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EMPIRICAL PROPERTIES OF ASSET PRICE
PROCESSES

Abstract

The motivation for this work was to produce models that would satisfy the empirical regularities most
often found in financial data, but starting from the data, rather than from any particular model. Our
approach is to find the key empirical regularities present in the data, and then find and test the models
that have properties that are compatible with those regularities. Most practitioners still use the Normal
distribution to describe financial asset returns, or consider a conditional fat tailed distribution like
Student’s-¢ together with a GARCH-type volatility model enough to capture most of the empirical
regularities of these returns. Our study shows that to develop a model that truly captures the empirical
characteristics of financial asset returns, a symmetric fat tailed distribution is not enough, and we need

jumps and a stochastic volatility type-model.

1. INTRODUCTION

The first studies about the distributional properties of financial asset returns were
based on the Normal distribution (Osborne, 1959). This distribution is still being used
in practice (e.g. Black-Scholes, Risk Metrics), despite the fact that ever since Fama
and Mandelbrot (1963, 1965) published their, now famous, papers, more and more

evidence has been gathered against it.

There is clear evidence that many short term financial return series are leptokurtic
(Fama 1965, Blattberg and Gonedes 1974, Bookstaber and McDonald 1987, Eberlein
and Keller 1995, etc.), meaning that their empirical distributions are more peaked
around the mean and have fatter tails than a Normal distribution. This excess kurtosis
remains ‘surprisingly’ high for longer horizons, failing to converge to the levels of the
Normal distribution even after 20 log-returns have been aggregated (approximately
one month returns). The presence of non-linear dependencies in the data of the type
generated by (finite but) time-varying variances, as proposed by GARCH-type

models, could explain this phenomenon.
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The unconditional distribution may not be Normal, but the conditional distribution
may still be. It has been shown (see Bollerslev 1986) that a GARCH-type volatility
combined with a conditional Normal distribution for daily returns would produce
excess kurtosis in the unconditional distribution, but, in general, this excess kurtosis is
not high enough, and conditional fat-tailed distributions still cannot account for the

extreme outliers present in financial time series.

A second possible explanation for the excess kurtosis could be the presence of infinite
higher moments. Our results suggest that the variance is finite but time-varying,
inducing non-linear dependencies in the returns. Higher moments like the kurtosis,
however, might not be finite or might also be time varying (a concept introduced by
Hansen (1992), as ‘conditional heterokurtosis’ and ‘conditional heteroskewness’), but
the tests available at the moment are not conclusive enough for us to differentiate

between an infinite or conditionally time varying higher moment

The paper has been organised as follows. Section 2 describes the data and sample

sizes employed in the estimations. Section 3 analyses the characteristics exhibited by
the unconditional distributions, as well as investigating the possible presence of ‘day-
of-the-week’ effects in mean and variance. Conditional distributions and GARCH
models are described and analysed in section 4. As mentioned before, the behaviour of
the higher moments seems to suggest that they are either infinite or also conditionally
time-varying. Section 5 explores this possibility and briefly describes the behaviour of

the tails for longer horizons. Our main conclusions are summarised in section 6.

2. THE DATA

The analysis was done on four time series, the S & P 500 and FT-SE 100 daily
indexes (divided in full and post crash samples) , and the Deutsche Mark-US Dollar

and Yen-Dollar daily exchange rates. The source for the data was Datastream.



Returns were calculated in the usual way, as continuously compounded returns:

x, = In(S) - In(S,.))

where x, is the continuously compounded return for day ¢ and S, is the corresponding

price for day ¢.

The data ranges from 01/01/85 to 13/02/96 for the indexes, and from 02/01/86 to
13/02/96 for the exchange rates. A sub-sample was also created for the daily indexes,

starting in January 1988, to avoid the effects of the 1987 crash.

3. TESTING THE CLASSICAL ASSUMPTIONS ABOUT THE
UNCONDITIONAL DISTRIBUTIONS

Bachelier (1900) and later Osborne (1959) developed a distributional theory for asset
returns that was to be the basis of most of the work carried out in the following years.
They start with the assumption that price changes from transaction to transaction in an
individual security are independently and identically distributed (i.i.d.) random
variables, transactions are uniformly spread across time, and the variance of
approximate returns is finite. Then, the central limit theorem leads to the conclusion
that daily, weekly and monthly returns are distributed normal, and their variances are

proportional to the sampling interval.

