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Introduction

The paper examines an important result in arbitrage pricing - the extension
of the pricing rule from the marketed subspace to the whole market. We
show that the strictly positive extension only fails to exist in trivial cases,
that is when the continuity of prices implies arbitrage in the closure of the
marketed subspace. Our result implies the equivalence between no arbitrage
and the existence of an equivalent martingale measure, provided that the
class of trading strategies is chosen carefully. Finally, we demonstrate that
the Extension Theorem gives a complete description of the no arbitrage prices
for any claim outside the marketed subspace. Consequently, we show that
the no arbitrage price of any collection of securities is determined in the same
way regardless of market completeness.

Why is the Extension Theorem important? Suppose that we start with
an incomplete market where prices preclude arbitrage. Mathematically, there
is a strictly positive linear pricing rule restricted to the incomplete market.
A strictly positive extension of the restricted pricing rule implies that one
can leave the prices of marketed securities unchanged, complete the market
by adding new securities, and not give rise to arbitrage opportunities, pro-
vided of course that the new securities are priced accordingly to the extended
pricing rule. The extension result is even more striking when we realize that
a pricing rule defined on the whole market determines all state prices. The
extension property then means that any no arbitrage price in incomplete
market is supported by a state price from a complete market in which no
arbitrage opportunities exist.

The work on the Extension Theorem in infinite dimensional spaces dates
back to Ross (1978), who is the first to show that no arbitrage is synonymous
with a strictly positive linear pricing function defined on the marketed sub-
space. The initial motivation for a positive extension of this pricing function
is somewhat unclear. According to Ross!, “the advantage of this extension
is that the domain of the pricing function does not depend on the set of mar-
keted assets.” However, if this was the only goal then any (not just positive)

extension would do.

Harrison and Kreps (1979) provide very convincing justification for the

!The quote comes from Dybvig and Ross (1987). The original article does not give
explicit motivation.



Extension Theorem by demonstrating a one-to-one correspondence between
strictly positive pricing functions and equivalent martingale measures. Fur-
thermore, they show that if a new claim is added to the market, the enlarged
market will be viable if and only if the price of the new claim is determined
by a strictly positive extension of the original pricing function.

Building on this work Kreps (1981) reduces the requirement of viability
to the ‘no free lunch’ condition. Unfortunately, the no free lunch condition
in itself is rather technical and one struggles to give it intuitive meaning.
Worse still, subsequent research found it difficult to reduce the requirement
of no free lunch to the simple no arbitrage condition.

It is worth mentioning a few later papers which help to clarify the relation-
ship between no arbitrage and the equivalent martingale measure. Dalang
et al. (1990) showed that in a market with a finite number of securities and
finitely many trading dates no arbitrage is sufficient for the existence of an
equivalent martingale measure. In contrast, Back and Pliska (1991) give an
example with infinitely many trading dates where the absence of arbitrage
does not give us a strictly positive extension of the pricing functional.

Coming back to the roots of the problem, Clark (1993) gives a nice ex-
position of Ross’ definition of arbitrage and points out that arbitrage is an
algebraic notion whereas the pricing functional must also satisfy some topo-
logical properties, namely continuity. As it turns out this is the crucial
observation, which, unfortunately, the author does not explore to its fullest.

We take Clark’s point and search for a topological version of no arbitrage
condition. Mathematically, this version of no arbitrage requires that there
is a continuous and strictly positive extension of the pricing functional to
the closure of the marketed subspace. For such an extension to exist there
must be no approzimate arbitrage, that is no sequence of marketed claims
with zero price may converge to a claim in the positive cone with the origin
deleted. Since prices are by assumption continuous, whenever such sequence
exists there is arbitrage in the closure of the marketed subspace and the
strictly positive extension fails to exist for a trivial reason. On the other
hand, the absence of approximate arbitrage in L? spaces with 1 < p < 400
is sufficient to guarantee a strictly positive and continuous extension of the
pricing rule which was originally defined only on the marketed subspace.

The idea of the proof is summarized here. The pricing function on the



marketed subspace defines a yet smaller subspace of marketed claims with
zero price, denoted My(p). If there is no arbitrage this subspace must be

disjoint from the positive cone with the origin deleted X, .

