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Abstract

Traditionally, forecasters have concentrated on the point forecasts from their models.
This has been increasingly seen as deficient, as individuals are not indifferent to the
uncertainty associated with these forecasts. Consequently, more recently attention has
been focused on the distribution associated with forecasts. This paper investigates the
size and power of a number of (distribution free) tests for distributional forecasts.
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1. Introduction

Traditionally, economic forecasters have simply reported point forecasts of their models
(see for example Wallis (1995) and Diebold and Lopez, (1996)). However, individuals
are not indifferent to the varying degrees of uncertainty associated with these forecasts.
Christofersen (1998) analysed how to evaluate interval forecasts, such that the interval is
wider in more volatile periods and narrower in relatively stable periods. Subsequently,
attention has focussed on the evaluation of the whole density function associated with a

particular forecast, see Dawid (1984), and more recently, Diebold ez al (1998a).

Interest in the formulation and evaluation of density forecasts is closely related to
advances in the area of risk management and the density forecasts of financial asset
returns, return volatilities and portfolio losses. In particular, the Value at Risk measure
used for bank capital requires the estimation of a specific percentage point for a given
time horizon. However, given that the models are capable of providing forecasts of the
whole distribution of returns, this seems rather inefficient. It therefore becomes necessary

to have a test to assess the accuracy of the density forecast model.

Diebold et al (1998a) show that using a loss function to evaluate density forecasts it is
impossible to rank two incorrect forecasts so that all users agree with the ranking, but
that, when the forecast density coincides with the true data generating process, it will be
preferred by all users. Their approach is based on the fact that when the forecast and true
generating processes are the same, their probability integral transform should be
independently and identically distributed U(0,1). They prefer to use graphical tools, such
as plots and correlograms to assess uniformity, based on the idea that statistical tests are
non-constructive, in the sense that they do not give an insight into the reasons for
rejection. This approach is then applied in Diebold, ez a/ (1999) to evaluate inflation
density forecasts and, extended to a multivariate framework, in Diebold ez al (1998b) and

Clements and Smith (1999).



In the next section, we briefly review the idea of the probability integral transform used
to transform the distribution of forecasts into U(0,1) variates and the literature which has
predominantly used the Kolmogorov-Smirnov (KS) test to assess the validity of their
forecast densities. In section 3 we present Monte Carlo experiments to demonstrate the
low power of the KS test to detect a bias in the mean and variance of the forecast
distribution. Section 4 introduces a series of alternative (distribution free) tests based on
the empirical density function and compares their power with that of the KS statistic for
biases in the mean and variance of normal data, while section 5 focuses on non-normal
data generating processes (DGP’s) and specifically on their skewness and kurtosis.

Section 6 offers some concluding remarks.

2. The Probability Integral Transform

Given a conditional density fi(y: / 1) and a density of one step ahead forecasts py.;()),
made at time #-/ for the variable of interest (y;) using the set of all available information
at time #-7 (y4.1), they can be related through the Probability Integral Transform (z;)

defined as:

z=[" po)du=P_(y)
If the series of one-step ahead forecasts pr.;(y;) coincides with the series of conditional
densities fi(y: / wi.1) (and assuming p,.;” () is strictly positive and bounded over the
support 1), then z; should be independent and identically distributed (i.i.d) Uniform (0,1).
Therefore, a way to assess whether the forecasts are a good representation of the true data
generating process is to test the independence and uniformity of the series of probability
integral transforms {z;}. Unfortunately, this is a joint test and failure to accept the
independence-uniformity hypothesis can be due to the z series being either non-uniform
and/or non-i.i.d.
In Diebold, ef al (1999) and Clements and Smith (1999) independence is investigated by
testing for non-zero autocorrelations in the first three moments of the z; series and then,

conditional on independence, uniformity is tested using the Kolmogorov-Smirnov (KS)



statistic. Unfortunately, the power of the KS test statistic to detect non-uniformity is

rather low (see, for example, Stephens 1974).

