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Abstract

Motivated by the papers of Dupire (1992) and Derman and Kani (1997), we want to
investigate the number of shocks that move the whole implied volatility surface, their
interpretation and their correlation with percentage changes in the underlying asset.
This work differs from Skiadopoulos, Hodges and Clewlow (1998) in which they looked
at the dynamics of smiles for a given maturity bucket.

We look at daily changes in implied volatilities under two different metrics: the
strike metric and the moneyness metric. Since we are dealing with a three dimensional
problem, we fix ranges of days to maturity, we pool them together and we apply the
Principal Components Analysis (PCA) to the changes in implied volatilities over time
across both the strike (moneyness) metric and the pooled ranges of days to maturity.

We find similar results for both metrics. Two shocks explain the movements of the
volatility surface, the first shock being interpreted as a shift, while the second one has
a Z-shape. The sign of the correlation of the first shock with percentage changes in
the underlying asset depends on the metric that we look at, while the sign is positive
under both metrics regarding the second shock.

The results suggest that the number of shocks, their interpretation and the sign of
their correlation with changes in the underlying asset is the same for the whole implied
volatility surface as it is for the smile corresponding to a fixed maturity bucket.
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1 Introduction

Empirical evidence (see for example Rubinstein (1985), Sheikh (1991) and Heynen (1993))
shows that implied Black-Scholes (B-S) volatilities strongly depend on the maturity and
strike of the European option under scrutiny and therefore in three dimensions we have
a volatility surface which is not flat as the B-S (1973) model assumes. The former type
of dependence is called the term structure of volatility and the latter type is called the
smile-effect.

One of the ways that researchers tried to explain the non-flat implied volatility surface
was by introducing stochastic volatility models (see Hull and White (1987), Johnson and
Shanno (1987), Scott (1987), Wiggins (1987)). Effectively, by doing this, they introduced
non-traded sources of risk and inevitably they incorporated the market prices of volatility
something which does not allow arbitrage, but only equilibrium pricing. Moreover, these
models do not fit the observed smiles well.

As a solution to this, Dupire (1992) and Derman and Kani (1997), proposed models
similar in spirit, which allow for arbitrage pricing with stochastic volatility, with no need for
any volatility risk premium to be specified. In order to do this, they used a methodology
which is similar to that of the arbitrage arguments used in the interest rate literature (see
Heath, Jarrow, Morton (1992) ), i.e they took the current implied volatility surface as given
and they assume a process for the forward variance of the form
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where K is the strike price and T is the time to maturity. Their idea was that we can price
and hedge standard and exotic options by Monte Carlo simulation where the process of the
forward variance is required either implicitly (Dupire), or explicitly (Derman and Kani).

This ”arbitrage pricing” methodology can be very promising if we specify correctly the
process for the forward variance and more specifically if we answer the following three ques-
tions: (a) what is n, i.e. the number of shocks which affect the forward volatility surface, (b)
what do these shocks look like. The interpretation of the shocks is necessary so that to be
able to identify the function b} 1(¢, S) and subsequently to estimate it. In fact, the simpler
the interpretation, the easier it will be to identify the functional form of b% ,(t, S) and (c)
what is the correlation between the shock of the process for the underlying asset and the
shocks of the process for the forward variance since knowledge of the correlation is necessary
when we simulate jointly the two processes.

In Skiadopoulos, Hodges and Clewlow (1998, S-H-C hereafter) the number of shocks
turned out to be two, their interpretation in general was a shift for the first one and a
Z-shape for the second, while the correlation of the futures price with the first shock was
either positive or negative depending on the metric and the correlation with the second was
positive. These results came from applying Principal Components Analysis (PCA) to the
first differences of implied volatilities on the strike and moneyness metric for given ranges of

days to maturity. In other words, they analysed the dynamics of the smile phenomenon, for
individual maturity buckets®.

IHereafter, we will refer to this paper as the smile analysis.



On the contrary, in this paper we look at the dynamics of implied volatilities across both
the strike (moneyness) metric and the ranges of days to maturity. In other words by doing
a sort of pooling we look at the whole implied volatility surface and we try to answer the
three questions®. This is the main contribution of the paper since no other researcher so far,
has dealt with these questions.

Answering (a), (b) and (c) is necessary in order to cope with the vega risk in portfolios
which consist of derivatives with many different expiry dates and strikes. The difference with
S-H-C is that there, by construction, different shocks were moving the different slices of the
implied volatility surface, while here by pooling the maturity buckets, the same shock moves
the whole implied volatility surface.

The paper is organised as follows : in the second section we describe the data that we
use and the filtering that we applied to it. In the third section we describe briefly the PCA
analysis. In the fourth and fifth sections we apply the technique on the first differences of
the whole implied volatility surface under the strike and moneyness metric, respectively. We
test for how many ”pooled” components we should retain, we try to interpret them and we
look at how they affect the volatility surfaces across the different maturity buckets. In the
sixth section we calculate the correlations between the changes of the "pooled” principal
components and the underlying asset price. We end up with the conclusions.

2 The Data Set and the Filtering Method

The data that we use are daily data on futures options on the Standard and Poor index
(S&P 500) from the Chicago Mercantile Exchange (CME) for the years 1992-95.

The primary source database for this study is the transaction report ”Stats Database”,
compiled daily by CME. This database contains the following information for each option
traded during a day: the date, the style (call or put), the options and futures expiration
month, the exercise price, the number of contracts traded, the opening, closing, low and high
future’s and option’s price, the opening, closing, low and high bid-ask future’s and option’s
price and the settlement price. We are going to use the closing options and futures prices,
since we regard those as containing more information than the opening, low, or high ones.