Kendall (1953) questioned the applicability of this model, as it was noted that the data
exhibited characteristics that were not compatible with the Gaussian model,
essentially, there were too many values near the mean and out in the extreme tails of
the distribution (leptokurtosis). To assess how far the unconditional distributions of
our data deviated from the Normal, we plotted the frequency histograms and

compared them with the relative frequency that would correspond to each bin under a



Normal distribution with mean and standard deviations equal to the estimated

unconditional mean and standard deviation.
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As can be seen from the figure, the data exhibit the ‘non-Normal’ characteristics
usually found in financial time series, namely ‘fat’ tails (represented by non-negligible
observations more than three standard deviations away from the mean) and

peakedness around the mean. These features are still present in the index returns even

after we exclude all data before and during the crash of 1987. It is interesting to note

that, in general, the departures from ‘normality’ exhibited by the exchange rates are

less marked than those exhibited by the indexes.

Table 3.1: Summary Statistics, Full Sample

TA ET 0. VI/
Mean 0.00047365 | 0.00038356 0.000235 0.0001888
Stddev 0.0097139 0.0092382 0.007269 0.007291
Kurtosis 115.78701 28.63376 9.8648 5.1482
Skewness -4.83411 -1.66815 0.3433 -0.09393

Table 3.2: Summary Statistics, Post-Crash

STA S&P500 |

Mean 0.00046448 | 0.00036988
Stddev 0.0077535 | 0.0080097
Kurtosis 10.34388 5.27822
Skewness | -0.64015 0.12190




Table 3.3: 5% Confidence Intervals

S 5
S & P 500 Pre Crash 2.8217<k<3.1783 | £0.08915
FT-SE 100 Pre Crash 2.8217<k<3.1783 | £0.08915
YEN/U$S 2.8131 <k<3.1869 | +0.09347
DM/US$S 2.8131 <k <3.1869 | +£0.09347
S & P 500 Post Crash 2.7913 <k <3.2087 | £0.1044
FT-SE 100 Post Crash 2.7913 <k <3.2087 | £0.1044

Another very useful graphic tool to assess how well a proposed theoretical distribution
is supported by a set of data is assessing the linearity of the Quantile-Quantile plots
(for a collection of theoretical Q-Q plots see Fowlkes, 1987).

The points in a Q-Q plot are derived as follows:

Ifz;(i=1, 2,..., n), are n sample values of the z’s arranged in ascending order, then a
particular z; is an estimate of the p; fractile of the distribution of z, where the value of

p; 1s the empirical cumulative probability corresponding to z; given by

pi=(i-0.5/m
Then we solve

pi=la (St
for g;, where f{(?) is the density function of the hypothesised distribution. We plot
every z; against its corresponding g; to compare every one of the standardised values
of the returns from the sample (z;) with the corresponding values under the
hypothesised distribution (Standard Normal) that would accumulate the same
probability p;. Therefore, if the hypothesised distribution were a good distribution for
returns, the plot should be linear (and, since we are working with standardised values,

close to the 45 degree line).

! This particular convention for estimating p; is only one possibility of many. Some authors have used
(3i-1)/(3n-1) or simply i/n to estimate the same probability value. Nevertheless, given the sample sizes
with which we are working, the actual convention adopted for estimating the p’s wouldn’t have any
effect on our results.



Q-Q Plot SP500 Daily Returns, Full Sample
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It should be noted that a Q-Q plot tends to emphasise the appearance of differences in
the tails.

Again, we found the same deviations present in all data sets, the most obvious
departure from linearity (‘normality’) is in the behaviour of the tails (with, in the case
of the S & P 500 full sample returns, values even more than 23 standard deviations
away from the mean). We should note that, even if we do not consider the period
containing the crash (our post crash sample starts on 01/01/1988), we still find
observations more than five standard deviations from the mean with relatively (to the
Normal distribution) high frequencies. Therefore, these fat-tails’ are not an effect of
the crash of 1987, but a more permanent characteristic of the unconditional

distributions.

These results are not affected by the way returns were standardised (by their general
means and standard deviations). We did Q-Q plots for non-standardised data
(comparing the returns with the numbers that would accumulate the same probability
but under the assumption that the distribution were Normal with a mean and variance
equal to the population mean and variance), and to further investigate the effect of
standardisation on the plots and taking into account some evidence found in the

literature of the presence of ‘day of the week’ effects in the mean and variance (see,



for example, Mills 1995) we re-plotted the series but standardising them with the
mean and variance corresponding to each day of the week. No major difference in the

plots could be found.

The Kolmogorov-Smirnov (Lilliefors) non-parametric test also rejected the hypothesis
that the Normal distribution is an appropriate model to describe the unconditional
distribution of daily returns, (see Kolmogorov 1933, Lilliefors 1967 and Smirnov

1939).