3. Size and Power of the Distributional Test Using Kolmogorov-
Smirnov (KS) Statistic:

By far, the most commonly employed test for distributional forecasts is the well-known
KS test for goodness of fit. In this section we describe the KS statistic (D) and examine
its power for samples of various sizes when the null is N(0,1) but the data generating
process (DGP) has a different mean or a different variance. Let z; be the theoretical
cumulative distribution function under the null, and 4; the empirical cumulative
distribution, for j = J, ...,n, where » is number of observations.

Then, the Kolmogorov difference is defined as D = Max; {abs(z; - A;)} (see Neave and
Worthington (1988) for a complete description of the mechanics of the test). Seven
different sample sizes: » = 50, 100, 225, 450, 900 and 3600 were considered.
Simulations to assess the power of the tests were done with 1000 replications and 10000

for size calculations’.

Power to Detect a Bias in the Mean:

We analysed the power of this test to detect a bias in the mean in the forecast distribution.
We test a null hypothesis of N(0,1) data, when the DGP is distributed N(u,1), with
1 = 8x(1/vh), so that the mean of the true process is equal to the mean of the

hypothesised distribution increased by ¢ standard errors of the mean, with 5&(2,8). The

! Given a set of parameters 6, that define a distribution, the probability of rejecting the null hypothesis
when it is false for a particular set © =6, (and a given confidence level), is called the power of the test. On
the other hand, the size of the test (or significance) is the maximum probability of rejection (given a critical
value) when the null is true.



lower point (& = 2) gives the approximate upper limit of a 95% confidence interval for
the mean’.
Table 1 shows the results for sample sizes up to 3600 and gives the % of rejections out of

1000 replications

Table 1: N(0,1) v N(u,1), 1

L= &An

90

2| 38.6(18.1)] 372077  39.9(20.2)] 403 (19.5) 39.5 (20.6) 36.7 (16.4)
4] 92.0 (77.5) 92.3 (79.8)] _ 92.9(78.6)] 94.6 (80.9)] 93.9 (80.6)| 93.1 (30.0)
6
8

100 (99.2)] 100 (99.5) 100 (99.2)] 100 (99.7)] 99.7 (99.5)] 99.9 (99.4)
100 (100)] 100 (100) 100 (100)] 100 (100)] 100 (100)| 100 (100)

For 6= 2, it shows that the KS statistic cannot detect deviations from the mean, when the
null hypothesis is N(0,1), with an average of approximately 39% rejections for a 95%
confidence level, and 19% for 99%. To get an acceptable level of rejection when
applying the KS test to the cumulative distributions of normal data, the bias should be of
at least 4 standard errors above the mean and this is independent of the sample size
considered.

Figure 1 shows the theoretical and empirical cumulative probabilities when §= 4 for n =
450. Given that the cumulative probability of a variable distributed U(0,1) is its own
value, the theoretical probabilities will plot like a 45 degree line between the origin and

(1,1).

* The upper limit of a 95% confidence interval for the mean is given by: average + 1>, ; % (stdev/ ). For
the samples considered, the t-value is approximately equal to 2.



Figure 1:

1

N(0, 1) v N(mu, 1), mu = 4s.e.(Mean), for n =450
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We can see from the picture that a N(u,1) with p corresponding to a factor of 4
s.e.(mean) is only just outside the 95% limits of the KS statistic.

Power to Detect a Bias in the Variance:
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The same methodology is used to test the power of the KS statistic in detecting deviations

from uniformity from a N(0,6°), o* being the variance of the DGP and equal to the

hypothesised variance increased by two standard errors (of the variance): o® = 1 +

[8x(V2/ )], when the forecasted distribution was N(0,1).