Mo(p)

Figure 1: Illustration to the Extension Theorem

Naturally, as shown in the diagram, one would expect that there is a
hyperplane H containing Mo(p) and still disjoint from X, ., and this is in-
deed true in finite dimensional spaces. The separating hyperplane H is then
interpreted as the subspace of all claims with zero price generated by the
extended pricing rule. The fact that H is disjoint from X, then guarantees
that the extended pricing rule is strictly positive.

In infinite dimensional spaces there are two separate problems. Firstly,
the zero marketed subspace need not be closed. This creates pathological
cases whereby there is no arbitrage in the marketed subspace but by the
continuity of prices arbitrage is implied in the closure of the marketed sub-
space. Instead of My(p) one needs to work with its closure, hence the no ap-
proximate arbitrage condition. Secondly, the separation theorem that works
so nicely for finite dimensional spaces is not generally available in infinite
dimension. Reflexive spaces, such as L, 1 < p < oo, are a special case where

the desired version of the separation theorem is valid.

The paper was originally motivated by an attempt to price several/all
securities jointly knowing only their dividend process. This is an interest-

ing application of the Extension Theorem which shows that there is little



difference between the pricing in complete and in incomplete market. It
is demonstrated that no arbitrage prices are always generated by complete
market state prices. Moreover prices of all securities jointly lie in a convex
region and the dimension of this region is equal to the number of linearly
independent securities that are being priced. This goes to say that no ar-
bitrage prices in a complete market are not unique in general. Only after
one has fixed prices of a sufficient number of securities will the prices of the
remaining securities be unique.

The last argument implies that the divide between complete and incom-
plete markets presented in finance literature is misleading. It is more precise
to distinguish between the pricing of redundant and non-redundant securi-
ties. The former has a unique price, the price of the latter lies in an interval.
Both may coexist within the same market.

The paper is organized as follows: The first part reviews the fundamentals
of no-arbitrage pricing. In the second part we derive the Extension Theorem
in an abstract model of a security market. In the third part we apply the
theorem to the pricing of arbitrary number of claims when some prices are
predetermined and discuss implications of this result. A simple numerical
example highlights some of the points raised in this section. Section four

concludes.

1 Axiomatic theory of no-arbitrage pricing

In this section we describe the axiomatic theory of no arbitrage pricing in the
treatment of Clark (1993). The abstract model of security market presented
here has its precursors in Harrison and Kreps (1979) and Kreps (1981). It
can be naturally interpreted as a one period model thinking of claims as
dividends. The second and more interesting interpretation comes from the
multiperiod dynamic model?.

We will have a topological vector space X of all claims. The space of all
continuous linear forms on X (strong dual) is denoted X*. The vector space

X will be endowed with a natural ordering > which defines the positive cone®

?See Harrison and Kreps, and for more structural detail Cerny and Hodges (1998),
section 6.
3In no arbitrage pricing we work with natural (canonical) ordering. Thus e.g. positive

cone in R™ would be formed by n-tulles with non-negative coordinates, positive cone in



Xy ={z € X : 2 > 0}. We require X, to be closed.

We say that a contingent claim z is better than or equal to a contingent
claim y, > y, if and only if z —y € X. Similarly a contingent claim z is
strictly better than y, z > y, if and only if z —y € X, = X, \{0} where
X4+ contains all strictly positive claims?.

Suppose there is a collection {m;},.; of marketed claims, then the mar-

keted subspace M is the linear span of {m;},;

M = {:c eX:z= Z’\imi for some {)‘i}iel} .

1€l
It is understood that only a finite number of \; are non-zero.

Assume that each marketed claim has a market price p;, the possible

prices of a marketed claim m are naturally given as

p(m) = {Z Aipi 1m = Z A;m; for some {’\i}ieI} (1)

el el
We will say that p(m) > 0 if ¢ > 0 for all ¢ € p(m).
Having the pair (M, p) we proceed with the characterization of a market

equilibrium. The following definition clarifies the interpretation of the strictly

positive cone X, ..