The futures contracts have maturities every March, June, September and December and
their last trading day is the business day prior to the third Friday of the contract month.
The options have maturities March, June, September, December and serial months. For the
serial months expiry options, the underlying instrument is the future with the nearest expiry.
The last day of trading for March, June, September, December expiring options, is the same
day as the underlying futures contract.

In addition we are using London Euro-Currency interest rates (middle-rates) on the US
dollar, collected from Datastream in order to approximate to the riskless rate in our option
pricing model. We collected daily interest rates for 7-days, one-month, three months, six
months and one year and for the other maturities we interpolated linearly.

2By analyzing implied volatilities, we implicitly assume that implied volatilities give us all the information
that we need for the specification of the process of the forward volatility. This is a reasonable assumption
because forward volatilities can be extracted from implied volatilities (see Derman and Kani (1997)).



Given that futures options on the S&P 500 are American-style options, implied volatilities
oimp Were calculated by the Barone-Adesi, Whaley (1987) quadratic approximation which
explicitly takes into account the early exercise premium.

However, even if the market uses the Barone-Adesi Whaley model, the calculation of
implied volatilities will be subject to other sources of errors and therefore we should screen
the data by imposing several ”filtering” constraints.

A preliminary screening of the data is done so as to exclude the data which violate the
arbitrage boundary conditions. An American-style futures option is like an American-style
option on an asset which pays no dividends. So, the arbitrage boundary conditions are:

CxF—K 2)

P>K-F 3)

where C' (P) is the American call (put) option price, F is the futures price and K is the
strike price. We also exclude options having a price of less than 0.01 cents, i.e.

C >0.01 (4)

P >0.01 (5)

We also eliminate short term options with less than 10 days to maturity,
7> 10 (6)

because they are very sensitive to small errors in the option price.

Since it is documented that non-synchroneity and the bid-ask spread induce spurious neg-
ative serial correlation in the volatility changes if closing option prices are used (see Harvey
and Whaley (1991) and Roll (1984)), we have also to impose the appropriate constraints®.

In order to deal with the non-synchroneity problem we exclude in-the-money (ITM) calls
and puts and we construct our smiles by using out-of-the-money (OTM) options; OTM puts
for the left part of the smile and OTM calls and for the right part!. This is not going to
affect the results of our analysis, because the ”smiles” for both calls and puts should look
similar if put-call parity is to be respected®.

Coping with the bid-ask spread problem, we impose the ”vega constraint”, as we call it,
which is interpreted in the following way: if we want the given measurement error in the
option price AC' to produce an error in the calculation of implied volatility om, less than
A0imp, then vega has to be greater than a certain cut-off point. So, we keep in our analysis

3The trading hours for the S&P 500 Index are 8.30 a.m. till 3.15 p.m. (Chicago time), while the trading
hours for the S&P 500 Index Options on futures are 8.30 a.m. till 3.15 p.m. (Chicago time), but the option
can be exercised until 7.00 p.m. (Chicago time) on any business day the option is traded. The closing times
for the option’s and the underlying asset’s market coincide, but deep in-the money and out-of the money
options are rather illiquid and they trade less frequently than those nearer to the-money, something which
means that for those options the option market has closed some time before the asset’s market.

4We do so, because since ITM calls and puts have a very high delta, their prices and therefore the
calculated implied volatilities are very sensitive to the non-synchroneity problem.

SEven though we deal with American-style options, the divergence from put-call parity should be very
small.



the implied volatilities which are calculated from options having vega bigger than a certain

cut-off point. This cut-off point is set to a value of eight for reasons that are explained in
S-H-C (1998)°. '

3 Principal Components Analysis and the Implied Volatil-
ity Surface

The natural technique to identify the number of stochastic shocks that move the volatility
surface, is Principal Components Analysis (P.C.A.). We will describe it briefly to explain
why it is appropriate and to introduce the notation we will use.

P.C.A. has been constructed to answer the following question: How can we explain the
systematic behavior of the observed variables by means of a smaller set of computed but
unobserved latent random variables?

From a purely mathematical viewpoint the purpose of a population principal compo-
nent (PC) model is to transform p correlated random variables to an orthogonal set which
reproduces the original variance-covariance structure. This is equivalent to rotating a pth
dimensional quadratic form to achieve independence between the variables.

Consider n observations on p random variables represented by the (n x 1) vectors

Z1,T2,...,Tp, Where for simplicity we assume that the means of these vectors are zero,

ie. T1 = T3 = ... =T, = 0 and an estimator S of the variance covariance matrix is given
1 ' . . . .

by S = ( )X X where X is a (n X p) matrix’. Construct now linear transformations Z;

n—1
fori=1,2...,ps0 that

Z=XP (7)
where Z is a n X p matrix and P is a p X p matrix with the ith column the Pi' vector
i.' = (p1i, P2i, - - - Ppi), for i = 1,2,...,p. The ith column Z; is the ith principal component
(PC hereafter) and the elements of the vector P, are the coefficients of the ith PC and they
are called the loadings. -

The variance of the Z; PC is given by Var(Z;) = P, X' X P; and the PCs are constructed
such that Cov(Z;, Z;) = 0 for Z; # Z;. o

The purpose of the P.C.A. is achieved by determining the unknown fixed loadings, so as
to maximize sequentially the variance of the PC’s, starting from the first one up to the pth,
under the constraint that P'P = I where I is the identity matrix.