Table 2: N(0,1) v N(0,6%), o* = 1 + [x(N2/\n)]

9

2] 92(23) 8.5(1.9) 83(24) | 102(2.0) 9.1(1.9) 8.7 (2.0)
4] 185(63)| 187(62)| 228(62)| 256(56)| 249(7.1)| 259(7.0)
8| 43.8(204) | 59.9(24.8)| 723(35.5)| 79.3(46.1)| 86.9(51.1)| 92.8 (64.3)
10 | 60.7(29.1) | 75.7(40.9) | 87.4(553)| 95.1(70.1)| 97.1(80.8)| 99.6(92.1)
14| 78.2(44.7) [ 94.9(71.4) [ 99.4 (91.3) | 99.9(97.9)| 100(99.6)| 100 (100)
20 93.1(7L.1)| 99.8(93.8)| 100(99.4)| 100(100) | 100 (100)| 100 (100)




As shown in Table 2, the power of the KS test for uniformity to detect biases in the
variance is even lower than for biases in the mean, with an average number of rejections
out of 1000 replications of approximately 9% for a 95% confidence and approximately
2% for a 99% confidence. As before, a factor of 2 approximately gives to the upper limit
of a 95% confidence interval for the variance (this approximation is more accurate for
larger n°). As shown in Table 2, for the KS test to give a reasonably powerful test for
distributional forecasts with a biased variance, the bias should be of at least 10 standard
errors (of the variance) for a 95% confidence level, and of 14 standard errors for a 99%
confidence level. There is a small increase in the power of the test as the sample size
increases, with the % of rejections going from 87.4% for a factor §= 10 and a sample
size of 225, to 95.1% for 450, 97.1% for 900 and 99.6% for 3600 observations at the 95%
confidence level. Figure 2 shows the empirical and theoretical cumulative probabilities

for a normal distribution with the variance increased by 10 standard errors (of the

variance).
Figure 2:
N(0, 1) v N(0, sigma), sigma = 1 + 10s.e.(Variance), for n = 450
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Again, as can be seen in the plot, a variance increased by a factor 10 barely exceeds the

95% confidence interval for the KS difference.

? The upper limit of a 95% confidence interval for the variance is given by (1-1)s%/%’s.1 0.025. We assumed s>
= 1. For n = 50, this gives a factor = 1.55 while 2 +s.e.(variace) gives a factor 1.4, while for n = 450 the
factors are 1.15 and 1.33 respectively.



4. Alternative (Distribution Free) Tests for Distributional Forecasts

In this section we introduce alternative (distribution free) ways to test distributional
forecasts and analyse their power to detect biases in the mean and variance with respect

to the ‘real’ data generating process.
4.1 Testing Distributional Forecasts by Testing Uniformity

The Kuiper Statistic:

The first alternative to the KS considered is the Kuiper test (Kuiper, 1962), this uses the
same measures of deviation between the hypothesised and empirical distribution
functions. Given D™ = max/[(i/n) — z;] and D" = [z; — (i — 1)/n], the at-the-step and before-
the-step Kolmogorov differences respectively, the Kuiper statistic (V) is defined as:
V=D"+D.

The Cramér-von Mises Statistic:
The Cramér-von Mises (W?) statistic (see Cramér, 1946) uses a different measure of the
deviation between the hypothesised and the empirical distribution function, and is defined

as:

w? =>"[z,—(2i-1)/2n] +(1/12n)
i=1
The Watson Statistic:
The Watson (U?) statistic (Watson, 1961) is based on a transformation of the Cramér-von
Mises statistic and is defines as U7 = W — 0(Zmean — %5)° Where Zyean = ) z/n (the average

cumulative probability under the null).

The Anderson-Darling statistic
Anderson and Darling (1954) proposed a test of goodness of fit, focusing on differences

in the tails of the cumulative distribution. The statistic (A%) is defined as

A*=-n- li (2i —=D[log(z,) +log(1-z_,)]
L=

8



They compute the asymptotic percentage points for the distribution of this test statistic

and find that these values are reached very rapidly for sample sizes as large as 40.

For all the other alternative tests we used the transformation and critical values proposed

by Stephens (1974), who analyses their power for some simple deviations from

uniformity.

4.2 Testing Distributional Forecasts by Testing the Inverse of the

Cumulative Normal: Jarque-Bera and Doornik-Hansen Tests

The power of tests for normality is well documented (Doornik and Hansen, 1994).
Therefore, it seems logical to transform the cumulative probabilities so that under the null
hypothesis they should be distributed N(0,1) and apply a test for normality to these
transformations. We define x;, = @' (z;) where @ is the inverse of the cumulative
standard normal distribution and z; is, as before, the cumulative probabilities of the
realisations under the forecasted distribution. We know that, given the probability
integral transform, if the forecasted distribution and the DGP coincide, z; is distributed
U(0,1), so that, under the null, x; should be distributed N(0,1).

