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Introduction

The term ‘no-good-deal pricing’ in this paper encompasses pricing techniques
based on the absence of attractive investment opportunities — good deals — in
equilibrium. We borrowed the term from Cochrane and Sad-Requejo (2000)
who pioneered the calculation of price bands conditional on the absence
of high Sharpe Ratios. Alternative methodologies for calculating tighter-
than-no-arbitrage price bounds have been suggested by Bernardo and Ledoit
(2000), Cerny (1999), Hodges (1998). The theory presented here shows that
any of these techniques can be seen as a generalization of no-arbitrage pricing.
The common structure is provided by the Extension and Pricing Theorems,
already well known from no-arbitrage pricing, see Kreps (1981). We derive
these theorems in no-good-deal framework and establish general properties
of no-good-deal prices. These abstract results are then applied to no-good-
deal bounds determined by von Neumann-Morgenstern preferences in a finite
state model'. One important result is that no-good-deal bounds generated by
an unbounded utility function are always strictly tighter than the no-arbitrage
bounds. The same is not true for bounded utility functions. For smooth utility
functions we show that one will obtain the no-arbitrage and the representa-
tive agent equilibrium as the two opposite ends of a spectrum of no-good-deal
equilibrium restrictions indexed by the maximum attainable certainty equiv-
alent gains.

A sizeable part of finance theory is concerned with the valuation of risky
income streams. In many cases this valuation is performed against the back-
drop of a frictionless market of basis assets. Whenever the payoff of the focus
asset can be synthesized from the payoffs of basis assets the value of the focus
asset is uniquely determined and this valuation process is preference-free —
any other price of the focus asset would lead to an arbitrage opportunity.
In reality, however, the perfect replication is an unattainable ideal, partly
due to market frictions and partly due to genuine sources of unhedgeable
risk presenting themselves, for example, as stochastic volatility. When per-

fect replication is not possible — a situation synonymous with an ‘incomplete

'Each of the no-good-deal restrictions mentioned above is in fact derived from a utility
function: for Bernardo and Ledoit it is the Domar-Musgrave utility, for Cochrane and Saa-

Requejo it is the truncated quadratic utility, and for Hodges it is the negative exponential
utility, see Cerny (1999).



market’— the standard Black-Scholes pricing methodology fails because the
price of the focus asset is no longer unique.

One way to overcome this difficulty is to single out one price of the focus
asset consistent with the price of basis assets. This can be achieved via
the representative agent equilibrium, where the ‘special’ pricing functional
is obtained from the marginal utility of the optimized representative agent’s
consumption, see Rubinstein (1976).

A valid objection against the representative agent equilibrium is that it
imposes very strong assumptions about the way the equilibrium is generated.
Alternative route is to look for preference-free price bounds, in the spirit of
Merton (1973), which leads to the calculation of super-replication bounds?.
However, these bounds have a practical shortcoming in that they tend to be
rather wide and hence not very informative.

Recently a new approach has emerged whereby it is accepted that the
price of a non-redundant contingent claim is not unique, but an attempt
is made to render the price bound more informative by restricting equilib-
rium outcomes beyond no arbitrage. Typically, one tries to hedge the focus
asset with a self-financed portfolio of basis assets to maximize a given ‘re-
ward for risk’ measure and rules out those focus asset prices that lead to a
highly desirable hedging strategy. Such a procedure gives a price interval for
every contingent claim where the interval is the wider the more attractive
investment one allows to exist in equilibrium.

The idea of good deals as an analogy of arbitrage comes naturally at this
point. Recall that arbitrage is an opportunity to purchase an unambiguously
positive claim, that is a claim that pays strictly positive amount in some
states and non-negative amounts in all other states, at no cost. While the
absence of arbitrage is surely a necessary condition for the existence of a
market equilibrium, it is still a rather weak requirement. Considering a claim
with zero price that either earns $1000 or loses $1 with equal probability, one
feels that, although not an arbitrage, such investment opportunity still should
not exist in equilibrium. One can then define ‘approximate’ arbitrage, or as

we say here ‘good deal’, as an opportunity to buy a desirable claim at no

cost.

2See Ritchken (1985) for a one-period finite state setting and El Karoui and Quenez

(1995) for a continuous time model.



Historically, good deals have been associated with high Sharpe Ratios.
The Arbitrage Pricing Theory of Ross (1976) is a prime example of ruling out
high Sharpe Ratios. Further breakthrough came with the work of Hansen and
Jagannathan (1991) who established a duality link equating the maximum
Sharpe Ratio available in the market and the minimum volatility of discount
factors consistent with all prices. While Hansen and Jagannathan use this
result to construct an empirical lower bound on discount factor volatility,
Cochrane and Sad-Requejo (2000) realize that it can be used in the opposite
direction, namely to limit the discount factor volatility and thus to infer the
no-good-deal prices conditional on the absence of high Sharpe Ratios.

It is well known that outside the elliptic world the absence of high Sharpe
Ratios does not generally imply the absence of arbitrage. Other researchers
therefore tried to come up with reward for risk measures that would auto-
matically capture all arbitrage opportunities. Bernardo and Ledoit (2000)
base the definition of good deals on the gain-loss ratio and Hodges (1998)
uses a generalized Sharpe Ratio derived from the negative exponential utility
function. Cerny (1999) calculates the Hansen-Jagannathan duality link for
good deals defined by an arbitrary smooth utility function and proposes a
reward for risk measure generated by the CRRA utility class.

In this paper we point out that, regardless of the specific definition of
good deals, the nature of the duality restrictions is formalized in the ez-
tension theorem, already well known from the no-arbitrage theory®. The
extension theorem states that any incomplete market without good deals
can be augmented by adding new securities in such a way that the resulting
complete market has no good deals. The important point is that the set of
complete market state prices which do not allow good deals is independent
both of the basis and the focus assets. The pricing theorem uses the above
fact to assert that any no-good-deal price of a focus asset must be supported
by a complete market no-good-deal pricing functional. These results are cru-
cial both for establishing the theoretical properties of no-good-deal prices,

which will be discussed here, and for practical applications, see for example

Cerny (1999).

3Incidentally, it is Ross again (we already mentioned his APT contribution) who has
introduced the extension theorem to finance in his 1978 paper on the valuation of risky
streams. The extension theorem in no-arbitrage setting has been studied extensively in

the realm of mathematical finance, starting with Kreps (1981).



The paper is organized as follows: The first section reviews the essen-
tials of no-arbitrage theory and builds the no-good-deal theory in analogous
way. The second section derives abstract versions of the Extension Theorem
and the Pricing Theorem in no-good-deal framework. Section three applies
the theory to desirable claims defined by von Neumann-Morgenstern pref-
erences in finite state space. The results of this section are summarized in
the no-good-deal pricing theorem of section four, where we also discuss the
similarities and differences between the finite and infinite state space. The
fifth section gives a geometric illustration of the theory by taking an exam-
ple from the literature — desirable claims determined by Sharpe ratio as in

Cochrane and Sad-Requejo (2000). Finally, section six concludes.

