-150, the
shape is like a pyramid, with very big correlation loadings for the ATM options, while for
the range 360-240 it is noisy, having positive correlation loadings for all the years but 93.

Finally, the figures for the third PC revealed that it was just noise, something which is
consistent with Velicer’s procedure results. Given that Velicer’s criterion retains at most
two PCs, and looking at the interpretation of the third PC, we decide to keep two PCs in
the moneyness metric, just as we did in the strike metric. Although we were able to get the
shift and slope interpretation for the ranges 30-10 and 60-30, we would like to get the same
interpretation for the other ranges and for all the years if possible. Hence, we will have to go
through the ”Procrustes” type rotation method, in order to get the desired interpretation of
the two retained PCs.

5.3 The Rotation Method

The results for the first and second rotated PC, for the years 92 and 93, appear in Figure 6
and for the other two years appear in Figure 7. We can see that the rotation of the first PC
was successful since it has brought for all the maturity buckets and for all the years, positive
loadings (apart from 240-150 for the year 92). In the range 30-10, the parallel shift with the
attenuation at the edges has been maintained, while in the range 60-30 there are positive
loadings for all the years, with a much smoother shape than the unrotated ones. The shape

14We also looked at the communalities explained by one and two PCs. In general, the number of retained
PCs did better in terms of communalities in the moneyness metric, than they did on the strike metric. One
PC seems to need the assistance of the second, but not the assistance of the third, since the latter does not
increase the explained communalities significantly.
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is not far away from indicating a parallel move. In the ranges 90-60 and 150-90 there are
positive loadings for all the years. In the ranges 240-150 and 360-240 the pyramid shape is
preserved. This is expected, since the rotated first PC is a linear combination of the two
unrotated PCs.

For the second PC, the rotation was equally successful, since it produced the Z-shape in
the cases where there was not before. So, in the ranges 30-10 and 60-30, it has preserved the
Z-shape, while in the remaining ranges it has revealed it.

The interesting point is that in the ranges 150-90, 240-150 and 360-240, it seems as if
after the rotation there is a kind of ”changing” names between the unrotated components
(we will call this the PCs’ swap effect); before the rotation the first PC had a Z-shape and
the second had positive loadings. After the rotation the first PC has the shift and the second
has the Z-shape interpretation. In order to verify the swap effect, we check the percentage
of the total variance that each one of the rotated PCs explain. This is compared with the
percentage of the total variance that the unrotated PCs explained, so as to see if there is a
swap effect in the explained variances, as well.

Table 4 shows the percentage of the variance that the first and second rotated PCs
explain on the moneyness metric. The first rotated PC explains on average 20%-77.5%, and
the second rotated PC explains 9%-64%. These results indicate that the first rotated PC
explains less variance than the unrotated one, while the second rotated PC explains more, a
result which is similar to that for the strike metric.

Regarding the swap effect, comparing Table 4 to Table 3, we can see that for the ranges
150-90 and 240-150 and for all the years, but 94 in the former bucket and 95 in the latter
bucket, the first rotated PC explains roughly the variance that the second unrotated PC
explained, while the second rotated PC explains the variance that the first unrotated PC
explained. However, this is not the case for 360-240. Therefore, the PC swap effect is
confirmed for the ranges 150-90 and 240-150.