6 . . F
The advantages of the vega-constraint over the constraint on — that other researchers have used so

far, are that (a) the cut-off point is not determined exogenously, but it has been delivered endogenously by

F . . .
the data and (b) the ratio F Temains constant regardless of the days to maturity of the option, while the
calculation of the vega-constraint takes explicitly into account the days to maturity. For a more detailed
description of the vega-constraint see S-H-C (1998).

"Since degrees of freedom represent a scalar constant, they are usually omitted, and the analysis is based
on X X rather than on the sample covariance matrix S.



The first order condition of this maximization problem results in
(X'X-IHP=0 (8)

where /; are the langrange multipliers.

From equation (8) it is evident that the P.C.A. boils down to the calculation of the eigen-
values I; and the eigenvectors of the variance-covariance matrix X' X. S is now represented
as

S=PLP (9)

where L=diag(l,ls,...,l,) and the sum of the variances of the PCs equals the sum of the
variances of the X variables. Moreover, it can be proved that if the covariance matrix is
diagonal, then there is no gain in performing the PCA.

As Basilevsky explains (Basilevsky (1994), page 143), it is better to work with the stan-
dardized variables of X's and therefore with the correlation matrix, rather than the covariance
matrix of Xs. From now on we will be working with standardized variables and PCs (unless
otherwise stated) for the reason that will become immediately obvious.

From Equation (7) standardizing the PCs to unit length we get a new matrix Z* which
is Z* = ZL™3 = XPL~%. Hence,

X=2z4A (10)

where
A =L:P (11)
When both variables and components are standardized to unit length, the elements a;; of

A" are correlations between the variables and PCs and they are called correlation loadings.
If we retain r < p PCs then

where g(,) is a (n X p) matrix of residuals and the other matrices are defined as before having r
rather than p columns. The percentage of variance of X; for i = 1,2,...,p which is explained

by the retained PCs (communality of X;) is calculated from the correlation loadings. Hence,
after retaining 7 < p components which explain a sufficient amount of the original variance-
covariance structure we look at equation (12) to see how big the communalities are and what
is the meaning of the retained components.

Since we want to determine the number n of shocks that appear in the stochastic differen-
tial equation (1) we are going to apply the PCA on the first differences of implied volatilities,
because this is the natural thing to look at, if we work with a discretized version of equation
(1).

Moreover, we are going to apply it on two different measuring units (metrics): (a) we will
consider as variables the first differences of implied volatilities classified across strikes (strike
metric) which is the natural measuring unit and (b) we will consider as variables the first

differences of implied volatilities classified across moneyness i.e.

* 100 (moneyness

metric). The reason for choosing this metric is that there are theoretical reasons (see Heynen
(1993), Taylor and Xu (1993)) for believing that smiles are a function of moneyness.



In order to look into the dynamics of implied volatilities as a surface for a given year, we
will determine first the buckets, then the variables for each bucket and finally we will pool
the variables from all the buckets together, so as to apply the PCA on them. Notice that
the imposition of the constraints created many missing observations which we do not try to
fill in because as Anderson et al. (1983) note ”The only real cure for missing data is to not
have any”. Instead, we are going to apply listwise deletion i.e. we will delete the whole day
for which at least the observation for one variable (strike or moneyness) is missing. This
means that pooling the ranges and applying listwise deletion will decrease considerably the
number of observations if the maturity ranges are too fine.

It turns out that the intervals of days to maturity that give us a satisfactory number of
observations (not less than 100) and permit us to measure smiles across a wide range (not
less than 20 variables) when they are pooled together, are 90-10, 180-90 and 270-90 and
consequently these are the ranges that we are going to work with3.

4 PCA on the Strike Metric

4.1 Number of Retained Principal Components and a First Inter-
pretation

Under the application of listwise deletion, the variables for each year, within a given range,
on which we will perform the PCA for the strike metric appear in Table 1. We can see
that we have a wide range of strikes and the number of observations does not fall below 100.
Moreover, the overall correlation between the variables to which we apply the PCA, as this is
measured by the Kaiser-Meyer-Olkin measure (KMO), is between 0.77 and 0.89, something
which guarantees that the application of the PCA is feasible.

One of the contributions of the paper is that instead of relying on rules of thumb, we will
decide on the number of PCs to be retained, by following three steps’. As a first step we
will apply Velicer’s (1976) non-parametric criterion, and in the second and third step we will
look iteratively at the communalities and at the interpretation of the retained, according to
Velicer’s criterion, PCs plus one more until the additional PC is just noise'’.

5In S-H-C (1998) the maturity ranges were six : 30-10, 60-30, 90-60, 150-90, 240-150 and 360-240.
However, when we tried to pool these ranges together, the listwise deletion gave us a too small number of
observations (around 50) for the application of PCA.

9Such rules of thumb are to keep the components which have eigenvalues bigger than the mean of all the
eigenvalues, or omit correlation loadings which are smaller than 0.20, or look at the scree plot to decide on
how many components we should retain, or keep the components which explain 90% of the total variance
(see for example Litterman and Sheinkman [14]). For the drawbacks of all these ad hoc rules see Jackson
[12].

0The reason that we apply a non-parametric test is that the usual tests are parametric based on the
assumption of multivariate normality (For a review of these tests see Basilevsky (1994)). We checked this
assumption by applying Bera-Jarque test where the null hypothesis is that of univariate normality. The
results showed that for all the maturity buckets the null-hypothesis of univariate and hence of multivariate
normality was rejected (this conclusion comes from the well-known theorem that multivariate normality
implies univariate normality). This was expected, since the implied volatility can not be negative, and
therefore is a random variable truncated at zero. This leaves us with no alternative choice, than the use of
a non-parametric test.