The most commonly used test for normality is the Jarque-Bera test, based on the third and
fourth moments of the distribution.

The Jarque-Bera statistic (JB) is defined as JB = nx[,/6 + (B2 — 3)*/24] ~a 2 (2)

where V3, is the sample skewness, /3 the sample kurtosis, 7 the sample size, and where
~q means asymptotically distributed as.

Doornik and Hansen (1994) argue, following Bowman and Shenton (1975), that the
Jarque-Bera test for normality is unsuitable except for very large sample sizes, given that
the statistics v/3; and 3, are not independent, and the sample kurtosis approaches
normality very slowly. Therefore, they propose a test based on transformed skewness and
kurtosis, with the transformation bringing the statistic much closer to normality.

The proposed statistic (DH) has the form:

DH =z° + 25° ~app X (2)



Where ~g,, denotes approximately distributed as, and z; and z; the transformed skewness

and kurtosis respectively.

Using a N(0,1), our results show that the empirical size values are within the 95%
confidence interval of the theoretical values, for all tests and across all n, with exception
of the Kolmogorov-Smirnov statistic, for #» < 100 (a result also mentioned by Neave &
Worthington (1988), and due to the fact that the critical values employed in the test are
asymptotic) and for the Jarque-Bera test for n <225.

4.3 Power of the Alternative Tests to Detect a Bias in the Mean and

Variance

We performed the five alternative tests on the same data as the KS test when the true
DGP is N(i,1) and N(0,6%), and the mean (variance) has been increased by a factor &

times the standard error of the mean (variance), with & defined as before.

These results show that both, the Anderson-Darling and Cramér-von Mises tests are
considerably more powerful than the Kolmogorov-Smirnov test to detect a bias in the
mean, especially when the bias is relatively small (6= 2). Of these two tests, the
Anderson-Darling seems to be the most powerful, with 49.3% and 27.9% rejections for &
=2 and n =225 at 95% and 99% respectively (against 47.6% and 26.2% for the Cramér-
von Mises W? statistic and 39.9% and 20.2% for the KS statistic). These results are

consistent for all sample sizes up to 3600.

10



Table 3: Alternative Tests for a Bias in the Mean

90

2 48.1 (26.5) 472 (26.5) 493 (27.9) 49.1(26.7) 49.8 (27.8) 452 (23.4)
4 96.8 (89.6) 97.6 (90.1) 97.1 (89.8) 97.8 (91.8) 97.5 (92.0) 97.4 (91.0)
6 100 (100) 100 (100) 100 (99.9) 100 (100) 100 (99.9) 100 (100)
8 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)

2 47.1 (23. 4 (25.1) .6 (26.2) .9 (26.1) 42.9 (21.3)
4 96.2 (87.7) 96.6 (87.8) 96.6 (88.2) 97.1 (90.0) 96.8 (90.4) 96.7 (88.7)
6 100 (100) 100 (99.9) 100 (99.9) 100 (100) 100 (99.8) 100 (99.9)
8 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)

2 22.9 (7.5) 21.3 (3.8) 23.0 (9.2) 21.1 (8.2) 23.2(1.2) 18.9 (6.5)
4 72.1 (49.9) 72.5 (48.0) 70.3 (47.8) 70.2 (46.1) 70.1 (47.0) 69.5 (48.9)
6 98.1 (92.5) 97.6 (92.3) 97.2 (90.8) 98.3 (92.0) 98.4 (90.9) 98.3 (91.5)
8 100 (99.7) 99.9 (99.8) 100 (99.6) 100 (99.8)
2 22.7 (1.4) 22.4 (8.6) 24.2 (10.7) 21.9 (8.3) 245 (7.6) 20.7 (7.0)
4 75.6 (55.3) 775 (57.3) 76.7 (55.6) 79.2 (54.8) 79.5 (55.6) 77.5 (57.3)
6 99.1 (96.8) 99.2 (96.2) 98.8 (95.9) 99.3 (96.8) 99.4 (971) 99.2 (97.1)
8 100 (100) 100 (100) 100 (99.9) 100 (100) 100 (99.9) 100 (100)