Definition 1 We say that there is no arbitrage if the price of all strictly

positive marketed claims is positive
x € M,z >0 implies p(z) > 0.

In other words, arbitrage is a strictly positive claim with zero or negative

price.

Axiom 1 (Incentive to trade) There is a strictly positive marketed claim.

L? by non-negative random variables etc. Here we will not require the added generality
of having a positive cone which is wider than the one defined by canonical ordering. For

further reference on such generalization see Cerny and Hodges (1998).
4The reader should bear in mind that the term ‘strictly positive’ is used in the sense of

the canonical ordering on X and not in the intuitive sense. Note that a claim (1,0,0) € R3
is strictly positive in the canonical ordering on R® but at the same time it is equal to
zero with positive probability, therefore ‘strictly positive in X’ is not to be confused with

strictly positive with probability one.



If there were no strictly positive marketed claims then arbitrage pricing
would not place any restriction on existing asset prices. Thus from now on
we assume that Axiom 1 holds.

The next theorem restates the key result of Ross explaining the link be-

tween no arbitrage and the existence of a positive pricing functional.

Definition 2 Let M be a linear subspace of X . Denote My = M N X, and
Miy = M0 Xy A linear functional p: M — R is positive if p(m) > 0 for
all m € My. We say that p is strictly positive if p(m) > 0 for all m € M.

Theorem 1 Suppose that (M,p) gives no arbitrage. Then p : M — R
is a strictly positive linear functional, i.e. p(m) is unique for all m € M,

p(m1+mg) = p(my)+p(ms) for all my,my € M and p(m) > 0 for all strictly
positive m € M.

Proof The theorem and its proof are stated in Clark (1993). W

2 Continuous extension of the pricing rule

As we have seen, no arbitrage guarantees that each marketed contingent
claim has a unique price. This price is determined by a strictly positive
linear functional on the linear space of marketed contingent claims. However,
positivity of p does not imply that p can be continuously extended, and even
if it can be continuously extended, in general the extension will not be strictly
positive. Below we give a simple necessary and sufficient condition for the
existence of a continuous strictly positive extension of the linear pricing rule
p from the marketed subspace to the whole market. First, however, a useful

definition and a proposition.

Definition 3 For a given strictly positive pricing functional p on M we say
that

Mo(p) = {m € M : p(m) = 0}

is a zero investment marketed subspace®.

It is standard in arbitrage literature to say that a marketed claim m is

feasible if p(m) < 0. The set of all feasible claims is denoted F'(p).

®The term ‘zero investment portfolio’ was introduced by Ingersoll (1987), alternatively

one could use the term ‘zero cost marketed subspace’.



Proposition 1 Let mg be a marketed strictly positive claim and suppose that

there is no arbitrage. Then M = Mo(p) @ Rmg and F(p) = My(p) — Ryme.

Proof By Rmg is meant the span of mg. Symbol ‘@’ denotes direct sum
of two linear subspaces. Since there is no arbitrage mo € My, must have
positive price, p(mg) > 0. Now take an arbitrary claim m € M and set

A= %ﬂ%. Then p(m — Amyo) = 0 showing that 2 = m — Amg € Mo(p). Since
A is determined uniquely the decomposition m = z + Amy is unique which
proves the first statement. If, in addition m € F'(p), then p(m) < 0 and

A < 0 which proves the second statement. B

Note that no arbitrage implies My(p) N Xy, = 0.

The following theorem leads to a topological equivalent of no arbitrage

condition.

Theorem 2 Let there be no arbitrage in (M,p). Then p can be extended

to a continuous strictly positive linear functional on the closure of M if and
only if clMo(p) N Xy = 0.

Proof a) Suppose p is a continuous, strictly positive linear functional on
clM such that p|M = p. Define Ny = {z € cIM : p(z) = 0}, surely

NoN X4y = 0. In addition since p is continuous Ny D clMy(p). Therefore
clMo(p) N X4+ = 0, which completes the first part of the proof.

b) Suppose now that clMo(p) N X1y = (0. Let mg be a strictly positive
marketed claim. From the Proposition 1 we have M = My(p) ® Rmy. Since
mo € X4 it must be that clMy(p) N Rmo = {0} otherwise we have a
contradiction with clMy(p) N X414 = (. Therefore cIM = clMy(p) ® Rmy
and one can extend p to p on clM by setting p(clMy) = 0, p(mo) = p(my).
Clearly p is continuous since its kernel is not dense in M (mq ¢ clMy).