Velicer proposed a non-parametric method for selecting nontrivial PCs, i.e. components
which have not arisen as a result of random sampling, measurement error, or individual
variation, based on the partial correlations of the residuals of the PCs model, after r < p
components have been extracted. The idea of the criterion can be described briefly as follows:
Let

X = Ziy Ay + e (13)

Basilevsky (1994) shows (theorem 3.13, page 132) that X' X = AA". Hence, the variance-
covariance matrix of the residuals () is given by the following expression

EmEr) = X X — AmAg (14)

Let D = diag(sl(r)e(r)). Then, R* = D‘%sl(T)s(T)D‘% is the matrix of partial correlations
of the residuals''. If r}; represents the ith row, jth column element of R*, then the Velicer
statistic is given by

D 3 DA B S o e 15)
" Zplp—-1) —wp—1)
and lies in the interval 0 to 1.

One might expect that as we retain more PCs, f, — 0, but this is not the case. The
behavior of f, is that it is decreasing until a number 7* and then it increases again.

Velicer suggests that 7 = r* should be the number of components to be retained. The
logic behind this is that as long as f, is declining, there is still space for the additional
components to capture part of the covariance of the residuals. Since it is obvious from the
formula of the partial correlation that f, is declining as long as the the partial covariances
are declining faster than the residual variances, the Velicer’s procedure will terminate when,
on the average, additional PCs would explain more of the residual variances than their
covariances.

In Table 2 we see the number of PCs that should be retained according to Velicer’s
criterion'>. We see that the retained number of components varies across the years, but it
is never bigger than two!3. This is very different to what the number of retained PCs is
according to the mean eigenvalue rule of thumb [, which retains the PCs corresponding to
the eigenvalues which are greater than the mean eigenvalue. From Table 2 we can see that
the mean eigenvalue rule retains either five or six PCs. We also show a second statistic which
is fo and it is the usual Velicer’s statistic when no PCs have been retained. If f; > £, then no

HVelicer is talking about partial correlations in the sense that we have kept out of the analysis p — 7
components.

12The minimum point in Velicer’s criterion is not obvious in some cases because of the truncation of the
displayed results up to 4 decimal places. The same applies for Velicer’s results in the moneyness metric.

13In terms of the communalities, there are some cases that the two retained PCs seem to perform poorly
(for instance they explain 19.35% for the strike price of 450 for 180-90 days to maturity for the year 93), but
it is not clear whether the inclusion of the third PC would improve the communalities significantly (for the
case that we mentioned the inclusion of the third PC increases the communalities to 25.63%). Therefore,
before reaching any conclusions about the number of PCs to be retained, we should look at the interpretation
of the shape of the first three PCs, as well.



components would be extracted. We can see that f; < f, in all the cases and consequently
the PCA can reduce the dimensionality of the original variables!.

Table 2 also shows the amount of variance that it is explained by the two retained
components and the additional amount of variance that it would have been explained if we
include and the third PC'. An interesting point is that the explained by the first PC variance
declines over the years, while for year 95 the cumulative variance has been distributed almost
equally between the two PCs'C.

The interpretation of the retained PCs can be revealed by looking at the correlation
loadings matrix A" as equation (10) reveals. So, the first three columns of A" give the way
that the first three PCs, respectively, affect the implied volatilities.

It is clear from Figures 1 and 2 that the first PC has a Z-shape, even though in the year
95 we do not have many variables for the range 90-10 (only three), so that to be able to
see the shape of the first PC clearly for this particular range!”. This interpretation is quite
similar to what we discovered from the smile analysis for the first PC in the strike metric
for the longer maturities.

Regarding the interpretation of the second PC, we can see that for the years 92 and 93
it looks the same in a given range, but then in the remaining two years the interpretation
changes. To make things more concrete, for all the years in the range 90-10, it has a shift
interpretation which nevertheless deviates a lot from a parallel shift.

In the other two ranges and for the years 92 and 93 it has a triangular shape where the
correlation loadings for the very low strikes become negative. However, in the year 94 the
2nd PC has been flipped over for the longer ranges (preserving still the triangular shape),
while in the year 95 the shape is no longer triangular, but it is a Z-shape instead. The strong
triangular shape that we get now from the pooled buckets should not surprise us, since from
the smile analysis we saw that for the maturities with more than 90 days, the 2nd PC has
a triangular shape as well'S.

Hence, it seems that the appropriate number of PCs to be retained in the strike metric is
two, something which is consistent with Velicer’s criterion and this is similar to what S-H-C
found.

However, the shape of the two retained PCs contrasts to the intuition coming from the
Taylor series expansion, while especially in the longer maturities it does not have a simple
interpretation'®. Since a simple interpretation of the retained PCs helps in implementing

11f the null hypothesis of Velicer’s test is the reduction of dimensionality, then as Reddon (1985) showed,
the type-I error rates of Velicer’s test go to zero, as long as the number of observations is far more than twice
the number of variables. Since this is the case here, our results from the comparison fy and f; are credible.

This is done so that we can compare it to the results found by Litterman and Scheinkman (1988), even
though the retainment of the third PC there had been justified only on the grounds of explained variance
and of interpretation. Besides following our selection of number of PCs procedure, we still have to look at
the interpretation of the third PC, before deciding whether we should keep it, or not.