1 Arbitrage and good deals

In this section we briefly describe the axiomatic theory of no-arbitrage pric-
ing! and show how it can be analogously used to define good deals and
no-good-deal prices. The model of security market is an abstract one, the
application to a multiperiod security market is spelled out in Clark and in
the references mentioned in the introduction. One should bear in mind that
in this section the origin 0 is not to be taken literally as a position with zero
wealth, rather it is the position relative to an initial endowment.

We will have a topological vector space X of all contingent claims. The
space of all continuous linear forms on X (strong dual) is denoted X*. The
vector space X will be endowed with a natural ordering > which defines the

positive cone® X = {z € X : z > 0}. The cone of strictly positive claims is
Xip={reX:z>0 =X,\{0}.

Suppose we have a collection of claims with predetermined prices, so

called basis assets. These claims generate the marketed subspace M and

1This section is based on Clark (1993).

®In no-arbitrage pricing one works with natural (canonical) ordering. Thus, for exam-
ple, positive cone in R™ is formed by n-tuples with non-negative coordinates, positive cone
in LP by non-negative random variables etc. Note that a claim (1,0,0) € R? is strictly
positive in the canonical ordering on R? but at the same time it is equal to zero with
positive probability, therefore ‘strictly positive in X’ is not to be confused with strictly
positive with probability one. The term ‘strictly positive’ will only be used when we have

in mind the canonical ordering on X.



their prices define a price correspondence p on this subspace. The cone of

strictly positive claims has the following role:

Definition 1 A strictly positive claim with zero or negative price is called

arbitrage.

Definition 2 Let M be a linear subspace of X. A linear functional p : M —
R is positive if p(m) > 0 for allm € M N X,. We say that p is strictly
positive if p(m) > 0 for allme M N X,,.

Standing assumption 1 There is a strictly positive marketed claim.
Clark shows that under this assumption no arbitrage implies that the
price correspondence p is in fact a strictly positive linear functional. This
result guarantees, among others, unique price for each marketed claim.
Now we move on to define generalized arbitrage opportunities — good
deals. Suppose we have a convex set K disjoint from the origin which we
interpret as the set of all desirable claims. At the moment we do not spec-
ify how the set of desirable claims is obtained or what are its additional
properties. The relationship between arbitrage and strictly positive claims is

generalized as follows:

Definition 3 A desirable claim with zero or negative price is called a good
deal.

Frictionless trading leads to the following definition:

Definition 4 A claim is virtually desirable if some positive scalar multiple

of it is desirable. The set of all virtually desirable claims is denoted C,,

Cip = JAK
A>0
A virtually desirable claim at zero or negative price constitutes a virtually
good deal. When markets are frictionless the presence of a virtually good deal
implies the existence of a good deal, simply by re-scaling the portfolio which
gives the virtually good deal. Thus the absence of good deals implies absence

of virtually good deals and vice versa.

Proposition 1 There are no good deals if and only if there are no virtually

good deals.



Geometrically the set of all virtually desirable claims is the convex cone

with vertex at 0 generated as a convex hull of 0 and the set of desirable claims

K.

S

K&z

A?

Figure 1: The cone of virtually good deals C (AOA') generated by the set of
good deals K

To benefit fully from the analogy between arbitrage and good deals we
have to realize that, similarly to X, the cone C' = C,, U{0} defines ordering
on the space of all contingent claims by putting z; > z5 when z; — 25 € C
and z; > z3 when x; — x5 € C. Similarly as in Definition 2 we can speak
of C-positive functionals and C-strictly positive functionals. The key point
is that the link between no arbitrage and strictly positive pricing rule carries

over to good deals.

Theorem 1 Suppose that there is a (virtually) desirable marketed claim and
the price correspondence p on the marketed subspace M gives no good deals.
Thenp: M — R is a C-strictly positive linear functional, i.e. p(m) is unique
Jor allm € M, p(my+my) = p(my)+p(ms) for allmy,my € M and p assigns

strictly positive price to all (virtually) desirable marketed claims.

Proof. The proof follows from the proof of Theorem 1 in Clark (1993)
when X is replaced with C, or equivalently > with >~. m
Since we are guaranteed that p is a linear functional we can define a

subspace My(p) of all claims with zero price which plays essential role in the

extension theorem.



2 Extension theorem

2.1 The idea

The extension theorem states that an incomplete market without good deals
can be augmented by adding new securities in such a way that the resulting
complete market has no good deals. The important point is that the set
of complete market state prices which provide no good deals is independent
both of the basis and the focus assets present in the market. The pricing
theorem uses the above fact to provide a complete characterization of the
no-good-deal price region since any no-good-deal price of a focus asset must
be supported by a complete market no-good-deal pricing functional.

The pricing function on the marketed subspace defines a yet smaller sub-

space of marketed claims with zero price, denoted Mpy(p).

Definition 5 For a given strictly positive pricing functional p on M we say
that

Mo(p) = {m € M : p(m) = 0}
is a zero investment marketed subspace®.

In the absence of good deals this subspace must be disjoint from the set
of good deals K,

Mo(p) N K = 0.

As the figure 2 suggests it is quite natural to expect that if My(p) is
disjoint from K then there is a hyperplane H containing My(p) and still
disjoint from K. The separating hyperplane H is interpreted as the zero
investment subspace of the completed market. The fact that H is disjoint

from K guarantees that there are no good deals in the completed market.

2.2 Technicalities

Mathematicians distinguish among three types of separation of two convex

sets. Weak separation means the separating hyperplane may touch both

5The term ‘zero investment portfolio’ was introduced by Ingersoll (1987), alternatively

one could use the term ‘zero cost marketed subspace’.
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Mo(p)

Figure 2: Illustration to the Extension Theorem

sets. Strict separation signifies that the separating hyperplane does not touch
either of the convex bodies but can come arbitrarily close to each of them.
Strong separation occurs when there is a uniform gap between the separating
hyperplane and both of the convex sets. It is hard to find references to
semistrict separation, which is what we need here, because the separating
hyperplane will touch Mp(p) but we would like it to be disjoint from K.

By drawing pictures in R? one is tempted to conjecture that semistrict
separation is always possible in finite dimension. However, this conjecture
is false, as a three dimensional example in Lemma A.l shows. Thus the
situation in finite dimension is quite clear: K and Mp(p) can always be
weakly separated, and it follows from Lemma A.1 that in general one cannot
expect more. When K is closed and bounded the two sets can be strongly
separated, and when K is open the two sets can be separated semistrictly,
see for example Beavis and Dobbs (1990).