It remains to be shown that p is strictly positive. For the purpose of
contradiction suppose there is y € cIM N X4y such that p(y) < 0. We know
that there is a unique decomposition y = 2 + Amg where z € clMy(p). Thus

0 > p(y) = p(z) + Ap(mo) = Ap(mo)

which implies A < 0. Then, however, z = y — Amo € X, contradicts
ClMo(p) N X++ = @ 8}



Definition 4 An element of clMy(p)N X+ is called approximate arbitrage®.

Approximate arbitrage means that there is a sequence of marketed claims
with zero price that converges to a strictly positive claim. Since we assume
that prices are continuous, the limit of such a sequence represents an arbitrage
opportunity, even though formally no arbitrage opportunities exist in the
marketed subspace. Thus approximate arbitrage is the generalization of no

arbitrage for continuous prices.

Proposition 2 When the zero investment marketed subspace Mo(p) is closed

then the absence of arbitrage is equivalent to the absence of approzimate ar-

bitrage.

Proof No arbitrage implies Mo(p) N X4y = 0. When My(p) is closed this
is equivalent to clMp(p) N X+ = 0 and thus there is no approximate
arbitrage. H

An important class of financial models where arbitrage and approximate
arbitrage automatically coincide is represented by models where a finite num-
ber of securities is traded at a finite number of dates. Here the zero invest-
ment marketed subspace is closed by Stricker’s lemma, see Schachermayer
(1992).

As we have demonstrated in Theorem 2 the absence of approximate arbi-
trage is the appropriate generalization of no arbitrage for continuous prices.
The next theorem demonstrates that the absence of approximate arbitrage
already guarantees a strictly positive and continuous extension of the pricing

rule to the whole market in L spaces, 1 < p < oo.

Theorem 3 (Extension Theorem) Suppose that X = LP(Q,F,P), 1 <
p < co. There is a strictly positive continuous linear extension of the pricing
rule on the marketed subspace to the whole market if and only if there is no

approzimate arbitrage’.

6Duffie (1996) uses this term for a slightly modified free lunch. Dybvig and Ross
(1987) give this name to the asymptotic result in Ross’ Arbitrage Pricing Theory. Here
we adopt the term approximate arbitrage because it matches very well the mathematical
content of our definition. One might also use the name virtual arbitrage since the arbitrage

opportunity is implied from the continuity of prices.
"Schachermayer (1992) shows a similar result for L!. His result, however, depends on

a particular information structure — the marketed subspace arises from trading a finite



Proof a) If § is a continuous and strictly positive extension of p then
Mo(p) is closed by continuity, Mo(p) 2 Mo(p) by the extension property
and hence Mo(p) 2 clMo(p). By strict positivity Mo(5) N X4 = 0 and
hence clMy(p) N X,y = 0.

b) Let us denote N = cIMo(p). If there is no approximate arbitrage then
NN X, = {0} or, alternatively, N N X, = 0.

1) Recall that X is the cone of all non-negative random variables in LP.
Let us take K = {z € X} : ||z|| = 1} and let J be the closed convex hull of
K. For z,1,2, € K and 0 < A <1 one can easily show that

[[Az1 + (1 — A)zz|| > (3)?. Hence 0 ¢ J which implies J C X, and thus
NNJ=0.Now L?, 1 < p < oo is a reflexive space, J is a bounded closed
convex set, N is closed convex set and the two sets are disjoint. By
Theorem 19 C in Holmes® N and J can be strictly separated by a
continuous linear functional, i.e. there is ¢ € X* such that ¢(N) =0 and
@(J) > 0. However, this implies ¢(X,,) > 0.