16The average, over the years, cumulative variance explained by the two first PCs is 52.5%, in contrast to
the 98% that Litterman and Sheinkman found.

17To malke the interpretation easier, we have interpolated for the missing variables correlation loadings
(and later loadings) across the variables for a given maturity bucket.

18 Coming to the third PC, the graphs revealed that this is just noise since its shape is different across
years for a given maturity bucket and it is also different accross the maturity buckets for a given year.

Yntuitively thinking, any well-behaved function can be approximated by a Taylor series expansion of first



equation (1) we should seek for it through a rotation of the retained PCs?.

4.2 Interpretation of the Rotated PCs

Given that intuitively from the Taylor series expansion we would expect the first PC to have
a shift interpretation and the second to have a slope interpretation, we use a ”Procrustes”
type of rotation®! 2.

The idea behind ”Procrustes” type rotation is that given two p x r matrices, A and B,
what 7 x r transformation matrix T" will best transform A into B? In other words, what
matrix T will make AT most like B? B is called the target matrix, and in our case it will
be the p x 2 matrix of rotated loadings which will give the parallel and the slope character
for the first and second PC respectively.

The way that we construct our rotation method is by using the general properties of
orthogonal rotations as outlined in Basilevsky (1994) and then we regress a vector of con-
stants, say of ones, on the vector of loadings of the first two PCs. The latter determines
the elements of the first row of the matrix 7" and combining this with the former we get the
elements of the second row?. Doing so, we force the first rotated PC to look like a shift but
we do not know a priori what the second rotated PC is going to look like.

In Figures 3 and 4 we show what the first two rotated PCs look like for the years 92 up
to 95. We can see that in the range 90-10 the rotated first PC has a shift interpretation,
even though this is not entirely true for some years if we look at the extreme strikes. In the
other two ranges and for all the years the first PC has a triangular shape which is flipped
over for the year 94. In general, the shape of the first rotated PC is very similar to what the
second unrotated PC looked like.

The second PC has clearly a Z-shape for the years 92 and 93 and for all the ranges. For
the year 94 and for the shortest maturity it has a rather noisy shape, while for the other two
ranges it has a Z-shape. Finally, for the year 95 in the range 90-10 the shape is not clear,
since we do not have many variables, while for the other two ranges there is a Z-shape.

In general, the interpretation of the rotated PCs is the same as the one that we found in
S-H-C for the separate maturity buckets. This implies that the implied volatility surface, in

order, where the zero order expansion is the level, and the first order expansion is the slope.

20Tn our case of course, in order to implement equation (1) it does not matter whether or not we have a
simple (or even any) interpretation of the retained PCs, since the correlation loadings are the estimates of
the b;’s coefficients. However, if we want to estimate the b;’s by another econometric technique, we should
know their functional form. A simple interpretation of the PCs will help us in achieving this. Intuitively
thinking, it is possible to interpret the first PC as a level and the second as a slope because any well-behaved
function can be approximated by a Taylor series expansion of first order, where the zero order expansion is
the level, and the first order expansion is the slope.

21We use the terminology ”shift” and ”slope” for the interpretation of the PCs, as Litterman and
Scheinkman have already established.

22Before trying to apply a "Procrustes” type of rotation, we applied the most popular rotation methods,
i.e. the varimax, the quartimax and the oblique method. However, none of these methods produced the
desired interpetation because of the way that they are constructed (for more details about these rotation
methods see Basilevsky (1994)).

Z3Notice that we apply the rotation on P and not on A’, because we use in the construction of our method

the fact that the rotated eigenvectors remain orthogonal, while this is not true for rotated correlation loadings
(see Basilevsky (1994)).

10



the strike metric, is driven not only by the same number, but also by the same shocks, as
the smiles.

Looking at the shape of the PCs, before and after the rotation, it seems as if the rotation
has changed the names between these two, i.e there is a swap effect, as we call it; before
the rotation the first PC had a Z-shape and the second had positive loadings, but after the
rotation the first PC was the shift and the second the Z-shape. In order to be sure about
this effect we should look at the percentage of variance that the two rotated PCs explain.
Table 3 shows the amount of the variance that the two rotated PCs explain. Comparing
Tables 2 and 3 it is clear that the variance that the first PC explained before the rotation,
is explained now by the second rotated PC, and similarly for the second PC. Therefore, the
swap effect is confirmed.

As a final part of the analysis on the strike metric we should look at whether the effect
of the retained components is bigger on the shorter, or the longer maturity options’ implied
volatilities. Figures 3 and 4 show that the size of the effect from the first PC varies over the
years. For instance in year 93 the effect is bigger for the range 270-180 than for the range
180-90, while this is reversed in 94. On the other hand the second PC moves the volatilities
of the longer ranges more than the volatilities of the shorter ranges and this is true for all
the years.

5 PCA on the Moneyness Metric

5.1 Preliminary Testing

Coming to the application of PCA under the moneyness metric, the problem is that the
moneyness variables —11—;—3 % 100 (we will call this the "natural” moneyness metric), for

1 = 1,2,...,s where s ié the number of strikes traded for a given day ¢ , are different
from day ¢ to day ¢t + 1, as the futures price changes from F; to Fj,;. This prevents the
application of the technique. The only solution to this is to determine (or better to fix) the
moneyness variables before starting the analysis (we will call these fixed moneyness variables
the ”artificial” moneyness metric) and then, for each day, to interpolate across the implied
volatilities for these ”fixed” variables.