An idea that would be interesting to consider is that if daily returns were distributed
Normal, but with different means and variances for different days of the week, then
daily returns considered as a whole would exhibit skewness and excess kurtosis like
the ones found in our series. But (assuming there were no time non-stationarity), then
Mondays and rest-of-the-week returns should plot linearly when considered
separately. Nevertheless, Mondays as well as rest-of-the-week returns present non-

linear plots, suggesting that they are not distributed Normal.

Q-Q Plot Monday Returns FTSE100
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Q-Q Plot Rest of the Week Returns FTSE100
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It is surprising that for both indexes the rest of the week returns plot similar to the full

sample but Monday returns exhibit a thin right hand tail, shown by standardised

returns lying bellow the 45 degree line. This result suggests that some further work

would be desirable, we should perhaps look at other equity indexes and individual

stocks.

Given that the presence of significant ‘day-of-the-week’ effects in either mean or
variance would affect our analysis, we performed several non-parametric tests on the

data to try and detect them.

Wilcoxon’s (Wilcoxon 1945) test for differences in the mean of two samples
(Mondays and rest-of-the-week) only rejects the null of equal means for the FT-SE
100 daily returns, but this rejection is marginal.

However, we are more concerned with day seasonality in the variance than in the
mean. As a preliminary way to test whether different days have a significantly
different variance, we computed the percentage proportion of one week’s variance

corresponding to each day of the week, as proposed by Taylor (1986).



Table 3.4: Percentage Proportions of One week’s Variance

Monday 0.1922 0.2143 0.2037 0.2085
Tuesday 0.2128 0.1996 0.2162 0.1912
Wednesday 0.1931 0.1781 0.1819 0.2190
Thursday 0.1987 0.1920 0.1924 0.1852
Friday 0.2033 0.2160 0.2058 0.1961

Even though, to our knowledge, there are no confidence intervals to estimate the
significance of differences in these statistics, all numbers are close enough to suggest
that Mondays do not make a greater contribution to each week’s variance than that
made by any other day of the week, suggesting that Mondays will not have a

significantly different variance to the rest of the week.

We performed the Siegel-Tukey test for differences in variance on Monday and rest-
of-the-week returns considered as separate series (Siegel and Tukey 1960). In this
case only the Yen/U$S exchange rate returns rejected the null of equal variance at a
95% confidence level. However, this test is particularly sensitive to other differences
being present in the data (like differences in mean) so the results for the FT-SE 100

index returns should, somehow, be taken carefully.

We also performed the Wald-Wolfowitz test for general differences in distribution
(Wald and Wolfowitz 1940) on the same data. All series rejected the hypothesis of
equal distributions for Monday and rest-of-the-week returns considered as two

separate samples.

It is generally accepted that even though not independent, returns are uncorrelated.
We wanted to test the randomness of our sample data, and begun by plotting the
standard autocorrelogram with the 5% confidence intervals calculated as + 1.96/\n,
with » = sample size. We should note that strictly speaking, this is only a test for 1.i.d.

returns and not for autocorrelation, as a series can be dependent but still uncorrelated.



Autocorrelograms S & P 500 Day-Centred Post Crash Returns
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The results presented by the graphs are clear. Autocorrelation in returns, if present, is

weak, but returns are not independent.

The Runs test (Neave and Worthington 1988) confirmed this idea, all series except the
Yen/U$S exchange rate returns have statistics that are smaller than the 5% critical
value of 1.96, determining the acceptance of the uncorrelatedness hypothesis. In the

case of the Yen/U$S returns, however, the statistic is slightly larger than 1.96 (1.99).

Table 3.5: Runs Test Statistics

S

FT-SE 100 | 1.1493

Yen/U$S 1.9969*

DM/US$S 1.9190

* reject 5% level

Our general conclusion after considering all the evidence in favour and against

autocorrelatedness in the series is that, there is some correlatedness present in our
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returns, but it is very small, and none of the series considered here possess the

characteristics of an i.i.d. processes.

The underlying distributions are far from being Normal, specially with respect to the

behaviour of the tails.

4. ANALYSIS OF CONDITIONAL DISTRIBUTIONS

4.1 The Generalised Autorregressive Conditional Heteroscedasticity

Hypothesis

In empirical studies of various time series it has often been noticed that large returns
tend to be followed by large returns (of either sign), small returns seem to be followed
by small returns (of either sign), and that the autocorrelations of square or absolute
returns tend to remain significantly positive for very long lags, even if returns
themselves seem to be uncorrelated, revealing a high degree of non-linear dependency
(see for example, Granger et al 1993). As mentioned before, most financial time series

exhibit significant skewness and excess kurtosis.
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FT-SE 100 Index Full Sample
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It has also been recognised that the uncertainty of speculative prices as measured by
the variances and covariances changes over time. Recently we have seen great
progress and interest in modelling ARCH effects. We will review key innovations in

this literature before describing our own empirical work.