Table 4: Al_ternativevtests for a Bias in the Variance

95% (99%

600

9] S22, R 000 &
2 20.4 (5.9) 16.8 (4.7) 155 4.1 16.7 (3.9) 13.6 (3.2) 13.9 (2.8)
4 50.3 (23.5) 50.8 (24.4) 57.2 (22.7) 59.9 (25.9) 58.5(24.4) 58.3(24.2)
6 78.9 (54.3) 85.8 (59.9) 91.1 (65.9) 93.2 (71.3) 94.6 (74.8) 96.9 (79.9)
8 92.8 (73.9) 97.0 (84.6) 99.3 (92.1) 99.5 (94.8) 99.8 (97.9) 100 (98.9)
10 97.6 (89.5) 99.5 (96.1) 100 (98.8) 100 (99.7) 100 (100) 99.9 (99.9)
14 100 (99.1) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)

10 (3.0) 9.2 (1.8) 8.123) 10.1 (2.2) 7.6 (1.9) 9.6 (1.6)::

2

4 19.3 (6.3) 23.2(5.1) 24.7(5.1) 28.9(5.4) 28.5 (6.8) 29.2 (6.3)
8 50 (19.6) 67.5 (28.1) 83.4 (42.9) 88.5 (53.6) 93.7(61.2) 98.3 (77.0)
10 68 (32.4) 83.5 (46.2) 93.5 (66.5) 98.2 (80.2) 99.6 (91.4) 99.9 (97.5)
14 (82.1) 99.9 (95.7) 100 (99.5) 100 (100) 100 (100)

2 20.0 (9.0) 9.8 (8.4) 22.7 (8.4) 8(9.2) 4(7.4)
4 49.7 (28.2) 55.4 (32.6) 64.7 (39.3) 67.9 (46.9) 72.8 (47.6) 75.4 (50.3)
3 88.0 (71.3) 96.1 (86.5) 98.7 (95.3) 99.5 (97.5) 99.9 (99.3) 100 (99.9)
10 94.9 (86.7) 98.8 (95.5) 100 (99.6) 100 (99.9) 100 (100) 100 (99.9)
14 )

18.2 (7.5) 17.0 (7.0) 19.8 (6.9) 20.6 (7.8) 20.6 (6.1) 22.2 (8.1)::

2

4 46.4 (25.7) 50.8 (27.8) 58.3 (34.6) 62.8 (39.0) 66.4 (41.1) 69.0 (43.4)
8 86.1 (67.3) .94.9 (81.5) 98.4 (93.4) 98.9 (95.9) 99.8 (98.3) 100 (99.8)
10 94.2 (83.4) 98.7 (94.4) 99.9 (99.0) 100 (100) 100 (100) 100 (99.9)
14 99.2 (96.0) 100 (99.8) 100 (100) 100 (100) 100 (100) 100 (100)

Note: JB and DH tests not reported as these only test 3™ and 4™ moments. |

11



The results for a bias in the variance are not as clear as in the case of the mean. Both the
Anderson-Darling A? statistic and Watson’s U? statistic present very similar results, with
the A? statistic being slightly more powerful for smaller samples (50, 100, 225) and the
Watson statistic for larger samples (450, 900, 3600). Nevertheless, both tests are more
powerful than the KS statistic for all sample sizes and all &.

S Non-Normal Data Generating Processes

We are concerned with cases when the underlying distribution is misspecified, although
the first and second moments are correct. That financial asset returns exhibit
characteristics that are different from those expected of normally distributed variates is
now generally accepted. In particular, financial data are fat-tailed (excess kurtosis) and
may exhibit skewness (asymmetry in the distribution). This is investigated using a
standardised t-distribution for fat-tailedness, and a Ramberg distribution in the case of an

asymmetric DGP.