In infinite dimension not even weak separation is available automatically,
for a nice counterexample see Schachermayer (1994). Weak separation is
available when K has non-empty interior and semistrict separation is possible
when K is open. Strong separation becomes possible when K is compact.

These facts motivate the following definition.

Definition 6 We say that the set of desirable claims K is boundedly gen-
erated if there is a closed bounded set B C K such that any desirable claim

in K can be obtained as a scalar multiple of a desirable claim in B.

For boundedly generated sets of desirable claims we obtain a clear-cut

9



result both for the extension and pricing theorem thanks to weak compactness

of bounded sets in standard probability spaces.

Theorem 2 (Extension Theorem) Suppose X = LI(Q,F,P),1 < q <
+00, the set of good deals K is closed and boundedly generated and the zero
investment marketed subspace is closed. Then there is a C-strictly posz’tivé
continuous linear extension of the pricing rule p on the marketed subspace to

the whole market if and only if there is no good deal.

Proof. See Appendix A. m

Definition 7 Suppose we fix a set of desirable claims K with the implied
cone C of virtually desirable claims. A continuous C-strictly positive func-

tional on X 1is called a no-good-deal pricing functional”. The set of all such

Junctionals is denoted C7
Ciy={peX :¢(z) >0 forallz € K}.

Making use of the Extension Theorem we can completely characterize the

no-good-deal price region for several focus assets jointly®.

Theorem 3 (Pricing Theorem) Suppose X is an LP space, 1 < p < 400,
and the set of desirable claims is closed and boundedly genmerated. Let us
have a closed marketed subspace M in which prices are given by a C-strictly
posilive and continuous linear [unctional ¢. Let there be further m focus

assets with payoffs v1,vya, ... ,Ym, no-good-deal price of which we want to
find. Then

a) the no good deal price region P for these claims is given as

P={(e@), .., oUn) ER™: p € C}, andp|M = ¢},

where | M is the restriction of ¢ to M,

b) P is a convez set in R™,

"In practical applications it is unusual to work with abstract linear functionals. For
different representations of complete market pricing rules see e.g. Dybvig and Ross (1987),
page 104.

8Tor discussion of these results see Theorem 5.
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c) defining N = span(M,vy1,Ys, ... ,Ym) the dimension of the price region
P satisfies

dim P = codimy M (1)

which is the codimension of the marketed subspace in the enlarged marketed
subspace N.

d) the no-good-deal price of y; is unique if and only if vy; is redundant,
that isy; € M

e) let Ky and K, be two boundedly generated sets of desirable claims,
K; +eBy C Ky for some € > 0, where By is a unit ball in X in strong

topology. Let P, and P, be the corresponding no-good-deal price regions.
Then

clP, C rel — intP;.

Proof. See Appendix A m

3 Desirable claims and agent preferences

The results derived so far were concerned with an abstract set of good deals.
In this section we will show how desirable claims can be determined by agent
preferences, in particular by expected utility, and examine when good deals
defined in this way include all arbitrage opportunities. This approach al-
lows to formulate a whole range of equilibrium restrictions as we choose K
smaller or larger. We discuss two limiting cases of no-good-deal pricing — the
no-arbitrage pricing and representative agent equilibrium. We only have a
complete answer for X finite dimensional, so we stick to this case from the
beginning, leaving the technical issues related to infinite dimension to section
4.2.

Consider a preference relation >=* which is a) convex, in the sense that
the level set {x € X : x >* y} is convex for all y € X; b) X, strictly
increasing, i.e. * —y € X, implies z >* y; ¢) continuous, i.e. both sets
{reX:z<*y},{z e X:z "y} are open.

For any strictly increasing utility function U the preference relation

z>"y e EU(z+w,) > EU(y + w,) (2)

11



satisfies the conditions a), b) and c¢). The reference point w, is very often
taken as wealth resulting from the risk-free investment, with z and ¥y being
excess returns. The analysis remains valid, however, even when reference
wealth level w, is stochastic. We may want to think of w,, for example, as
the representative agent’s optimal wealth derived from investing into basis
assets only.

Let 1 be a claim that pays 1 unit of the numeraire in each state of the

world. Let us take a non-negative number a and define K(a) as the upper

level set
K(a)={re X :z =" al}.

Thus we obtain a family of sets of desirable claims indexed by the desirability
level a°. The quantity a is interpreted as the certainty equivalent gain over
and above the reference wealth level w,. Monotonic transformations of a

define various, but in essence equivalent, reward for risk measures!'®

|
yd

0 \\\\.
Figure 3: Sets of desirable claims K, D K, D K. indexed by desirability
levelsa <b<c

Note that if a claim z is desirable then all claims z + X are desirable

9This works well for smooth utility functions. Bernardo and Ledoit use Domar-
Musgrave (piecewise linear) utility function which gives K (a) = K (b) for all a > 0,b > 0.
The widening of the set of desirable claims is not achieved by changing the parameter a
but rather by changing the shape of the utility function, that is by varying the gain-loss

ratio — the ratio of slopes of the two linear parts of the function.
10Not to be confused with ‘coherent risk measures’, of Artzner et al. (1999). As noted

in Hodges (1998), the lower good-deal bound is a coherent risk measure in the sense of
Arztner et al., whereby the set of ‘acceptable risks’ is identified with the set of desirable

claims. See also Jaschke and Kuechler (2001)
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too, which is a natural property that all ‘cood’ sets of desirable claims should
satisfy.

The key question is, whether, or under what assumptions, the set of
desirable claims is boundedly generated. First, let us discuss situations when

it is not.

Definition 8 The set K(a) has an asymptote z € X if {\z|\ € R}NK (a) =
0 and for any e > 0 {Az|A € R}NK(a —¢) # 0.

Clearly, unless K (a) is asymptote-free one cannot hope, in general, that
it will be boundedly generated. With this observation in mind we proceed
to examine sets of desirable claims generated by Von Neumann-Morgenstern

preferences.

3.1 Arbitrage subsumed by good deals

In order for no-good-deal pricing to be economically meaningful the absence
of good deals must imply the absence of arbitrage. For this to be true each
strictly positive claim must be virtually desirable, mathematically C, (a) 2
X4+ In general not all arbitrage opportunities will be covered by virtually

good deals. This leads us to the following definition:

Definition 9 We say that the preference relation =*is arbitrage-sensitive if
and only if for any desirability level a and any strictly positive!! claim z a

sufficiently large scalar multiple of = is preferred to the claim al.

In other words arbitrage sensitivity requires that a sufficiently high posi-
tion in any arbitrage opportunity gives an (arbitrarily) good deal. A simple
example of strictly increasing preferences that do not satisfy this requirement
is given below.

The indifference curve has two asymptotes, one vertical and one horizon-
tal. In such a case the set of virtually good deals will contain the interior of
the positive quadrant but not the axes z and y.