The ARCH (Autorregressive Conditional Heteroscedastic) process introduced by
Engle (1982) allows the conditional variance to change over time as a function of past
errors leaving the unconditional variance constant, and provides one of the first

serious models which seems to capture these characteristics of the data.

Bollerslev (1986) generalised Engle’s basic ARCH(q) model including past values of
the conditional variance in the conditional variance equation.
GARCH(p,q) model:
yi=xE+s,
eV~ F(0,h)
hy=ap+ zi=1,qai€2t-i + 2zt pBiltei
h, = o, +A(L)e’ + B(L)h,
wherep>0,9g>0,0p> 0, 0,20i=1,..,9, B;20I=1,..,p.
For p = 0 the process reduces to the ARCH(q) model, and for p = g = 0 it becomes a
white noise. If all the roots of /7-B(z)] = 0 lie outside the unit circle, then the
conditional variance equation can be re-written as a distributed lag of past €’s.
h=a(l - BL))" +AL)(1 - BIL)) e}

This is equivalent to an infinite order ARCH with parameters ¢, equal to the
coefficient corresponding to L' in the expansion of

0, =A@)(I-BL)",i=12 3.

=00+ oL)e/

Bollerslev (1986) also showed that the GARCH model has an ARMA representation
for the square residuals. This ARMA representation gives a tool to determine the
order of the GARCH model required. Note that for the autocorrelations of the square

residuals to exist, g, must have a finite fourth moment and therefore a bound kurtosis.
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In practice, it has been noticed that a GARCH(1,1) model is usually enough to capture
the desired characteristics of the data.
The coefficient of excess kurtosis of a GARCH(1,1) process is

k= (EE") - SEE"))EE)" = 60,°(1 - B/ - 20, - 3a.,)
which is greater than zero by assumption, therefore, the GARCH(1,1) process is
leptokurtic (given the condition on the fourth moment of €,). One of the interesting
features of GARCH models is the fact that, even though the conditional variance
changes over time, the unconditional variance remains constant, so, unconditionally,

the GARCH process is homoscedastic.

Nelson and Cao (1992) show that the non-negativity restrictions necessary to ensure a
positive conditional variance do not need to be applied to all coefficients, for example,
a GARCH(1,2) model can have a negative o, provided all other coefficients are
greater or equal to zero, and that the inequality constrains on the conditional variance
equation do not need to be imposed a priori, as a violation would not necessarily

mean that the conditional variance is misspecified.

The estimation of a GARCH regression model is usually done by maximum-
likelihood. Since this is a recursive estimation, we need to specify starting values for
h, and €,. The algorithm most widely used for the estimation is the Berndt, Hall, Hall
and Hausman (BHHH) algorithm:

00 ) = 0 +0,[3,=; 101/00x0f /00" T'S -, 10f/00

with 0’ = parameter estimates after i-th iteration.

Despite being able to capture several of the main characteristics exhibited by
economic and financial data, it has been recognised that basic GARCH models with
conditional Normal distributions fail to account for some important characteristics
also presented by these data, like, for instance, ‘leverage effects’. Besides, it has also
been noted that, though a GARCH model with a conditional Normal distribution is
leptokurtic, this degree of excess kurtosis is not high enough, as standardised returns

still exhibit ‘fat’ tails.
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Estimations

We fitted GARCH(1,1) to the four samples and two sub-samples, using a conditional
Normal distribution. The empirical results confirmed the general characteristics often
presented by these models, the sum of the parameters was very close to one , and both
the AR and MA parameters of the conditional variance equation were significantly
different from zero. Other orders were fitted, but the results did not change

signiﬁcantlyz.

Nevertheless, our results showed that the conditional Normal distribution is not
appropriate to model standardised returns (see Q-Q plots below). Even if a
GARCH(1,1) with a conditional Normal distribution does account for most of the
non-linear dependencies exhibited by the data, it fails to provide enough flexibility in
terms of the kurtosis. Returns standardised using a GARCH(1,1) with a conditional
Normal distribution still exhibit significant fat tails, as shown by their deviations from
the straight line. Even when not considering the sample including the crash, GARCH
residuals for the indexes range from -5 to 6. These values suggest that a fat-tailed

conditional distribution would be more appropriate to model standardised returns.