2) Finally it remains to be seen that p = %(-(:"n—‘(’)))go is an extension of the
original pricing rule p. Recall from Lemma 1 that M = My(p) @ Rmy. Thus
it suffices to show that p|Mo(p) = p|Mo(p) = 0 and p(me) = p(mo) where
©|M denotes the restriction of functional ¢ onto the domain M. The former
equality follows from the fact that $(N) = 0 by construction of ¢ and

N D My(p) whereas the latter is a trivial consequence of the
re-normalization of ¢. Since ¢ is strictly positive and continuous so is $

which completes the proof. W

The theorem above simplifies and generalizes extension results available
so far. Firstly we introduce no approximate arbitrage condition clMy(p) N
X4+ = 0 instead of the less straightforward no free lunch condition intro-

duced in Kreps (1981). Secondly we show that in L? spaces with 1 < p < oo

number of securities at a finite number of dates, and as a consequence of this setup the
zero marketed subspace is closed.

8For completeness we provide the proof of that part of the theorem which is relevant
to us and which Holmes leaves as an exercise: It is known that the unit ball U(X) in a
normed reflexive space is weakly compact (Theorem 16 F). Furthermore for convex sets
‘closed’ is equivalent to ‘weakly closed’ (Corollary 12 A). J is closed, convex and bounded,
therefore weakly compact. N is convex, closed and therefore weakly closed. The separation
theorem for one closed and one compact convex set (Corollary 11 F) asserts that N and
J can be strictly separated by a weakly continuous functional 1, however such functional

is continuous in the original topology on X as well (Theorem 12 A).

10



no approximate arbitrage actually implies the existence of a strictly positive
extension of the pricing functional defined in an incomplete market. This
result does not require separability of X as in Kreps and Clark, nor a finite
number of trading dates and finite number of securities as in Schachermayer.
Remarkably, our result directly applies to any intertemporal model with no
intermediate consumption, whether with finite or infinite number of trading
dates and regardless of the number of securities traded. This is achieved by
taking X = LP(Q, Fr, P) where Fr is the element of the filtration corre-
sponding to the final period.

A striking consequence of our Extension Theorem is the equivalence be-
tween no arbitrage and an equivalent martingale measure when the zero

marketed subspace is closed. As Duffie writes on page 121:

There seems no obvious method to deduce the existence of an

equivalent martingale measure from the absence of arbitrage.

Here we have such method readily available. We have mentioned earlier
that in the models with finite number of trading periods and finite number of
securities the arbitrage and approximate arbitrage coincide because the zero
investment marketed subspace is closed. In models with infinite number of
trading dates the closedness of My(p) depends on how large class of trading
strategies one allows. Back and Pliska (1991) show that with bounded trading
strategies and infinite number of trading periods one can have approximate
arbitrage even when there is no arbitrage. One can imagine, however, that
with a careful choice of trading strategies the resulting zero investment mar-
keted subspace turns out to be closed and we have the desired equivalence

between no arbitrage and the equivalent martingale measure.

3 Valuation of non-redundant claims

So far the main concern was to extend the pricing rule from the marketed
subspace to the complete market. However the Extension Theorem can be
used also in the opposite direction, i.e. to find no arbitrage price for a given
claim, say =z € X.

Taking an arbitrary strictly positive linear functional ¢ defined on the

whole X the value ¢(z) gives a no arbitrage price. More importantly, the

11



Extension Theorem 3 asserts that by taking all possible strictly positive linear
functionals the value () one will cover all possible no arbitrage prices for
the claim z.

Taking = as an Arrow-Debreu security, i.e. a security that pays one
unit in one state of the world and zero units otherwise, (z) becomes its

corresponding state price. This gives motivation for the following definition:

Definition 5 A continuous strictly positive functional on X is called @ no

arbitrage state price functional®. The set of all such state price functionals
is denoted X7 |

Xiy={peX :o(z)>0 forallz e X, }.
Proposition 3 X3 is a convez cone in X*.
Proof Let us take A; > 0,A2 > 0. If ¢, € X}, and ¢, € X7 then

A (z) + Aapy(z) > 0 for all 2 € X, .