In the case of von Neumann-Morgenstern preferences the arbitrage sen-

sitivity condition is met by unbounded utility functions (Lemma B.3), but

11 Note again that strictly positive does not mean strictly positive with probability one,

but rather non-negative and different from zero. See also the footnote in section 1.
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0 T

Figure 4: Set of desirable claims K such axes z and y are not virtually

desirable

it is violated by all bounded utility functions, because strictly positive claims
which pay nothing with sufficiently high probability do not constitute vir-
tually desirable claims, see Lemma B.2. At the same time the ‘inside’ of
positive orthant (that is all claims which are strictly positive with proba-
bility 1) is virtually desirable. Thus to prevent arbitrage opportunities one
must take

Cp=c|JAK
A>0
instead of
C. =K.
A>0

Although this strengthening of no-good-deal equilibrium is purely cosmetic
from the practical point of view, it highlights a different problem. Since one
is not guaranteed that C, ; X4, the no-good-deal price bounds generated
by bounded utility functions are not necessarily tighter than the no-arbitrage
bounds. This problem is pointed out in Bernardo and Ledoit (2000) and it
is present equally in Sharpe Ratio restrictions of Cochrane and Sad-Requejo

(2000) and generalized Sharpe Ratio analysis of Hodges (1998).

3.2 Arbitrage as a limiting case of good deals

Suppose now that the preferences are arbitrage sensitive, i.e. Ciy(a) D X
for all a € R. At the same time the sets C,(a) become progressively

smaller as the desirability level a increases. It is interesting to see under

14



what conditions good deals reduce to arbitrage in the limit, that is under

what circumstances do we have

ﬂ Cii(a) = Xy

a>0
Definition 10 We say that the preference relation >* is downside-sensitive
if each ray generated by a mon-positive claim is dominated by a claim al

where a is a sufficiently large positive number.
As an immediate consequence we have

Proposition 2 For preferences which are arbilrage-sensitive no arbitrage
is a limiting case of no good deal equilibria as a — oo if and only if the

preference relation is downside-sensitive.

For von Neumann-Morgenstern preferences to be downside-sensitive the
generating utility function must discount negative outcomes sufficiently heav-
ily,

T

U(z)

lim
T——0C0

=0 3)

as demonstrated in Lemma B.4. This condition is satisfied by all frequently
used utility functions, except for the Domar-Musgrave utility, see footnote 9.
More importantly, by virtue of Lemma B.1 the downside sensitivity prop-

erty (3) guarantees that the sets of desirable claims are boundedly generated.

Theorem 4 [For any unbounded utility function satisfying

lim — =0

o0 T (2)

the set of desirable claims K (a) is boundedly generated for any a € R.

Proof. See Appendix B. m

3.3 Representative agent equilibrium as a limiting case

Suppose for simplicity that the reference wealth level is w, = 0. Asa — 0
the cone of virtually good deals is getting wider and eventually becomes a

hyperplane provided that the indifference surface is sufficiently smooth. At



Figure 5: Set of desirable claims K(a) for a — 0

the same time the cone of complete market state prices becomes narrower
until it finally collapses into the gradient of indifference surfaces.

In the presence of basis assets we first find the market portfolio wj; that
achieves the maximum certainty equivalent gain aj;. It is clear that if we add
more assets then the attainable certainty equivalent gain will be at least a;;.
The condition a < a) is now equivalent to requiring that the new asset does
not shift the efficient frontier

EU(Z + ’U)M) - EU(’UIM) S 07 (4)

where Z is the excess return of the new asset with respect to the market
portfolio. For Z sufficiently small and U sufficiently smooth we have EU(Z +
wyr) — BU(wy) = EU' (wpr)Z = 0, the last equality being the consequence
of the no-good-deal condition (4). This implies that the new claim must be
priced with the change of measure proportional to the marginal utility of the
representative agent. When there are no basis assets this amounts to risk-
neutral pricing'? because U’'(R/wyp) is constant. We formalize this intuition

in the following section.

12Not to be confused with the pricing under risk-neutral probabilities. Here we mean
the risk-neutral valuation under objective probabilities, one which is frequently used in

macroeconomics.
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4 No-good-deal pricing theorem for utility-

based equilibrium restrictions

4.1 Finite state space

In a finite state model with equilibrium restrictions generated by an un-
bounded utility function one obtains a clear-cut characterization of no-good-

deal price bounds.

Theorem 5 Suppose dim X < +oco. Let us have a downnside-sensitive un-
bounded (arbitrage-sensitive) utility function U, which is once differentiable
and strictly concave. Denote the set of all claims with desirability level a or
higher as K(a). Let there be a marketed subspace M in which there is no
arbitrage and denote My the set of marketed claims with zero price. Assume
that there is a risk-free security with return RY. Let there be further m focus
assets with payoffs y1,va, ... ,Ym, and let us denote P(a) C R™ the region
of prices of the focus assets such that no claim in the extended market has

desirability level exceeding a. Then

a)

sup U(w) = ap < 400
wEe My

is achieved in My. Let us denote the unique argmaz wy — the market port-
folio.
b) P(a) is empty for a < ap; and it is a non-empty convez set for a > ayy,
c) defining N = span(M,y1,Ys, - .. ,Ym) the dimension of the price region
P(a) satisfies

dim P(a) = codimy M (5)
Jor a > apr, whereas P(ayr) is a singleton

Emy, Em Emaym
P(ay) = {( RA;yl’ Rz\]{w,,” ,_R”J{L>} (6)

: U’
with my, = L)

= TU'(war)
d) if codimy M > 0, that is if at least one focus asset is non-redundant,
then for all a and b such that ayr < a<b

clP(a) C rel — intP(b),

17



that is for a < b the no-good-deal price region P(a) is strictly smaller than
P(b)
e) denoting Py, the no-arbitrage price region for the focus assets we have

lim P(a) = Pya

a—--co
that is UgerP(a) = Py a.
f) if codimy M > 0 then for any desirability level a the no-good-deal price

region 1s strictly smaller than the no-arbitrage price region.

Remark 1 1. One needs an unbounded utility function to make sure that
good deals include all arbitrage opportunities. A bounded utility func-
tron leaves out strictly positive claims which are equal to zero with suf-
ficiently high probability. For the same reason the set of good deals
defined by a bounded utility function need not be asymptote-free, in

which case one cannot expect property d) to hold.

9. The condition

lim —— =0
o0 U(a)
is necessary (and sufficient) for no-good-deal restrictions to reduce to
no-arbitrage restrictions in the limit. For unbounded utility functions
this condition implies that the sets of good deals are asymptote-free. In
Jinite dimension asymptote-free set is always boundedly generated (see
the proof of Theorem 5).