From Figures 6 and 7 we can also see whether the retained components affect more the
shorter, or the longer maturity options’ implied volatilities. We examine this effect, for
the ranges 30-10, 60-30, 90-60, and 150-90, over the years 92, 93, 94, and 95, since in the
remaining ranges the first rotated PC had the noisy pyramid wise shape. These figures show
that the effect of the first PC is pronounced in the 30-10 days range implied volatilities, then
it dies down for the 60-30 range and then it comes back for the 90-60 range, while it seems
that the influence falls again in the 150-90 range. This is different from the results from the
strike metric analysis, where the first PC affected more the longer maturity options’ implied
volatilities. In contrast to the effect of the first component, it seems as if the effect of the
second rotated PC is the same for all the maturity buckets. This pattern is repeated for all
the years, just as it was the case in the strike metric.
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Year Unrot. 1st PC | 1st PC | 2nd PC | Cumulative
30-10 92 73.30% 73.30% | 11.10% | 84.40%
93 77.80% 77.80% | 8.10% 85.80%
94 85.70% 85.70% | 6.40% 92.10%
95 73.00% 73.00% | 11.10% | 84.10%
average | 77.45% 77.50% | 9.20% 86.60%
60-30 92 39.60% 36.00% | 33.90% | 69.90%
93 44.60% 44.40% | 28.90% | 73.30%
94 53.60% 53.20% | 23.30% | 76.50%
95 47.60% 44.70% | 28.30% 73.10%
average | 46.35% 44.60% | 28.60% | 73.20%
90-60 92 48.80% 40.00% | 36.10% | 76.10%
93 46.80% 33.50% | 43.90% | 77.40%
94 44.20% 37.90% | 35.90% | 73.90%
95 39.70% 31.80% | 33.50% | 65.20%
average | 44.88% 35.80% | 37.40% | 73.20%
150-90 | 92 51.50% 19.90% | 48.40% | 68.30%
93 48.10% 19.60% | 45.40% | 65.00%
94 54.20% 34.00% | 38.30% | 72.30%
95 48.80% 25.50% | 41.30% | 66.90%
average | 50.65% 24.80% | 43.40% | 68.10%
240-150 | 92 69.20% 22.20% | 59.00% | 81.20%
93 68.70% 15.80% | 63.20% | 79.00%
94 63.40% 17.20% | 63.10% | 80.30%
95 60.70% 25.10% | 48.40% | 73.50%
average | 65.50% 20.10% | 58.40% | 78.50%
360-240 | 92 77.90% 14.90% | 77.10% | 92.00%
93 75.10% 50.70% | 41.30% | 92.00%
94 85.10% 24.50% | 68.50% | 92.90%
95 80.90% 16.80% | 70.90% | 87.70%
average | 79.75% 26.70% | 64.50% | 91.20%

Table 4: Percentage of Variance Explained by the Unrotated first PC and by the Rotated
PCs in the Moneyness Metric.
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6 Correlations between the Futures Price and the
Principal Components

So far, we have investigated the number and shape of shocks appearing in equation (2).
However, in order to implement the models proposed by Dupire [10] and Derman and Kani
[9] (e.g., by Monte Carlo simulation) it is necessary to know the sign and the size of the
correlations, between the Brownian motions of the processes for the underlying asset and
the forward volatility. In this section, we calculate the correlations between the changes in
the future price and the changes of the principal components.

The correlations are measured by using the Pearson coefficient. Since the desired interpre-
tation comes (most of the time) from the rotated PCs, we look in Table 5 at the correlations
between the changes of the futures price with the changes of each one of the first two rotated
principal components, under the strike and moneyness metric, respectively. We calculated
also the correlations by using the non-parametric Spearman’s coefficient in order to capture
any non-linear association. However, the results were the same as with Pearson’s coefficient,
and hence we prefer not to report them. One asterisk is displayed when the coefficient is
significant at 5% significance level, and two asterisks are displayed when the coefficient is
significant at 10% significance level.

We can see that in the strike metric the correlations between the changes of the rotated
first principal component with the changes of the futures price are positive, in most of the
cases. Negative correlations occur in the range 150-90 for the year 94, and in the ranges
240-150 and 360-240 for the year 92. On the other hand, in the moneyness metric, the
correlations between the changes of the rotated first principal component with the changes
of the futures price are negative. The only exception occurs in the range 360-240 for the
years 93, 94, and 95. This could be justified as a leverage effect (see Christie [8]). Notice that
the sign of the correlations between the changes of the first unrotated PC with the changes
of the futures price depends on the metric!®. In the strike metric, the correlations between
the changes of the rotated second principal component with the changes of the futures price
are positive, in most of the cases. Exceptions occur in the range 240-150 for the year 95 and
in the range 360-240 for the year 92. In the moneyness metric the correlations are always
positive.

However, the size of the correlation coefficients changes over years and over ranges of
days to maturity. This is not surprising because the correlations depend on the variances.
Therefore, in the case that variances follow a stochastic process, the correlations should vary
stochastically, as well.

15Gince the correlation has the same sign as the covariance, it is easy to show that the correlation depends on
the metric that we work on, by looking at the covariance between Aoy = 0141 —0¢ and AF under both metrics.
Say that the covariance in the strike metric is Covsirire = Cov(Aoy(K), AF). Then, in the moneyness metric,
for a given moneyness level we have Covyon, = Cov|oy1 (K + AF) — 0 (K), AF]. Expanding o411 (K + AF)
as a Taylor series of order one around a point K yields Covpen = Coviory1(K) + AF a; 11— 0i(K), AF)
= CoVstrike +a; +1Var(AF). Therefore, the correlation sign depends on the slope of the skew, the point
around which the expansion is performed, and the variance of AF'.
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Coefficient 92 93 94 95
30-10 Strike APC1 | 0.04 -0.06 |-0.18 |[-0.01
APC2 | 0.38* | 0.34* | 0.48* | 0.00
Moneyness | APC1 | -0.40** | -0.52** | -0.65** | -0.42**
APC2 | 0.12 0.01 0.05 -0.06