The spacing between the variables of the ”artificial” moneyness metric (step-size) was set
so that between any two consecutive variables of the "natural” moneyness metric, there will
be only one variable of the ”artificial” moneyness metric. Otherwise, the implied volatilities
created by the interpolation of both of the ”fixed” variables, would depend on the same two
consecutive values of the "natural” moneyness metric and consequently they would exhibit
spurious dependence, something which of course would distort the results of our subsequent
analysis®!.

Table 4 shows the number of variables, the number of observations and the KMO that we

24 The step-size was set to 1.2% for the 90-10 range and it varied from 2.2% to 2.4% for the other two
ranges across years. We had also to think of the range of the moneyness variables, so as to have as many
observations as possible after the listwise deletion. The range of moneyness that we look at, varies by the
years, but the extreme values are -18% for the lower and 6% for the higher. For more details see S-H-C.
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have for the moneyness metric, when we pool the maturity buckets together. The demon-
strated results lead us to expect reliable results from the PCA.

5.2 Number of Retained Principal Components and a First Inter-
pretation

In order to see how many PCs we should retain we are going to apply again the three step
procedure as we did in the strike metric.

The results from applying Velicer’s criterion on the moneyness metric are shown in Table
525, We can see that for all the years the test tells us that we should keep two PCs, while the
reduction in the dimensionality of the variables is legitimate, since fy > fi. Again, we can
see the discrepancy between the results from Velicer’s procedure and the mean eigenvalue
rule. The latter retains between four and six PCs.

Compared to the corresponding results that we had when we worked in the strike metric
(see Table 2) the cumulative variance is bigger in the moneyness metric with the difference
ranging from 4% up to 10%. This difference stems from the higher amount of variance
explained by the second PC in the moneyness metric. The fact that the explained by the
first two PCs variance is bigger in the moneyness metric, than it is in the strike metric,
is similar to what S-H-C found. Another point is that we do not observe any longer the
declining behavior of the explained variance by the first PC across the years, as it was the
case in the strike metric.

The interpretation of the first two PCs in the moneyness metric is shown in Figures 5
and 6 ?°. The first PC for the years 92 and 93 and for all the ranges, has a Z-shape. In years
94 and 95 and for the range 90-10 it has a shift interpretation, while for the other two ranges
it preserves the Z-shape. This is very close to what S-H-C found in the analysis of the smiles
in the moneyness metric, where we got a shift shape for the ranges 60-30 and 30-10 and a
Z-shape for the remaining ranges over the years.

Regarding the shape of the second PC the general impression is that it has a shift
interpretation for all the years and all the ranges, while the triangular shape that we observed
in the strike metric is not present any longer. This is quite different to what we found in the
smile analysis, where we had a Z-shape in the ranges 60-30 and 30-10, a triangular shape for
the ranges 360-240 and 240-150 and a shift interpretation for 150-90%7.

Hence, given the interpretation of the PCs and the previous two steps of our selection
procedure, it makes sense to retain two PCs for the moneyness metric. This is exactly the
same result that we found from the smile analysis.

25We checked again the null hypothesis of multivariate normality by using Bera-Jarque’s test and we found
that this was rejected. Therefore, we had to use the non-parametric Velicer’s criterion.

20We looked at the communalities of the retained, according to Velicer’s procedure, PCs in the moneyness
metric and we found that they are satisfactory. The only cases that they need the assistance of a third PC
are in year 94 for the at-the-money variable in the ranges 180-90 and 270-180 (the communalities there were
4.71% and 1.23% respectively). If we add and the third PC, then the explained communalities would have
been again only 17.82% and 4.02% respectively.

27TThe graphs for the third PC showed that even though there is some evidence of consistency in its behavior
across the years for a given range, the way that it moves the implied volatilities of the different ranges, for
a given year, is different and therefore it can be regarded as noise.
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Given that the shape for the first PC is either a Z-shape or a shift and for the second is
a shift, we have to perform again our rotation method. In this way we hope that we will get
a shape for the first PC which will not alter and which will have the shift (ideally parallel)
interpretation and that we will get the Z-shape (ideally slope) for the second PC. This will
be consistent with the Taylor series intuition as well.

5.3 Interpretation of the Rotated PCs

In Figures 7 and 8 we show the shape of the first and second rotated PCs in the moneyness
metric. We can say that the first PC moves the implied volatility surface consistently across
ranges and across years and its shape ”approaches” the shift interpretation. Therefore, the
rotation is very successful in this case. This is what we found from the smile analysis.

The second PC in general has a Z-shape across years, even though for the years 94
and 95 it has a shift interpretation in the range 90-10. Hence, the evidence for a Z-shape
interpretation of the second rotated PC in the moneyness metric, is not as unanimous, as it
was in the smile analysis.

Inspecting the shape of the two retained PCs before and after the rotation, it seems as
if the swap effect is present once again. In order to be sure about this, we depict in Table
6 the amount of the variance that the two rotated PCs explain on the moneyness metric.
Comparing Tables 5 and 6 we see that the first rotated PC explains the variance that was
explained by the second PC and similarly for the second rotated PC. Hence, the rotation has
produced a swap effect in the moneyness metric, as well. We also calculated the angle with
which we rotated the original axes. We found that the angle was close to 90 degrees for all
the years, which is another way of stating the swap effect. In fact, the only cases where the
angle was different than 90 degrees were for the years 93 and 95 in the strike metric (64.71
and 29.29 degrees, respectively). Moreover, Table 6 shows that after the rotation it is not
the shift which has the dominant effect on the implied volatility surface, but the second PC.
This is a very interesting result and it is similar to what we found in the strike metric.