3. Eristence of a risk-free security simplifies the pricing formula (6) but
this assumption is not necessary. It suffices to have a marketed claim xq
which is strictly positive, in fact desirable would suffice, see the proof

of Theorem 2. The pricing formula has to be adjusted accordingly,
EU'(war) 22
replacing RY with %‘l, where po > 0 is the price of xy.

4. Smoothness of U is necessary (and sufficient) to obtain the singleton
property of P(aps). Strict concavity is sufficient but not necessary, in
addition it implies uniqueness of the market portfolio wy;. The smooth-
ness assumption is relaxed in Bellini and Fritelli (2000), whose results
imply that in general P(apr) is non-empty but not necessarily a single-

ton when X = L*.

18



4.2 Infinite state space

We do not know how to rephrase Theorem 5 in an infinitely dimensional
state space. Let us at least summarise some of the important differences

that make the problem in infinite dimension harder and more interesting.

1. Continuity: Expected utility in finite dimension is automatically con-
tinuous. In infinite dimension continuity is determined by the left tail

of the utility function and the topology. For example, for a utility

function with

fm @)

oo TaP 1 = const

the expected utility is continuous in IP,p > § > 1. With continu-
ous expected utility Extension Theorem is available via Hahn-Banach
theorem. Similarly, with U defined on the whole real line the expected
utility is continuous in L*° this fact is used in Bellini and Fritelli (2000).

2. No arbitrage vs. bounded attractivness: In finite dimension no
arbitrage implies that maximum certainty equivalent gain attainable in
the marketed subspace is always finite. In infinite dimension this is no
longer true, one can have no arbitrage but yet the attractiveness of self-
financed investment opportunities may be unbounded. Consider, for
example, a complete market where the state of the world is determined
by the random variable X with x?(1) distribution. Assume that the
risk-free rate is 0 and suppose the state prices are given by the following

state price functional (change of measure)

X

m(X) = constlj_X.

Since Eliix is finite the constant above can be set to satisfy
Em =1.

It is known, see for example Cerny (1999), that the certainty equivalent

gain for the negative exponential utility in a complete market is

apr = Emlnm.
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However in this case ajr = oo as the integral

Emlnm = / T2 [z —In(1 + )] Td:c

diverges at the upper bound. As we pointed out above, expected utility

1s continuous in this case.

3. Asymptotes: As in finite dimension, asymptotes can only be strictly
positive, and such asymptotes can exist only when utility is bounded.
For unbounded utility satisfying lim;_, _o, ﬁ = 0 any set of desirable
claims is asymptote-free. However, unlike in finite dimension, this does
not imply that the set of desirable claims is boundedly generated. One
can easily see this by examining a sequence of strictly positive rays
which have non-zero payoff with increasingly smaller probabilities. In
other words, the positive cone in infinite dimension is not boundedly
generated by von Neumann-Morgenstern preferences. This is really
caused by the upper tail of the utility function, thus it has nothing to

do with continuity of preferences.

5 Geometric illustration - Sharpe ratio re-

strictions

The simplest illustration of the duality between the set of desirable claims and
the set of no-good-deal complete market pricing functionals comes from the
mean-variance framework. The term ‘good deal’ was introduced by Cochrane
and Sad-Requejo (2000) in a specific situation where desirable claims are
those with high Sharpe ratio of the excess return. This particular application
of no-good-deal equilibrium provides a very nice geometric illustration of the
theory developed in sections 1 and 2

It is convenient to have X = L2. Denoting & the bound on Sharpe ratios

which are acceptable in equilibrium the set of desirable claims is given as
Ex

VB @y T

We note that the cone of virtually desirable claims C.; (h) is identical to

Kh)={zeX:

K (h) and it can be rewritten more conveniently as
Ez h
|I$|| ~ V1 +h2

Chy=K(h)={ze€ X:
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where || - || is the L? norm. The geometry of the cone of desirable claims is
simple — it is a circular cone with the axis formed by vector 1 € L? and the

and consequently cot o = h,

angle at the vertex is «, such that cosa = \/%ﬁhr,

see Figure 2.
Recall that no-good-deal price functionals ¢ must satisfy ¢(K) > 0 and
that each continuous linear functional ¢ on L? is uniquely represented by a

random variable m € L? as follows
o(z) = Emz.

Thus the cone of no-good-deal pricing rules can be identified with the cone

of discount factors
é’i+(lz) ={m e L’ :Emz >0 foralz e C,,(h)}

Note that every no-good-deal discount factor must be at sharp angle with
every desirable claim. But since the shape of C,(h) is very simple we can
characterize é’_’; +(h) explicitly.

B

A,
Figure 6: Cone of good deals K (AOA’) and the cone of discount factors C*

(BOB’) determined by maximum attainable Sharpe ratio h = cot a.

As the picture shows the cone of no-good-deal discount factors is again a
circular cone with the axis 1 € L? and with the angle at the vertex 8 = & —a
that is

)

~ Em T 1 1
* _ 2. L _ B _ 1
C*(h) ={m e L*: T — (B > cot(2 a)=tana = e h}'

In other words any discount factor m € L? that prevents Sharpe Ratios
higher than h must satisfy % > 1 which is the condition obtained by

h
Hansen and Jagannathan (1991).



5.1 Preventing arbitrage

The above relationship describes the duality between C (h) and C*, (h) but
1t does not guarantee that the functionals in C*(h) are strictly positive. To
fix this problem one has to rule out both high Sharpe ratios and all arbitrage
opportunities. However, one cannot take C (h)UX,, as the set of desirable
claims because this set is not convex and the extension property would be
immediately lost. Cochrane and Sad -Requejo therefore take convex hull of
Ch4(h)UX, 4 as the set of desirable claims, which means they are ruling out
not only high Sharpe ratios and arbitrage opportunities but also all convex
combinations of the two, that are generally neither arbitrage opportunities
nor high Sharpe ratios. It can be shown, however, that this set of desirable
claims is generated by a truncated quadratic utility function, and that it can

be associated to a level of a generalized Sharpe ratio, see Cerny (1999).

6 Conclusions

The theory presented here shows that pricing techniques which impose equi-
librium restrictions stronger than no arbitrage can be seen as a generaliza-
tion of no-arbitrage pricing. We derived the Extension and Pricing The-
orem in no-good-deal framework and showed that the Extension Theorem
captures the trade-off between equilibrium outcomes and discount factor
restrictions. We have shown that equilibrium restrictions implied by von
Neumann-Morgenstern preferences contain no-arbitrage and representative
agent equilibrium as the two opposite ends of a spectrum of possible restric-
tions. In finite state models we have settled the question of how tight are the
no-good-deal price bounds generated by a utility function. It is somewhat
surprising that price bounds implied by strictly increasing utility functions
are not always tighter than the no-arbitrage bounds. At the same time our
results moderate the Bernardo-Ledoit critique of CRRA bounds — in finite

state models these are always tighter than the no-arbitrage bounds.