Q-Q Plot GARCH(1,1) with Conditional Normal Standardised Returns FTSE100 Post Crash Sample

standardised retums

Standard Normal quantile

> When necessary, the data was corrected for any dependencies in the conditional mean. Our
estimations show that there seems to be a significant day seasonality in the unconditional mean
equation when returns are taken separately (as oposed to belonging to two samples, Mondays and rest-
of-the-week). This seasonality was taken account of in the GARCH estimations. Nevertheless, our
results still reject the presence of day seasonality in the conditional variance equation.
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Q-Q Plot GARCH(1,1) with Conditional Normal Standardised Returns S&P500 Post Crash
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A natural alternative candidate for the conditional distribution, proposed by Bollerslev
(1986), is the Student ¢ distribution, as, by changing its degrees of freedom parameter,
one can obtain a wider range of possible kurtosis (as opposed to the constant 3 of the

Normal), including the possibility of infinite kurtosis when the degrees of freedom are

less or equal to four.

The estimated AR and MA parameters of the conditional variance equation exhibit the
same characteristics as the Normal case, the sum is very close to one, and both are
highly significant. The estimated degrees of freedom seem to suggest that, in most
cases, the distributions are close to the limit between infinite and finite kurtosis. The
correlation analysis of the GARCH residuals shows that once the non-linear
dependencies created by the time-varying volatility are taken into account, the series

tend to be much closer to i.i.d.
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Table 4.1: Results GARCH(1,1) with Conditional Student’s-7 Distribution

S O

S & P 500 full 7.824E-7 0.03712 0.95257 4.26
(2.11E-7) (0.0066) (0.0073) (0.3473)

S & P 500 post 2.196E-7 0.01972 0.97642 4.49
(1.08E-7) (0.0052) (0.0055) (0.4760)

FT-SE 100 full 3.278E-6 0.06831 0.88278 10.77
(8.53E-7) (0.0109) (0.0172) (0.8782)

FT-SE 100 post 2.137E-6 0.04780 0.91729 11.85
(8.84E-7) (0.0119) (0.2318) (2.1505)

DM/U$S 1.336E-6 0.04170 0.93657 4.51
(5.28E-7) (0.0094) (0.0154) (0.5182)

YEN/U$S 2.401E-6 0.06145 0.90857 3.23
(7.62E-7) (0.0146) (0.0198) (0.2577)

Standard Errors in brackets
v = Degrees of Freedom

Autocorrelograms GARCH(1,1) with Conditional Student-# Standardised post
Crash Returns
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SQUARED RETURNS
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Note: Confidence Intervals calculated as before

Q-Q Plots of the GARCH residuals with respect to the values of the corresponding
Student-#’s show that, even if the fit of this distribution is better than that of the
Normal, specially in the tails, a distribution with maybe one more parameter and
therefore more flexible might be necessary. What seems to be clear is that, except for
these outliers, the Student 7 seems to capture the conditional excess kurtosis quite
well. Nevertheless it still cannot account for the extreme outliers present in the data
sets. The necessity of a more flexible conditional distribution applies specially to the
S & P 500 index returns, as they still exhibits quite a skewed distribution after the

standardisation.

Q-Q Plot FT-SE100 Full Sample GARCH(1,1) with Conditional Student's-t with DF = 11 Standardised Returns
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Q-Q Plot FT-SE100 Post Crash GARCH(1,1) with Conditional Student's-t with DF = 12 Standardised Returns
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Q-Q Plot SP500 Post Crash Garch(1,1) with Conditional Student's-t with DF = 4 Standardised Returns
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It is possible that this result is due to the ‘leverage effect’ mentioned before. Basically,
the presence of a ‘leverage effect’ means that the volatility is negatively correlated
with past returns, and therefore the conditional variance equation should be
asymmetric with respect to €,. Several alternative asymmetric relationships have been
proposed to take account of this effect (e.g. QTARCH, PNP, GJR, EGARCH).
Maybe the best known and more commonly used is the EGARCH formulation of
Nelson (1991):
Yi=x8 g
el ~ F(0,h)
N~ F(0,1)
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g, =1\,
log(h) = o,y + Zi=1,pl3ilog(ht-1) + Zi=1,qaig(nt-i)
gm) =y - E(m)] - on,
where F(0,4,) is such that e/Nh, ~ F(0,1)
g(m,) is the innovation to the conditional variance. The term /|n,| - E(In)] gives the
ARCH effect, as (assuming 6 = 0) a large shock (|n, > E(|n,)) will increase the
conditional variance. The parameter 6 measures the presence of the ‘leverage effect’,
assuming |n,| to be equal to £(|n,|) or y = 0, then a positive 6 means that when 1), is

negative the innovation to the conditional variance will be positive.