5.1 Power to Detect a Bias in Excess Kurtosis when the Null is Fat-
Tailed

We generated random data from a Student’s t distribution with degrees of freedom = &
and assumed a null Student’s t distribution with £ = 10. Some empirical studies using the
t-distribution have suggested k should be around 10 for financial data (Bera and Higgins,
1993, Bookstaber and McDonald, 1987). However, more recent studies have pointed to
the fact that returns may have higher kurtosis than determined by this value, or even
infinite kurtosis (see for example, Hansen 1994, Noceti and Hodges, 1998). This,
together with the fact that the degrees of freedom parameter is very difficult to estimate
accurately (Blattberg and Gonedes, 1972) suggests we should investigate a possible
downwards bias misspecification in k. We considered DGP’s with £= 3, 5 and 10 when

the null is £ = 10.

12



Table S: Power of Distributional Forecast Test, tio v tx

00 60!
3] 5.1(1.4) 8.0(18) 122(2.5) 21.1 (4.9)] 54.8(18.8) 100 (99.9)
5| 3.0(0.7) 57009 4.8(12) 6.7 (1.2) 8.6 (1.6) 39.0 (9.7)
10| 4.3(0.8) 47(1.0) 5.1(08) 4.9 (0.5) 53 (1.0) 4.9 (1.5)
100]  5.1(L1) 52(0.8)]  5.9(1.4) 5.4 (0.7) 6.8 (1.0) 25.7 (5.6)

100 (100)

3] 17357 328(11.7)] 622(28.7)  92.0(632)] 100 (98.6)
5.1(0.9) 8.8(1.6) 10.1(23) 20.9 (4.9 38.8(1L5) 99.3 (91)
4.8 (1.6) 54(LD]  52(09) 42 (11 4.8 (1.2) 4.9 (1.4)

)

3] 23.8(16.2)] 41.9(31.4) 72.2(602)]  93.0 (87.4)] 99.8 (99.0) 100 (100)

51 92(5.9)]  168(9.0) 293(202)[  41.5(283)] 70.1(53.4)  99.9(99.1)
10 32(1.6) 42(1.8)] 4.8(16) 4.2 (2.0) 4.8 (1.2) 44 (12)
100 0.4 (0.0) 03(0.0) 2.8(0.0) 11.0 (0.5] 43.8(11.9) 99.8(97.49)
3] 27.4(145)] 43.9(26.4) 73.1(57.8) 93.2(86.3)] 99.9 (99.0) 100 (100)

5] 9837 167(7.0) 295(16.6)  40.6(254)] 68.6(50.6)  99.9 (99.0)
100 3.4(1.2) 55(1.6) 4.7(0.9) 45 (1.7) 4.3 (1.0) 43 (1.0
1000 2.3 (0.3) 3.7(02))  8.8(18) 16.8 (2.7)] 48.9 (19.9) 99.8 (98)

5.9 (1L6)

8.7(23)| 148(3.2) 258 (5.5)] 60.9(19.4) 100 (99.9)

5 4.1(0.7) 6.1(0.9] 6.1(0.9 76(1.6) 10.7(22) 459 (9.1)

10]  4.4(1.4) 50(0.8) 5.3(0.8) 4.8 (0.8) 5.0 (1.3) 5.1(1.4)

100/ 6.0 (1.1) 53009 6.8(1.1) 6.3 (1.2) 7.7 (1.3) 31.0 (5.3)
(ip)

3] 103369 17767 3800177  69.6(43.8)] 97.4(86.0) 100 (100)

5 5.2(0.8) 6.0 (0.9 8.5(L9) 15.7 (5.0)] 30.0(12.4)]  91.3(75.6)

10]  3.8(0.9) 52(0.8)]  5.2(1.0) 5.4 (1.0) 4.5 (1.5) 5.7 (0.9)

100] 6.7 (1.6) 63(1.6) 9.7(26) 14.6 (4.0  25.0(93)]  88.0(61.9)

100 (100)