Hence A1) + Ao, € X5, . H

Finally we provide a characterization of no arbitrage price region of several
claims jointly when prices of claims in the marketed subspace M are prede-
termined. The following theorem is important for several reasons. Firstly
it tells us how to find all no arbitrage prices for a given set of claims. Sec-
ondly, it shows that market completeness or incompleteness does not affect
the way prices are determined. Finally it demonstrates that a claim is priced

by arbitrage if and only if it is redundant®.

Theorem 4 (Pricing Theorem) Suppose X is an LP space , 1 < p <

+oo. Let us have a closed marketed subspace M in which prices are given by

®In practical applications it is unusual to work with abstract linear functionals. For
different representations of complete market pricing rules see e.g. Dybvig and Ross (1987),
page 104.

10This result is obtained by Jacka (1992) via martingale theory in L. As a precursor,
Kreps (1981) claims (pg. 30) that even non-redundant claims can in general have their
price determined uniquely. Here we show that in L?,1 < p < oo this situation cannot

OocCcur.

12



a strictly positive and continuous linear functional'* 1. Let there be further
m claims y1,Ya, . .., Ym, no arbitrage prices of which we want to find. Then

a) the no arbitrage price region P for these claims is given as

P={(¢(y1), -,p(ym)) ER™ 10 € X5, and p|M = o},

b) P is a convez set in R™,

c) defining N = span(M U {y1,y2,...,Ym}) the dimension of the price
region P satisfies

dim P = codimy M (2)

which is the codimension of the marketed subspace in the enlarged marketed
subspace N.

d) the price of y; is uniquely determined by arbitrage if and only if y; is
redundant, t.e. y; € M

Proof a) We will show that no arbitrage in N implies no approximate
arbitrage in N as well. Then the assertion follows from the Extension
Theorem.

If there is no arbitrage in N then by Theorem 1 there is a strictly positive
functional ¢ in N. In addition, ¢ has to price correctly all claims in M,
@|M = . This implies (N D)No(¢) D Mo(2). Note, however, that
codimyMp(7p) < m + 1 and hence codimpy (o) Mo(¥) < m + 1. In other
words No(¢) = Mo(1) ® L where dimL is finite. Since % is continuous and
M is closed the zero investment marketed subspace My(3)) is closed in X.
Then also No(¢) = Mo() @ L is closed because L is finite dimensional.
Now ¢ is strictly positive and therefore No() N X, = (0 — there is no

approximate arbitrage in V.

b) The convexity of the no arbitrage price region follows from the convexity
of generalized state prices and the part a). Namely, if p;,p, € P then by
assertion a) there exist functionals ¢, ¢, € X, 0;(y) = p;, that price
correctly all claims in M. Of course, Ap; + (1 — )@, € X% prices claims in

M correctly, too, and therefore by assertion a)

(o1 + (1 = A)y)(y) = Aps + (1 = A)p2 € P.

" This assumption is not restrictive. Suppose we start with an incomplete and not

necessarily closed market M in which there is no approximate arbitrage. By Theorem 2
there is a continuous strictly positive functional on clM consistent with original prices in

M. We simply take clM and the extended functional as our starting point.

13



c) To prove the last statement we will first demonstrate that the cone of no
arbitrage state price functionals Xj is open.

i) Let us take K = {z € X, : ||z|| = 1} and let J be the closed convex hull
of K. For z1,29 € K and 0 < A <1 one can easily show that

[[Az1 4+ (1 — A)zz|| > (3)”. Hence 0 ¢ J and consequently J C X, .

Take an arbitrary ¢ € X7, and denote ¢ = inf,c; p(z). We claim that

€ > 0. For the purpose of contradiction suppose that ¢ = 0. Then there is a
sequence T, € J such that lim¢(z,) = 0. Since J is closed, convex and
bounded, from the reflexivity of X follows that J is weakly sequentially
compact (Holmes, Theorem 16F and Corollary 18 A). Hence there is a
subsequence z; converging weakly to « € J implying ¢(z) = 0. Hoewever,
z € J C X4 contradicts p € X7, .