Nelson (1991) and Taylor(1994) estimated this model not only for a conditional
Normal distribution, but also for Student’s ¢ distribution and the Generalised Error
Distribution (GED) of Box and Tiao (1962, 1973). It should be noted that all
conditional distributions considered in the literature are symmetric, all have time
varying second and maybe first conditional moments but time invariant and finite
higher conditional moments (like skewness and kurtosis) except for the special case of
a Student ¢ distribution with degrees of freedom equal or less than 4, for which the

kurtosis is not defined.

Other specifications account for more specific characteristics of different data sets
employed, and usually are computationally more difficult. But, as Bera and Higgins
(1993) put it “whether any inadequacies in the EGARCH functional form for volatility
justifies the additional computational effort of estimating a more flexible model may
depend on the peculiarities of the individual data set and the ultimate purpose of the

empirical analysis”.
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EGARCH(1,1) with Conditional Student-7 Distribution

S & P 500 full -0.09258 0.08825 0.98976 0.34240 4.3030
(2.761E-2) (1.433E-2) (2.882E-3) (1.385E-1) (0.3526)
S & P 500 post -0.05952 0.06569 0.99342 0.45177 4.4791
(2.799E-2) (1.492E-2) (2.885E-3) 2.031E-1) (0.4508)
FT-SE 100 full -0.30289 0.15456 0.96093 0.19193 10.0541
(7.957E-2) (1.669E-2) (8.469E-3) (8.069E-2) (0.8495)
FT-SE 100 post -0.16081 0.08165 0.97910 0.35795 10.7340
(7.888E-2) (2.137E-2) (8.687E-3) (1.372E-1) (1.7985)
DM/US$S -0.19905 0.09603 0.97882 -0.20705* 4.50395
(8.090E-2) (1.957E-2) (8.311E-3) (1.124E-1) (0.5173)
YEN/US$S -0.39049 0.14389 0.96012 -0.12554* 3.10042
(1.290E-1) (2.829E-2) (1.322E-2) (1.085E-1) (0.2466)
Parameterization:

h, = exp(oy +Blog(hy.) + oug.;)

g =Md-E(n) - 6m,

N: =€ /\/ht

g, ~ t,(0,h,)Standard Errors in brackets
v = Degrees of Freedom

* = Non-Significant at 5% Level

These results suggest the presence of a significant ‘leverage effect’ in the conditional
variance of both indexes for the two samples considered. All 6’s have the ‘expected’
sign, with negative (positive) shocks inducing positive (negative) innovations in the
conditional variance. On the other hand, both currencies exhibit non-significant 0’s,
and therefore their conditional variances do not seem to exhibit a significant ‘leverage
effect’. All other parameters in the model are highly significant and have values that
are consistent with other empirical work done in the area. In particular, B, is very

close to one, implying that shocks to the variance are persistent and die out slowly.

To see whether accounting for the ‘leverage effect’ would reduce (or eliminate) the
skewness exhibited by some of the conditional distributions (in particular the S & P
500 post crash index) we standardised the returns by the square root of the
EGARCH(1,1) estimated conditional variance and re-plotted the Q-Q plot with a
Student-# distribution with degrees of freedom equal to the estimated v’s as the

reference.
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GARCH(1,1) and EGARCH(1,1) with Conditional Student's-t (DF = 4) Standardised SP500 Post Crash Returns

8

—o—EGARCH
—0—GARCH

standardised returns

10.

Standard Student's-t quantile

As can be seen from the plot, the presence of a significant ‘leverage effect’ cannot
account for the skewness present in the conditional distribution of the S & P 500

index.

Again, and except for the FT-SE 100 index returns, all conditional ¢ distributions seem

to be somehow in the limit between having a finite or infinite fourth moment.