[N
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Appendix A

Proof of Theorem 2

Since K is boundedly generated, there is a closed bounded set B € K
such that K C |J,,oAB. Therefore, it is enough to strictly separate B and
Mo(p).

With 1 < p < oo I? is a reflexive space. By Theorem 19 C in Holmes'®
Moy (p) and B can be strictly separated by a continuous linear functional, i.e.
there is ¢p € X* such that ¢(Mo(p)) = 0 and (B) > 0. However, this implies
¢(Cry) > 0.

By standing assumption 1 there is a marketed strictly positive claim .
Define H £ My(p). Because H does not intersect C., , and therefore
Xi4, we have zp ¢ H. Finally, because H is a hyperplane we have the
spanning property X = H @ Span[zo], so that each claim y € X has a unique
decomposition y = yy + Ao, where yy; € H. By construction p(y) £ \,p(z)
is a no-good-deal price of claim y. It is easily seen now that p = %Z—?)-go is
an extension of the original pricing rule p. Since ¢ is C-strictly positive and
continuous p must be C-strictly positive and continuous which completes the
proof.

Proof of Theorem 3

a) By Theorem 2 there is no good deal in N if and only if there is a CNN-
strictly positive continuous pricing functional ¢ in N. It is the continuity
that we are worried about. We will show that no good deal in N implies
that No(p) is closed and disjoint from K. Then the assertion follows from
the Extension Theorem.

Functional ¢ has to price correctly all claims in M, ¢|M = ¢. This implies
(N D)No(¢) D Mo(¢). Note, however, that codimpyMy(¢) < m + 1 and
hence codimpy ) Mo(¢p) < m + 1. In other words No(p) = Mo(¢) @ L where

dimL is finite. Since ¢ is continuous and M is closed, the zero investment

13Tor completeness we provide the proof of that part of the theorem which is relevant
to us and which Holmes leaves as an exercise: It is known that the unit ball U(X) in a
normed reflexive space is weakly compact (Theorem 16 F). Furthermore for convex sets
‘closed’ is equivalent to ‘weakly closed’ (Corollary 12 A). J is closed, convex and bounded,
therefore weakly compact. IV is convex, closed and therefore weakly closed. The separation
theorem for one closed and one compact convex set (Corollary 11 ) asserts that N and
J can be strictly separated by a weakly continuous functional 7, however such functional

is continuous in the original topology on X as well (Theorem 12 A).
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- marketed subspace Mo(¢) is closed in X. Then also No(p) = My(¢) @ L is
closed because L is finite dimensional. Now ¢ is K N N-strictly positive and
therefore No(p) N K = {.

b) The convexity of the no-good-deal price region follows from the convex-
ity of complete market no-good-deal state prices and the part a). Namely, if
p1,p2 € P then by assertion a) there exist functionals ¢, @, € C1 ., ¢;(y) =
s, that price correctly all claims in M. Of course, the functional Ap; + (1 —

A, € C7 . prices claims in M correctly, too, and therefore by assertion a)
(Ap1 + (1= Npa)(y) = Ap1+ (1= N)p2 € P.

¢) To prove the last statement we will first demonstrate that the cone of
no-good-deal pricing functionals C}, is open. Let us take B as in the proof
of Theorem 2 and denote k = sup,p ||z||.

i) Take an arbitrary ¢ € C?%, and denote () = infycp (). We claim
that € > 0. For the purpose of contradiction suppose that € = 0. Then
there is a sequence z, € B such that lim¢(z,) = 0. Since B is closed,
convex and bounded, from the reflexivity of X follows that B is weakly
sequentially compact (Holmes, Theorem 16F and Corollary 18 A). Hence
there is a subsequence z;, converging weakly to z € B implying ¢(z) = 0.
However, z € B C C, contradicts ¢ € C%,.

Thus ¢(K) > € > 0. Taking an arbitrary functional v € X* such that
l|¥|| < = and z € X, we have

2K

(p+9)(@) > p(@) ~ [l llall > & = =~ >0

Z

which means that ¢ +1 € X}, whenever ||4|| < 5=. Since ¢ is arbitrary

this means that X} | is open in the norm topology on X*.

ii) Let us first assume that codimyM = m. Applying Hahn-Banach
theorem to the subspace span(MU{y1,... ,Yj—1,Yjt+1,--- ,Ym}) and the point
y; one can find linear functionals 4;,7 = 1,... ,m such that 1;(M) = 0 for all
j and 9,(y;) = 6;; (Kronecker’s delta). By the Extension Theorem the pricing
rule on M can be extended to a strictly positive functional ¢, that correctly
prices securities in M. Note that functionals ¢+, too price these securities
correctly and moreover for |A| sufficiently small ¢ + A, will be a strictly
positive functional by the result in i). Thus the price vectors @,(y) + Mp;(y)

give no-good-deal prices for securities y = (yi,... ,Ym) consistent with the
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predetermined prices of securities in M. By construction ¥;(y) are linearly
independent vectors in R™ and recall that dimP is defined as the dimension
of the affine hull of P — g (y) (which is a linear subspace) thus the dimension

of the price region P is at least rank(1;(y),... ,%n(y)) = m, and of course

it cannot be more than m.

iii) In a general case a certain number of vectors ¥;, say m — I, will lie in
the marketed subspace M. However, for any @ that prices correctly claims
in M the difference @(y;) — po(y;) will be zero, hence if y; € M it will not
contribute to the dimensionality of the price region.

That leaves [ claims that do not belong to the marketed subspace and
these we partition into two groups — the first m claims ¢} = (yi, ... ,¥s) that
are linearly independent and the remaining I — 7 claims ¢}, = (Ymy1,... , 1)
that can be expressed as a linear combination of the first 7 claims, ¢y = De;
with D € RU-R)xm

First of all it is clear that there cannot be more than 7 linearly inde-
pendent vectors of the type ¥(y1),... ,%(y;). If there were more, one could
find a non-trivial linear combination of these vectors that annuls the first m
coordinates, ", A;1;(c1) = 0. However, such a linear combination annuls the

remaining ! — m coordinates as well since

Z Ait;(ea) = Z Aip;(Dey) = Z AiD;(e1) = D (Z Aﬂ/’i(ﬁ)) =0.