Finally, from Figures 7 and 8 we can see that the first rotated PC affects the shorter
implied volatilities more than the longer ones, in contrast to what we found in the strike
metric. It is worth mentioning that the effect of the first rotated PC is the same as the one
from the smile analysis. The impact of the second rotated PC on the implied volatilities is
bigger for the longer maturity options, in contrast to the effect from the first PC.

6 Correlations between the Futures Price and the Prin-
cipal Components

Apart from knowing the number and shape of the shocks which appear in equation (1), it is
necessary to know the sign and the size of the correlations, between the Brownian motion of
the process for the underlying asset and the Brownian motions of the process for the forward
volatility®®. One way of solving this problem is by looking at the correlations between the

ZFor example in Derman and Kani (1997) there are two processes : one for the underlying asset and one
for the forward volatility. Then, a joint simulation of the two processes (which requires the knowledge of
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percentage changes in the futures price and the changes of each one of the two principal
components.

This can be done by using the percentage changes of the futures price from each bucket
and the differenced-rotated PC since it is the rotated PCs that deliver to us the desired
interpretation?. We measure correlations by using the Pearson correlation coefficient, where
two asterisks show significance at 10% and one asterisk shows significance at 5% level.

In Table 7 we show the correlations between the changes in the futures price and the
changes in the rotated first and second PCs for the strike and moneyness metric, respectively.
We can see that in the strike metric, the correlation is positive for both the PCs, while in the
moneyness metric the correlation for the first PC has reversed its sign®’, i.e. it is negative
now something wich can be thought of as a leverage effect (see Christie (1982)) and the
correlation for the second PC remains positive, apart from year 93, where it is negative3!.

Regarding the size of the correlation, this changes over the years, something which sup-
ports the idea that the size of the correlation changes in a stochastic way because the variance
varies stochastically.

These results are almost identical to what we found from the smile analysis in terms of
the sign of the correlation, something which demonstrates that the sign of the correlation is
not affected by whether we examine the whole implied volatility surface, or just the smiles®?.

7 Conclusions

In this paper we looked at the dynamics of implied volatilities surfaces under two different
metrics, so that to enable the implementation of Dupire’s and Derman and Kani’s models for
the pricing and hedging of standard and exotic options. In particular, we wanted to answer
three questions, namely the number of shocks that appear in the forward volatility process,

the correlation of the shock in the asset process with the shocks in the forward volatility process) can reveal
the forward (local as they call it) volatility surface which makes the valuation and hedging of standard and
exotic options, possible.

Ynspection of the correlations between the changes of the unrotated third PC and the changes of the
futures price revealed that these were insignificant in the strike metric and significant for the years 92 and
94 in the moneyness metric. However, its shape for these years does not make any sense and therefore our
choice of treating the third PC as noise, is fully justified.

30Gince the correlation has the same sign as the covariance, it is easy to show that the correlation depends on
the metric that we work on, by looking at the covariance between Aoy = 0441 —0; and AF under both metrics.
Say that the covariance in the strike metric is Covsyyike = Cov(Aoy(K), AF). Then, in the moneyness metric,
for a given moneyness we have Covpon = Cov[o41(K + AF) — 04(K), AF]. Expanding 0411 (K + AF) as
a Taylor series of order one around a point K we get : CoUmen = Cov[oy1(K) + AFo, 41— 0y(K), AF)]
= CovVstrike +r7; +1Var(AF). Therefore, whether or not the correlation sign is going to alter as we change

metrics, depends on the slope of the skew, the point around which we do the expansion and the variance of
AF.

. AF
31Inspecting scatterplots of - with changes in the second PC for the year 93, revealed that there were

AF . ' i . .
some outliers in - When we removed the outliers, the correlation for the range 90-10 became insignificant,

but for the other ranges the negative correlation remained significant (even though it was reduced).
32We also calculated the correlations by using the non-parametric Spearman coefficient in order to capture
any non-linear association, but this did not produce different results compared to Pearson.
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their interpretation and their correlation with percentage changes in the underlying asset.

Application of Velicer’s procedure retained two PCs in both metrics and for all the years.
Looking also at the communalities and at the interpretation of the first three PCs, we
decided that we should retain two PCs, in contrast to what researchers did in the interest
rate literature, since the third PC did not increase significantly the explained communalities
and it was just noise interpretation-wise. The shape of the retained PCs and the fact
that they explain more of the variance in the moneyness metric than in the strike metric,
is similar to what we found in the smile analysis. However, their interpretation was not
a simple one, something which would make the implementation of the discussed models
difficult. Therefore, we tried to simplify the interpretation of the retained PCs by applying
a ”"Procrustes” type of rotation.

The desired interpretation was a shift (ideally parallel) for the first PC and a Z-shape for
the second PC. Such an interpretation would be consistent with the intuition coming from
a Taylor series expansion.

Looking at the shape of the rotated PCs we could say that the rotation met the Taylor
series expansion intuition, but it simplified their interpretation only in a few cases (in contrast
to the smile analysis). This is because it achieved a swap-effect between the two unrotated
PCs which is confirmed by the variance that the rotated PCs explain (compared to the
variance that the unrotated PCs explained) and the angle of the rotation.

The interesting point is that after the rotation, it is the Z-shape which dominates the shift
in terms of explaining the movement of the implied volatility surface. Considering the size
of the effect of the rotated PCs on the implied volatilities across the maturity ranges, in the
strike metric the first PC has an effect which varies over years, but in the moneyness metric
it affects more the shorter range implied volatilities than the longer range. The second PC
moves more the implied volatilities of the longer ranges than the volatilities of the shorter
ranges in both metrics.