S. Convergence Tests for Higher Moments

As a way of testing if conditional higher moments are finite, we could test whether the
estimated v‘s (degrees of freedom) are significantly equal or below particular levels
(three for the skewness, four for the kurtosis). However, since we are not confident
that the Student-# distribution is the right specification (for instance, the DM/US$S
exchange returns seem to have a symmetric conditional distribution with tails that are
somewhere in between those of the Normal distribution and those of the Student-¢
distribution with the estimated degrees of freedom), we prefer tests that are based on
much weaker assumptions, like Embrecht’s (1997) test for finite or infinite moments,
that is based on an i.i.d. assumption only. We performed this test on the moments of

the conditional distributions of EGARCH-¢ residuals.
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5.1 Embrecht’s Test for Finite Moments
If
E|x |p <00

then
should tend to zero almost surely as # (the estimating sample size) increases.
Applying this concept to the kurtosis means that if:

E(x-pean)” < o,
then:

I 4

.....

should tend to zero almost surely for increasing »’s, as

|x|*= )"

Simulations of this test done for several theoretical distributions (Stable with oo = 2.5,
Student 7 with degrees of freedom ranging from 3 to 6, Standard Normal, etc.) show
that, when the underlying distribution is in the limit of finite or infinite kurtosis, the
convergence or non convergence is not that clear for data sets of the size we are
considering. Convergence is very clear in the Standard Normal case as is non-
convergence for the Stable with infinite variance, but the Student #’s with degrees of
freedom from 3 to 5 presented cases which didn’t seem to converge even though the

theoretical kurtosis was bounded and vice versa.

Embreght’s Test on FT-SE 100 Full Sample Returns
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The same conclusion is derived from the Convergence Tests performed on the
GARCH residuals. These tests are based on Granger and Orr’s 1972 paper. The tests
were originally applied to assess the validity of the Stable Paretian hypothesis by
testing whether the variance of the return distribution was finite or infinite. The
method is based on the estimation of the sample variance for increasing sample sizes
as:

S'n = Zyet, n (% = o) /(01-1)
Assuming all x’s (returns) come from the same distribution, the estimated sample
variance (szn) should converge to a finite value if the population’s unconditional

distribution has a finite variance. Nevertheless, they admit that non-convergence does
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not necessarily imply the existence of an infinite variance. As pointed out by Granger
and Orr (1972), non-convergence may be caused by a non-stationary series, with a
population variance changing over time, and convergence would be slowed, even for a
stationary series, by the presence of autocorrelation between the observations (these
objections are dealt with by applying the test to the conditional moments).

Perry (1983) uses a test for infinite variances based on the same principle, that, as the
sample size increases, the estimated sample variance should converge to a finite
number if the population variance is itself finite. Taking into account the two
possibilities considered above, that the variance might be finite but conditionally
changing over time or that the presence of autocorrelation might slow the convergence
(this possibility must be taken into account, given the sample sizes we are considering
might not give a long enough series to overcome the slow convergence) Perry
proposes three orders of the data, one chronological, one backwards through time, and
a randomised sample.

The first two might give an insight into how the ‘finite’ variance is changing over
time, as non-convergence when the sample variance is increased could happen
because of a population variance that is finite but steadily increasing over time. The
randomised sample is used to overcome the problems of autocorrelation and non-

stationarity.

When applied to the non-standardised data, this tests suggested that the variance was
finite for all series, but time-varying. Therefore, we concentrated our analysis on the

conditional higher moments.

Simulations of the test present the same result as with Embrecht’s test, convergence is
clear for a Normal distribution or Student’s ¢ with five degrees of freedom, as is non-
convergence in the case of a Symmetric Stable distribution with alpha = 1.5. But not
so when we analyse the case of a distribution like the Student-¢ with, for example,
four degrees of freedom. In this case, the sample size we are able to work with seems

to be insuficient to determine non convergence or convergence.
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As to the behaviour of the tails for longer horizons, results for the standardised data
suggest the DM achieves levels of skewness and kurtosis compatible with a Normal
distribution quite rapidly, but convergence is a lot slower for the equity indexes and
the YEN, however, the statistics seemed to be converging, even if slowly.
Unfortunately, the sample sizes we are working with do not provide enough

independent returns for longer horizons to assess this convergence properly.

Perry’s test indicates that convergence of the skewness and kurtosis is clear for the
DM/USS exchange rate standardised returns. In the case of the index returns, the crash
of 1987 affects the conditional distribution to the point of making its higher moments
look infinite. Results for post crash samples are not so clear, maybe due to the limited
number of observations available, but do not provide sufficient proof against the
possibility of infinite kurtosis. The tests on the S & P 500 residuals confirms the
presence of significant conditional skewness mentioned before, even after the period

containing the crash has been dropped out of the estimating sample.