3] 10439 192(59)] 404(17.6) 732(46.1) 98.9(90.6)
51 4402 54(15] 88(22) 16.5(5.0) 31.2(12.0) 94.9(79.4)
10| 43(1.0) 54(LD]  41(12) 43 (1.1) 4.7 (0.9) 6.7 (0.8)
100]  6.4(L1) 6.5(2.1)] 10.0(2.6) 143 (4.1)]  271(96) 91.6(69.3)

Table 5 shows that for £= 10 all tests are correctly sized, though there is a suggestion of

over-rejection in the JB test at the 99% level for sample sizes up to 450, and in the DH

(again at 99% level) for » = 450 (and under-rejection at 95% level for » = 50). Across all

other & and for all n, the DH test on the inverse of the cumulative normal tends to be more

powerful at detecting differences in the kurtosis between the real and forecast
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distributions than the alternative tests considered. The Kolmogorov-Smirnov, Cramér-
von Mises, Kuiper and Watson statistics have very low power to detect the bias in the
distribution’s tails even for & as low as 3 and sample sizes up to 450 observations, with
the Kuiper and Watson tests becoming reasonably powerful for larger samples. For £ =3,
all tests seem to give 100% rejections asymptotically (» = 3600). When & = 5, however,
the power of most tests falls dramatically. Both the DH and JB tests yield similar results,
and seem to be the most powerful for all sample sizes. The Kolmogorov-Smirnov and
Cramér-von Mises tests have very low power for all samples, while the remaining tests
only seem to work for large n. As an experiment, we performed all tests on a process with
an upward bias in the degrees of freedom (thinner tails than the null). In this case no test

has any power for n < 450.

Figure 3 shows the theoretical and empirical cumulative probabilities when the data
generating process is distributed Student’s t with £ = 3 but we forecasted with a Student’s

t distribution with £ = 10.

Figure 3:
Student’s t Distribution with 3 Degrees of Freedom v t with 10 Digrees of Freedom

1
0.9 1
0.8 1
0.7 1

Theoretical t3
0.6 1
0.5 1
= Empirical t3 for n = 450
0.4 1
0.3 1
0.2 ] Null: t10
0.1 1
--------- 95% Cl
0 :
0 0.1 0.2 03 0.4 05 0.6 07 0.8 09 1
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6.2 Asymmetry

Another common feature often found in distributions of financial asset returns is
asymmetry (or significant skewness), meaning that the probabilities of getting a positive
and a negative observation of the same value are not equal. To study the power of the KS
and AD tests when the underlying process is skewed but we forecast with a symmetric
distribution, we generated random samples from the Ramberg distribution (see Ramberg
et al, 1979) with varying sample sizes and degrees of skewness (g).

This distribution, unlike most known distributions, is not expressed as a function of the
underlying variable’s values, but in terms of their cumulative probabilities. It has four
parameters that determine the mean, variance, skewness and kurtosis of the distribution,
making it flexible in terms of attainable shapes. The Ramberg quantile and density

functions have the form:

R(p) =4 +|p* -a-p)* )4,

F6) = fIRPN= A |p* +2,0-p)*7 |

with 0 <p <1 being the cumulative probability, R(p) the corresponding quantile, and
JIR(p)] the density corresponding to R(p). A, is the location parameter, A, the scale
parameter, and A3 and A4 shape parameters. Ramberg ez al (1979) give tables of A1, Az, A3
and A4 for distributions with mean 0 and variance 1, for varying degrees of skewness and
kurtosis.

Figure 4 shows data generated from Ramberg distributions with different degrees of

skewness and excess kurtosis.
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Figure 4:

RAMBERG DISTRIBUTIONS WITH MEAN =0 & STDDEV =1
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Given that null hypotheses are bound to account for the significant kurtosis often found in

financial return distributions, we analysed the case of a null with a kurtosis equal to 4
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(Student’s t with £ = 10) when the real process has the same degree of kurtosis but
varying degrees of negative skewness.