Thus ¢(K) > € > 0. Taking an arbitrary functional 1) € X* such that

l|l%]| < £ and =z € X4y we have

(o #)@) > llall (2 = 191} > lslie ) >

which means that ¢ + 1 € X7, for any ||| < £. Since ¢ is arbitrary this
means that X7 is open (in the norm topology on X*).

ii) Let us first assume that codimyM = m. Applying Hahn-Banach
theorem to the subspace span(M U {y1,...,¥j-1,Yj+1,---,Ym}) and the
point y; one can find linear functionals %,,5 = 1,...,m such that

¥;(M) =0 for all j and v;(y;) = di; (Kronecker’s delta). By the Extension
Theorem the pricing rule on M can be extended to a strictly positive
functional ¢, that correctly prices securities in M. Note that functionals

o + Ath; too price these securities correctly and moreover for |A| sufficiently
small ¢ + A; will be a strictly positive functional by the result in i). Thus
the price vectors (4(y) + A;(y) give no arbitrage prices for securities

Yy = (Y1,--.,Ym) consistent with the predetermined prices of securities z. By
construction t;(y) are linearly independent vectors in R™ and recall that
dimP is defined as the dimension of the affine hull of P — ,(y) (which is a
linear subspace) thus the dimension of the price region P is at least

rank(¥,(y),...,%,,(y)) = m, and of course it cannot be more than m.

iii) In a general case a certain number of vectors y;, say m — [, will lie in the

marketed subspace M. However, for any @ that prices correctly claims in M

14



the difference ¢(y;) — ¢o(y:) will be zero, hence if y; € M it will not
contribute to the dimensionality of the price region.

That leaves [ claims that do not belong to the marketed subspace and these
we partition into two groups — the first 7 claims ¢} = (y1,...,ys) that are
linearly independent and the remaining [ — 7 claims ¢) = (Ymi1,- .., 1)
that can be expressed as a linear combination of the first 7 claims,

¢y = De¢; with D € R(=™)xm,

First of all it is clear that there cannot be more than / linearly
independent vectors of the type ¥(y1),...,%(y;). If there were more, one
could find a non-trivial linear combination that annuls the first
coordinates, ). Ajth;(c1) = 0. However, such a linear combination annuls

the remaining [ — 7 coordinates as well since

Z Aﬂpi(CZ) = Z /\ilﬁi(Dcl) = Z AiD¢i(Cl) =D (Z Ail/)i(cl)) =0.

On the other hand one can find 7 linearly independent prices of the desired
form by the procedure described in ii). Thus dim P = 7 and by

construction m = codimy M.

d) Suppose there is just one security to be priced, say security y; and denote
its no arbitrage price region P C R'. We set N = span(M U {y;}) and have
codimyM = 0 if and only if y; € M. By definition the no arbitrage price of
y; is unique if and only if dimP = 0. Then the assertion c) implies that y is
uniquely priced by arbitrage if and only if y is redundant. W

The fact that the no arbitrage state price functionals are the same for
both complete and incomplete markets may come as a surprise, given that
the pricing in incomplete markets is conventionally regarded as much more
complicated. The difference between complete and incomplete markets, how-
ever, stems from the way we like to formulate pricing problems rather then
from an essential difference between the two cases.

The finance literature applies the term ‘pricing in complete markets’ to
situations where the claims with predetermined prices span the whole market,
M = X. Since the price of any additional claim is determined uniquely this
creates an impression that in a complete market prices of all claims are

determined uniquely (law of one price).
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In incomplete markets, on the other hand, even if we assume that all
marketed securities have predetermined prices, these are not sufficient to
span the whole market and thus one is usually forced to price non-redundant
securities. Hence pricing in incomplete markets usually involves calculation
of a price range which is obviously more difficult than the calculation of a
unique price.

However, pricing of non-redundant securities can easily arise in complete
markets as well. Think of a situation where X = span(M U {y;}) and y; is
not redundant, i.e. y; ¢ M. Then the price of y; is not unique despite the fact
that markets are complete! The contrast is even stronger when no claims,
save for a numeraire, have predetermined prices because then no marketed
claim will have unique no arbitrage price.