The behaviour of the chronological and backward sample skewness and kurtosis
seems to suggest that the conditional third and fourth moments might be changing
over time. Neither a significantly negative left hand tail, nor a conditionally time
varying third moment can be modelled with the distributions most commonly used in

practice.
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Skewness and Kurtosis for Increasing Sample Sizes, S & P 500 Post Crash
Standardised (GARCH(1,1) with Conditional #) Index Returns

SKEWNESS

0.5

cronol
—=—random
back

KURTOSIS

cronol
——=—random

back

121 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381 401 421

6. MAIN CONCLUSIONS

All tests carried on the unconditional distributions support the idea that these exhibit
‘fat tailedness’. This characteristic seems to be present even after aggregating 20 log-

day returns (non-overlapping), suggesting Normality is not yet achieved for monthly
returns, except in the case of the DM/US$S exchange rate returns, for which

convergence to ‘Normal’ levels seems to be attained faster than for all other series.
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Another regularity that seems to be present in all data sets is that, contrary to the

Stable hypothesis, variances are finite, but conditionally time-varying.

This would induce non-linear dependencies in the returns series. Even though they do

not seem to be strongly correlated, they have characteristics that are not compatible

with the i.i.d hypothesis. A somewhat ‘surprising’ result is that, contrary to what we

expected, there doesn’t seem to be strong evidence of day-seasonality in the variance.

Summary of Test

H | Te
Normality Kolmogorov-Smirnov & Returns are non-Normal
Q-Q Plots and exhibit leptokurtosis
Day-seasonality in Mean Wilcoxon Mondays and rest-of-the-

week returns have, in
general, the same mean

Day-seasonality in
Variance

Siegel-Tukey, Taylor’s
Percentage of one week’s
variance

Only Yen/US$S returns
rejected the null: no
seasonality. No strong
evidence of day-of-the-
week effects in variance

Mondays and rest-of-the-
week returns have same
distribution

Wald-Wolfowitz

Monday returns seem to
come from a different
distribution than the rest of
the week

Randomness Autocorrelograms, Runs Returns are not strongly
Test correlated but are not
independent, presence of
non-linear dependencies
Conditional GARCH with Normal Normal distribution is not
Heteroscesasticity a good candidate, need
conditional ‘fat’-
tailedness. Significant day-
seasonality in
unconditional mean.
Conditional GARCH with ¢ Better fit in the tails
Heteroscesasticity with though not able to account
‘fat’ tailed distribution for ‘outliers’. Presence of
conditional asymmetry
Leverage effects EGARCH with ¢ Significant leverage effects

in indexes but not in
currencies

Infinite or time-varying
higher moments

Embreght, Granger and
Orr, and Perry

Higher moments and
especially kurtosis may be
infinite, also evidence of
possible time-varying
skewness
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Although returns may be uncorrelated, they are not independent, and variances seem
to be time-varying. This could be explained by a GARCH-type specification.

Conditional variances do change over time, with shocks that seem to persist over long

horizons.

The analysis of returns standardised with conditional standard deviations obtained
with a basic GARCH model with conditional Normal distribution suggests that the
Normal is not a good candidate, and that conditional distributions exhibit fat tails. In
particular, the S & P daily index returns might even exhibit significant skewness.
Therefore, a more flexible family of distributions or more general specification seems
necessary. Skewness and kurtosis might also be time-varying and the kurtosis might
even be infinite. An interesting possibility suggested by our results is that the
seemingly infinite conditional kurtosis might actually be finite but time-varying as
suggested by Hansen(1992). The estimation of an Autorregressive Conditional
Density would allow for higher moments to be also modelled as a function of the
variables included in the information set. A general conclusion about the data
confirmed throughout the analysis is that equity index returns exhibit much stronger

irregularities than those of the exchange rates.

Even using a model with a conditional distribution that provides ‘fatter’ tails than
allowed by the Normal distribution (and in some cases the Student-7 seems to be too
‘fat’, as for example with the DM/USS returns while in others it is not ‘fat> enough),
we wouldn’t be able to account for the extreme outliers exhibited by some data series,
specially the indexes. This leads us to the key conclusion of this study, that we can
only represent price processes adequately with a combination of stochastic volatility
and conditional fat tails (or jumps). Thus, neither the conventional type of stochastic
volatility model (e.g. Hull and White 1987) nor an i.i.d. jump diffusion process (e.g.
Merton 1976) are sufficient. What we would need is a model that combines the

properties of both.

Given that different types of series seem to exhibit different types of behaviour, we

should perhaps expand the analysis to futures data, other equity indices and exchange

30



rates, etc. A more general GARCH specification with a candidate conditional
distribution that gives more flexibility seems to be necessary, especially, it would be
interesting to investigate distributions with a shape parameter controlling the
skewness and or kurtosis a more flexible candidate distribution would allow us to

model] a time-varying skewness/kurtosis, and the effect this has on the behaviour of

the tails.
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