The correlations between the percentage changes in the futures price with the changes in
the rotated PCs were positive for both the PCs in the strike metric, while in the moneyness
metric they were negative for the first PC and either positive or negative for the second PC.
The fact that the sign of the correlation for the first PC alters as we change metric, should
not surprise us, but on the contrary it is something that we should expect.

Comparing to Skiadopoulos, Hodges and Clewlow, the implication of our results is that
the number of shocks that move the whole volatility surface, their interpretation and their
correlation with changes in the underlying asset, is the same as those which move the smiles.
This means that the specification of the implied volatility process when we look the whole
implied volatility surface, is the same as with the specification for the implied volatility
process when we examine only the smiles for one maturity bucket at a time. In a way,
intuitively this was expected, since the latter specification turned out in S-H-C to be the
same regardless of the maturity bucket that we were looking at. In this paper what we have
done is to pool together (which can be thought of as a way of averaging) maturity buckets
and therefore we pooled together similar processes.

To summarise, the current paper has investigated and characterised the nature of empir-
ical shocks to the implied volatility surface of futures options. This is the first key step to
the implementation of Dupire’s and Derman and Kani’s models for the pricing and hedging
of standard and exotic options.
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Year | Number of Variables | Number of Observations | KMO

92 26 182 0.89402
93 26 198 0.87585
94 32 187 0.89416
95 20 103 0.77463

Table 1: Number of Variables, Number of Observations and their Overall Correlation for the
Strike Metric

Year | fo J1 f2 J3 -
92 0.1814 | 0.1807 | 0.1807 | 0.1808
93 0.1415 | 0.1410 | 0.1409 | 0.1410
94 0.0513 | 0.0511 | 0.0512 | 0.0512
95 0.1235 | 0.1229 | 0.1226 | 0.1227

1st PC | 2nd PC | 3rd PC
42.5 12.9 6.8
37.5 12.7 7.2
40.8 9.8 7.2
29.9 23.7 9.3

Ul S| O Oy T

N = Do Do 3

Table 2: Principal Components in the Strike Metric : r* = the number of components
retained under Velicer’s criterion (minimum of f0,...f3), ] = number of components retained
under rule of thumb, with percentage of variance explained by components 1-3

Year Unrot. 1st PC | 1st PC | 2nd PC | Cumulative
92 42.5% 13.4% | 42.0% 55.4%
93 37.5% 17.3% | 33.0% 50.3%
94 40.8% 11.5% | 39.0% | 50.5%
95 29.9% 28.4% | 25.2% | 53.6%
Average | 37.7% 17.6% | 34.8% 52.5%

Table 3: Percentage of Variance Explained by the Unrotated First PC and by the Rotated
PCs on the Strike Metric

Year | Number of Variables | Number of Observations | KMO

92 24 125 0.85493
93 23 108 0.85693
94 25 129 0.86127
95 25 105 0.83056

Table 4: Number of Variables, Number of Observations and their Overall Correlation for the
Moneyness Metric

Year | fo fi 2 J3

92 0.1847 | 0.1838 | 0.1836 | 0.1838
93 0.1722 | 0.1714 | 0.1711 | 0.1713
94 0.1894 | 0.1884 | 0.1884 | 0.1885
95 0.1726 { 0.1713 | 0.1712 | 0.1714

*

1st PC | 2nd PC | 3rd PC
38.6 22.7 10.7
34.5 26.7 10.2
40.6 19.2 10.2
39.2 18.3 9.4

| oof | ]~

NN NN

Table 5: Principal Components in the Moneyness Metric : r* = the number of components
retained under Velicer’s criterion (minimum of f0,...f3), 1 = number of components retained
under rule of thumb, with percentage of variance explained by components 1-3
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Year Unrot. 1st PC | 1st PC | 2nd PC | Cumulative
92 38.6% 22.7% | 38.6% | 61.4%
93 34.5% 26.9% | 34.3% | 61.2%
94 40.6% 19.5% | 40.4% | 59.5%
95 39.2% 18.4% | 39.2% | 57.5%
Average | 38.2% 21.8% | 38.1% | 60.0%

Table 6: Percentage of Variance Explained by the Unrotated First PC and by the Rotated
PCs on the Moneyness Metric

Range | Metric 92 93 94 95
90-10 strike APC1 | 0.11 0.09 -0.11 | 0.25*
APC?2 | 0.40* | 0.33** | 0.06 0.25*
moneyness | APC1 | -0.29** | -0.36** | -0.55** | -0.29**
APC2 | 0.34* |-0.33** | 0.16 0.26**

180-90 | strike APC1|0.11 0.14 0.26™ | 0.24*
APC2 | 041" | 0.37** | 0.38** | 0.27*
moneyness | APC1 | -0.29* | -0.28** | 0.04 -0.29**
APC2 | 0.35" |-0.43* | 0.27** | 0.26*

270-180 | strike APC1 | 0.11 0.14 0.27 | 0.22*
APC2 | 0.41* | 0.38* | 0.36* | 0.27**
moneyness | APC1 | -0.28** | -0.28** | 0.06 -0.31**
APC2 | 0.35" | -0.44** | 0.27* | 0.26**

Table 7: Correlations between Percentage Changes of the Futures Price with Changes of the
Rotated PCs on the Strike and Moneyness Metrics
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Figure 5 : First and Second PCs for 92 and 93 in the
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