60-30 Strike APC1 | 0.23* | 0.11 -0.10 | 0.19*
APC2 | 0.31™ | 0.31* | 0.36™ | 0.06
Moneyness | APC1 | -0.35** | -0.38** | -0.58** | -0.41**
APC2 | 0.24* | 0.22* | 0.25" | 0.11

90-60 Strike APC1 | -0.15 |0.20* | 0.10 0.29*
APC2 | 0.32* | 0.27* | 0.39* | 0.15
Moneyness | APC1 | -0.36™ | -0.49** | -0.49** | -0.37**
APC2 | 0.25* |0.17 0.33** | 0.37*

150-90 | Strike APC1 | 0.30™ | 0.23** | -0.35"* | 0.28**
APC2 | 036 | 0.36* | 0.24™ | 0.28**
Moneyness | APC1 | -0.28* | -0.31** | -0.19* | -0.32*
APC2 | 0.33= | 0.26* | 0.37 | 0.16

240-150 | Strike APC1 | -0.31* | 0.12 0.30* | 0.34*
APC2 | 0.15* | 0.38 | 0.38* |-0.17*
Moneyness | APC1 | 0.08 0.04 -0.28** | 0.08

APC2|0.28™ | 0.36™ | 0.37* | 0.38*

360-240 | Strike APC1 | -0.38* | 0.33** | 0.33* | 0.05
APC2 | 0.04 0.40* | 0.41* | 0.27*
Moneyness | APC1 | -0.45* | 0.33** | 0.14 0.27*
APC2 | 0.31* | 0.35™ | 0.47* | 0.52**

Table 5: Correlations between Changes of the Futures Price with Changes of the Rotated
PCs in the Strike and Moneyness Metrics.
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7 Conclusions

We applied Principal Components Analysis (PCA) to the first differences of implied volatil-
ities for six fixed ranges of days to maturity for the years 1992-1995. The results from this
study contribute to implementing of Dupire’s and Derman and Kani’s models. In partic-
ular, we investigated the number of shocks that drive the forward volatility process, their
interpretation and their correlation with the changes in the underlying asset.

Since PCA is sensitive to the choice of the metric that it is performed on and since
there are strong theoretical reasons that suggest that smiles are a function of moneyness
we applied the technique to two metrics: the strike and the moneyness. As a first stage to
the determination of the number of PCs to be retained, we did not rely on rules of thumb.
Instead, we used Velicer’s non-parametric criterion. This retained in both metrics, either
one or two PCs, depending on the maturity bucket under scrutiny. As a second stage, we
looked at the interpretation of the first three PCs. We found that the third PC was just
noise in both metrics. Combining Velicer’s criterion with the results from the explained
communalities and the interpretation of PCs we decided to keep two PCs for both metrics.
This is in contrast to the three PCs that researchers kept in the interest rate literature. The
two retained PCs explain across the four years 60%-80% (70%-90%) of the total variance of
the changes of implied volatilities in the strike (moneyness) metric on average, across the
various maturity buckets.

Since a simple interpretation of the retained PCs would help in the implementing the
above mentioned models, we would like to interpret the first PC as a (parallel) shift and the
second one as a slope. Intuitively this is what a Taylor’s expansion tells us should be the
case. However, the results from the interpretation of the first two PCs, showed that we have
the expected shape only in the shortest maturities. Therefore, a rotation of the first two PCs
had to be performed in order to get the desired simple interpretation. It turned out that the
”Procrustes” type of rotation that we developed was appropriate for such a purpose. The
rotation method was successful in that it delivered the desired interpretation for both PCs
in the moneyness metric and for the second PC in the strike metric. It delivered the desired
interpretation for the first PC in the strike metric for the first three ranges.

Finally, we looked at the correlations between the changes of the futures price and each
one of the first two rotated PCs in the strike and the moneyness metric. We found that
the correlation for the first rotated PC is positive in the strike metric, while it becomes
negative in the moneyness metric. The correlation for the second rotated PC is positive in
both metrics.

A question that should be answered by future research is whether our results about the
dynamics of implied volatilities, are robust for other data sets, since it is well documented

that the magnitude of smiles (or skews) depends on the underlying asset (see for example
Tompkins [26]).
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Figure 1: Unfiltered Data for a Call Contract with 9309 expiry date.
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