In fact, we have the following distinction: regardless of market com-
pleteness it is easy to price redundant claims since their price is determined
uniquely. In the case of a non-redundant claim theorem 4 shows that its no
arbitrage price lies in an interval, again regardless of market completeness.
Of course, finding a price interval is a much more challenging task than cal-
culating a unique price, but whether a claim is redundant depends mainly

on how many prices are predetermined and not on market completeness.

3.1 Illustrative example

To illustrate our point about pricing in complete and incomplete markets we
take a simple one period economy with s states of the world, X = R*® with
the standard positive cone R%. State price functionals will be represented by
vectors in R* and it is easy to see that the set of complete market state price

vectors

)~(j‘r+ ={gqeR’:qdz>0forall z € R3\{0}}

satisfies

X, = intR:.
Suppose there is a particular marketed strictly positive claim that pays one
unit of account in each state and the price of this claim is one (there is
riskless borrowing with no interest). In our earlier notation M = span(1)

and (1) = 1 where 1 € R® is vector of ones. This gives one restriction for

the state prices 1’ = 1. In particular this restriction is satisfied by vectors
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€1,€2,...,6s € R® that form a standard orthonormal basis of R*.We will
denote coley, es,. .., €] the convez hull of ey, e,,.. ., e,.

It is easily seen that the state prices which correctly price the claim 1
occupy the relative interior of the s-simplex coley, ey, ..., ;] and then the set

of all admissible state prices is

Q44 = rel-int(coley, ey, . . ., €;]).

Suppose that other m claims to be priced are ordered in a matrix y =

(Y15--+,Ym). Then we have the following pricing formula

P =y'Q44 = y'rel-int(coley, €3, . . ., €5]) = rel-int(coly'es, y'es, . . . ,y'es)).
(3)
With this result at hand let us take a concrete example of no arbitrage
pricing with three states. Then Xy = R% is positive octant and X7, = IntR$
is interior of positive octant. @, is the relative interior of the triangle

co[(1,0,0),(0,1,0),(0,0,1)]. Consider two pairs of securities to be priced

2
Il

15 15
y=1 2 3 2 3
3 1 3 3

Applying the pricing formula (3) we find

P = rel-int(co[(1, 5), (2, 3), (3,1)]) = rel-int(co[(1,5), (3,1)])

and

P = int(co[(1,5),(2,3),(3,3)]).

The no-arbitrage price regions are depicted below.

In the first example markets are not complete, since rank (1,y) = 2 in-
stead of three. Although none of the two securities which are being priced is
redundant on its own, the prices of the two securities jointly have to move
together and this is confirmed from the price region P. Knowing the price of
the first security (say pi = 2) the price of the second security is determined
uniquely (p2 = 3). The dimensionality of the price region P is also confirmed

from the formula (2) where we take N = span(1,y;,y2)

dim P = codimyM = dim N — dim M = rank (1,y) —rank (1) =2 -1 = 1.
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Figure 2: No-arbitrage price regions P and P

In the second example markets are complete, rank (1, §) = 3, and this gives

fully dimensional price region
dim P = rank (1,§) —rank (1) =3 — 1 = 2.

Note that in both cases prices of the two securities are constrained but not

unique.

4 Conclusions

The aim of the paper was, among others, to show how the Extension Theorem
in Arbitrage Pricing Theory provides a unifying viewpoint from which the
pricing of securities in complete and in incomplete markets appears the same.
We have demonstrated that what makes the difference in no-arbitrage pricing
is not market completeness but the size of the subspace with predetermined
prices.k

Apart from breaking the stereotypical view of complete and incomplete
markets we hope, more generally, that our note will incourage researchers to
develop new techniques that take into account the price indeterminacy which
is inherently present in the no-arbitrage framework.

The paper also contains new technical results. We replace free lunch with
more intuitive approximate arbitrage and without additional assumptions
show that in LP spaces, 1 < p < oo, no approximate arbitrage condition

implies the existence of the strictly positive and continuous extension of the
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pricing functional. This leads to the equivalence between the absence of
arbitrage and the existence of an equivalent martingale measure, provided
that the zero marketed subspace is closed, which, we believe, can be achieved

by a careful choice of trading strategies.
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