On the other hand one can find 7 linearly independent prices of the desired
form by the procedure described in ii). Thus dim P = m and by construction

m = codimpy M.

d) Suppose there is just one security to be priced, say security y; and
denote its no-good-deal price region P C R*. We set N = span(M U {y;})
and have codimy M = 0 if and only if y; € M. By definition the no-good-deal
price of y; is unique if and only if dimP = 0. Then the assertion c¢) implies
that y is uniquely priced if and only if 4 is redundant.

e) i) Define By, B; and k1, kg in analogy to B and & in c¢). We want to

show that for all ¢, € C3, | and for all ) € X* such that ||¢|| < s% we have

v1

©y + 'lﬁ S C’f”

[N}
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Let us take an arbitrary ¢, € Cs,, which implies @,(J; + £Ball(0,1)) > 0

and consequently

pa(J1) — elleal| > 0. (A1)

Furthermore, if ¢, prices correctly all the basis assets then ||o,|| > ||¢|| = v.
The standing assumption 1 implies v > 0. Taking an arbitrary ¢ € X* such
that ||¢|| < 5% and making use of (A.1) we have

(2 + %)) 2 ellall = [lolls = ev = = > 0,

QED.
ii) We can now construct linear functionals ; as in c) ii) and denote ¢ =
max;—1,.. m ||¥;]|. Let Bs be a 6-ball in R™ with L? norm. By construction

of functionals 1; we have
0> 00:(0)| O, ,0w) € Bs} = By (A2)
i=1
On the other hand
i 0:;
i=1

With § = 52~ therefore 2, O]l < 5 for 0 € Bs. Combining this

result with e) i) we have for an arbitrary ¢, € Cj,

<> 1l = ¢ Y16 = cll6]]x < ev/m][6]]>.
i=1

=1

(SDQ + Zgz¢z> (y) € P, for 0 € Bg. (A3)
=1

Let py € clP then there is ¢, € Cy, , such that [|py(y) — paf]s < &. By
virtue of (A.2) and (A.3) we then have

P2+ Bg C P.
QED.
Lemma A.1 Let

A = {(z,y,2)|z > z+4/y>0,y>0,z<1}

1
T+ Y’
B = {(0,0,2)|z € R}
Then A and B are two disjoint closed convez sets and they cannot be semistrictly
separated, e.i. there does not exist a vector (ni,ne,0) such that for all

(z,y, 2) € A we have nyz + noy > 0.
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Proof. Available from authors on request. m
Appendix B

Proof of Theorem 4 Suppose to the contrary that the set of desirable
claims K(a) is not boundedly generated. Then there must be a sequence
{zn}, l|#all — +o0, z, € K(a) with the property that Az, ¢ K(a) for
A < 1. Nonetheless, X being finite dimensional the sequence ﬁ must
converge (if necessary by passing to a subsequence). Let us denote the limit
z. From Lemma B.1 we know that P(z < 0) = 0. By virtue of Lemma
B.3 for sufficiently large constant x the claim ka € K(2a) and therefore,
ka + 6By € K(a) for § sufficiently small, because the expected utility is a

continuous function on X. Furthermore, ﬁ — o implies that there is ng
n

such that for all n > ng ”—z:ﬂ ca+ %Bl and therefore

KRZn

|zl

€ ka+ 6By € K(a).

Since ||z,|| — +oo there is n; such that for all n > ny ||z,|| > &.Thus for

n>ny

= % € K(a) and

<1
|EA

K
[[zall
which contradicts our assumption that Az, ¢ K(a) for A < 1. QED.

Proof of Theorem 5:

a) i) Suppose, to the contrary, that sup,,c;, EU(w) = 4co. Then there
is a sequence {w,} € My such that {EU(w,)} is increasing and unbounded
from above. If {||w,||} were bounded then there would be a convergent subse-
quence {wy,, } — w € X and EU would not be continuous at w. Thus it must
be that {||wn||} is unbounded. In that case, however, {w,} is an unbounded
sequence of desirable claims and because X is finite-dimensional we can find a
common direction (if necessary passing to a subsequence) {H_Z:I_I} —z € X,
in fact 2 € My because My is closed. By Lemma B.1 z is strictly positive
and z € My contradicts the assumption of no arbitrage. Q.E.D.

ii) We have shown sup,c;;, EU(w, + w) £ EU(w, + ap) < 4oo. By
definition of supremum there is a sequence {w,} € My such that {EU (w, +
wn)} — BU (wy+an). Now because the sets of desirable claims are boundedly
generated and M is a linear subspace, we can always choose {w,} bounded.

This implies {wn} — wy € My (again using a subsequence if necessary)
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and by continuity of expected utility EU(w, + wa) = EU(w, + azr). The
uniqueness of wy; follows from the strict concavity of the (expected) utility
function. Q.E.D.

b) The first part follows from a). For the second part of the statement it
is enough to consider a = ajp;. By Hahn-Banach Theorem one can strongly
separate My and the interior of K(aj) by a hyperplane Ny, and because
K(ays) is closed the same hyperplane separates K (az;) and My weakly. By
standing assumption 1 there is a marketed strictly positive claim z with pos-
itive price p(z) > 0. Because Ny does not contain internal points of K (ay)
we must have sup,cy, EU(w, + w) = EU(w, + ayr). For the same reason
NoN X, = 0 and therefore z ¢ Ny. Finally, because Ny is a hyperplane we
have the spanning property X = Ny @ Span|z], so that each claim y € X
has a unique decomposition y = yo + A,z, where yo € Ny. By construction
p(y) £ A\p(z) is a no-good-deal price of claim y. Convexity of the price
region follows from the argument presented in the proof of Theorem 3, part
b).

c) The first part follows from Theorem 3. For the second part, it is
clear from a) that the separating hyperplane has to cross K(a) at wps. It
follows from Theorem 1.29 in Beavis and Dobbs (1990) that EU has a unique

supergradient at wys, by direct calculation this supergradient is

¢ = (Pr(w)U’ [wr(w1) + wu(w1)], - , Pr(Waim x)U" [wr(wr) + wa (wi)]),

where k = dim X. By definition the supergradient has the property

EU(’LU.,- + wpr + A’LU) S EU(’UJT + ’U)]\/[) + CA’LU = EU(’LUT == ’LUM) + EU,(’LU,,. + ’U)]\/[)A’U).

As long as EU' (w, + wa)Aw = 0 for all Aw € Ny we have
EU (w, +war + No) < BU (wr + wa)

and there is no good deal in the completed market. The normalisation dis-
cussed in the proof of Theorem 2 shows that the pricing functional is
EU"(w, + war)y

EU! (wr + ’U)J\/[)CCO '

When zg is a risk-free asset this formula simplifies to

p(y) = p(zo)

U'(wr+wpr)
E EU’(w,-+wM) y

p(y) = =
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To show uniqueness realize that by Theorem 1.30 in Beavis and Dobbs EU
is continuously differentiable at w, + wj;. The Taylor expansion of the form
[(z) = [(20)+ fo(Azo+(1—N)z)(z—x0) for some 0 < A < 1 with f = EU and
Zo = wy+wys implies that the hyperplane defined by ( is the only hyperplane
passing through wy, that does not intersect the interior of K (aar).

d), e), f) K(a) is boundedly generated by bounded closed set B, C K (a),
likewise K (b) is generated by B, C K (b). Because B, is compact, EU is uni-
formly continuous on B,. Therefore there is € > 0 such that B,+ Ball(0,¢) C
K(a). If By + Ball(0,e) € B, then we can always redefine B, as the closed
convex hull of B, U [B, + Ball(0,¢)]. Then the assumption of Theorem 3 e)

is satisfied and the rest follows.

Lemma B.1 Suppose X is a probability space, dimX < oo,.and U is a
downside-sensitive utility. If an unbounded sequence of desirable claims has
a common direction, then this direction is strictly positive. Mathematically,
if , ||za|] — oo, J%L — z and EU(w, + z,) > EU(w, + a) for a fized a € R,
then z > 0, Pr(z > 0) > 0.

Proof

Let us define Wy = minw,., Wya = maxw, and analogously Zmin, Tmax-

Since we have finitely many states there is a state with the smallest proba-
bility pmin.
i) For z to be a desirable claim we must have
EU (w, + z) — EU(w, +a) > 0.

We can rewrite this statement using conditional distribution

Pr(z < 0)E [U(w, + z)|z < 0] + Pr(z > 0)E [U(w, + z)|z > 0] > EU(w, + a).
(B.1)

Let us appraise the left hand side from above. Denoting £ the supergradient

of U in wp;, we can write

EU(w, +zlz > 0) < U(Wnax) + €E[z]z > 0] =
Ez*
= U(wmax) + gm

Assuming that z,;, < 0 we obtain

Pr(z < 0)E [U(w, + z)|z < 0] < pminU (Wmax + Tmin) + [Pr(z < 0) — Pumin) U(Wmax)-
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Plugging the last two expressions in the equation (B.1) we obtain

pm.inU(wmax + -'Bmin) + £E$+ Z Y
v = EU(w, + a) — Pr(z > 0)U(Wmax) — [Pr(z < 0) — Pmin) U(Wimax)
v 2> EU(w, + a) — U(Wnay) = c(a)

Thus for z to be desirable we must have
pmjnU(wmax + :ijn) + §E$+ Z c(a) (BQ)

where Pmin, Wmax, &, and ¢(a) do not depend on z.
ii) Let us now take a sequence of desirable claims ||z,|| — oo, “%‘ﬂ — 2z
n

If zmin Were negative then by continuity (le_;r):xlxll;n — Qmin and hence (z,) . —

—o0. At the same time z, € K(a) and (B.2) implies that
pminU(wmax + (mn)min) < fE.’L‘;.l; 2 c(a)‘

where c¢(a) < 0 without loss of generality. After rearranging the terms we

arrive at

Wmax + (mn)mjn ("Bn)mjn > — (zn)min
U(wma.x + (mn)nﬁn) (wmax + (mﬂ)nﬂn) Pmin gEiB;i; - c(a’) .

The right hand side can be appraised from below

(Ezf —c(a) ~ Bz} —c(a)
The limit of the left hand side is, by the dominance condition (3), equal to

zero. Because the numerator on the right hand side goes to +o00, it must be

that Ex; — +oc0. This however implies that

0 I Ex,_ 5 Ez, 1 1 Ex,
= m —————= Im =—F——=~= lim
n—+4oo gEaj;ll' — c(a,) n—-+oco Em;&'é‘ — .]%(zﬁ% E n—-oco ESC;L*'
Ex: Ea™

n

0 = im = —
n—+too Bzt Eoat

which contradicts P(c < 0) > 0.

Lemma B.2 Suppose that U : R — R is a strictly increasing concave func-

tion such that u = supgep U(x) < co. Suppose further that x € LP is strictly
positive. Then

lim EU(z + \y) = u

A—00

if and only if y € LP is strictly positive with probability 1.
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Proof. i) Firstly, let us take y € L? such that P(y < 0) = 7 > 0. Then

we have
EU(z+ My) < (1 —mu+7 (EU(z)ly < 0).

Since U is strictly increasing, we must have U(t) < u for all ¢t € R and hence

also E[U(z)|y < 0] = @ < u. Consequently
/\hm EU(z+ M) <(l—-mu+7i<u
ii) Now consider y € L? such that P(y < 0) = 0. Define

T = P(y>1)

T, = P(=>y>

Pn = Z']Tk

By assumption lim, .., p, = 1. Now we have

A

and therefore
/\Iim EU(z + Ay) > pyu for all n
Since limy,_,co pr = 1 it must be true that limy_, EU(z + Ay) > u. ®

Lemma B.3 Suppose that U : R — R is strictly increasing, concave and

unbounded from above. Suppose further that x € LP is bounded below. Then
lim EU(z+ M\y) = 0
Sor all strictly positive y € LP.

Proof. Define 7, as above and set ,,;, = ess inf z. Since by assumption

P(y > 0) > 0 there must be k € N such that 7, > 0. Then

A
E > pr : _
Uz + Xy) > prU(Zmin + o 1)

and letting A — co we have
lim EU(z + \y) = co.

A—0o0
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Lemma B.4 Von Neumann-Morgenstern preferences are downside-sensitive

if and only if the generating utility function satisfies

. x
lim —— =0.
T— —00

U(z)

Proof. First we show the ‘if’ part. Let us take y € L such that y ¢ L7,
ie. P(y <0)=¢ > 0. Then one of the numbers

7T0=P(y<—1)

Yforn=1,2

y Ly

1 1
T =P-0Sy<—75

has to be positive, otherwise P(y < 0) = 0.
Without loss of generality we can assume that 7, > 0. Denoting £ the

left hand side derivative of U in zero and taking A > 0 we obtain

EU(My) =E[U(M\y)ly < 0] P(y < 0) + E[U(My)|ly > 0] P(y > 0) =

< wkU(—kLH) + (1 = m)U(0) + EXEyy = v(\).

Note that v()) is a continuous function on R, and thus sup,sov(A) = oo if

and only if limy_,., v(A\) = co. However, instead we have

. v(A) _ m, U(z)
_ 4 — ]_ D ——

and hence limy_,o, v(A) < 00, sup,50v(A) < 00, and consequently sup, s EU(Ay) <
oo for all y ¢ X which completes the proof.
The ‘only if’ part is shown easily once we realize that ﬂmﬂ is a decreasing

function of z. We can take a random variable with two atoms P(y = —1) ==
and P(y =1) =1 — 7. Then

EU(My) = 7U (=) + (1 = 7)U(N)

and
A
lim M = —7 lim M + (1 —7) lim Ulz) (B.3)
A—o0 T——00 I z—oo T
U(z) U(z)

Now limg, o =~ is finite and if lim, o =~ 1s positive one can always take

7 small enough so that the limit (B.3) is positive. But then lim,_,,EU(\y) =
+o0o. W
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