For g = 0 and samples up to 900 observations, almost all tests approximately return size
(which is correct if we consider only the first four moments of the distribution). There
seems to be over-rejection for all tests when the sample is really large (3600) except for
the Cramér-von Mises test which is correctly sized for all sample sizes. This over-
rejection for very large sample sizes could be due to the fact that the two distributions
considered here are only equal in the first four moments.

With the smaller samples considered (up to 450 observations), the DH test is the most
powerful to detect skewness in the DGP when the assumed forecast distribution is
symmetric, for all g. The power, however, decreases quite markedly as the skewness is
reduced by a small fraction, going from 71.1% to 39.7% for ¢ =-1.0to ¢ =-0.85 when n
=50, 59.1% to 41.5% for g =-0.75 to —0.65 and » = 100, and from 59.6% to 39.2% for ¢
=-0.55to —0.45 when n = 225. For n = 450, both the JB and the DH tests are powerful
and present similar results for large g’s, with the DH test still being more powerful for ¢
below —0.75. As the sample size increases to 900, most other tests begin to detect the
skewness in the underlying process, but the DH test remains more powerful for the
smaller skewness parameters. For very large sample sizes, all tests seem to detect the

skewness in the DGP.

17



Table 6: Power for Student’s t with k = 10 when Underlying is Ramberg with

3.7(0.6) 3.9(0.7) 5.1(0.8) 4.3(1.1) 6.1(1.2) 7(14)
18.8(7.5) 38.1(18.7) 72.4 (494) 96 (84.9) 100 (100) 100 (100)
11.9(3.3) 26.8(12.9) 51.2(28.9) 78.7(59.7) 98.1(92.3) 100 (100)
11424 17.3(5.9) 36.3(18.1) 63.2(39.4) 91.5(78.6) 100 (100)

9.3(2.8) 14.1(4.5) 274(11.3) 50.9 (28.9) 77.9(56.3) 100 (100)

6.3(1.8) 10.8 (2.5) 16.5(6.1) 34.1 (16.6) 61.7(38.1) 99.9(98.2)

54(.1) 7.8(2) 13.7(3.9) 22.9(9.2) 37.7(20.2) 95.7(86.1)

5.2 (0.9) 5(0.9) 5(L. 1(LD) 5.6 (1.3) 5.9 (0.9)

18.1(5.2) 42,5 (15.5) 91 (60.5) 100 (98.5) 100 (100) 100 (100)

. 10 (3.2) 25.7(9.3) 60.1(27.3) 95.5(71.2) 100 (100) 100 (100)
. 11.6 (2.5) 17.1 (4.4) 39.4(14) 77.7(41.9) 99.9(91.3) 100 (100)
. 8.8(2.2) 13.2 (3.5) 26.7(82) 57.1(24.9) 94.2(67.7) 100 (100)
. 7.2 (1.6) 10 (1.8) 16.9 (3.8) 36 (12.9) 72.3(36.9) 100 (100)
) 6 (1.5) 7(1.4) 11.2 (2.5) 20.7 (6.8) 433(16.2) 100 (98.3)

0.00

9.4 (2.4) :

4.1(1.4) 3.7(1.3) 4.1(L.1) 3.6(1.4) 53(2)
-1.00 29(11.7) 87.6 (50.2) 100 (99.8) 100 (100) 100 (100) 100 (100)
-0.85 15.1(64) 56.4(25.7) 99 (83.3) 100 (100) 100 (100) 100 (100)
0.75 12.4 (5.2) 37.2(15.5) 90.5 (66) 99.9(99.1) 100 (100) 100 (100)
0.65 10.6 (4.7) 25.4(10.5) 73.4(44.1) 97.9(90.6) 100 (100) 100 (100)
0.55 8.1(3.3) 19.4 (74) 49.9 (24) 87.9 (66.1) 99.6 (97.3) 100 (100)
0.45 7(2.5) 11.1 (4.8) 32.1(132) 64.6 (39.8) 93.9 (79.4) 100 (100)
N =
0.00 5.1(1.5) 5.1(L1) 3.7(L1) 4.1(0.8) 5.2 (1.6) 8.8(2.1)
-1.00 71.1 (45) 98.7(92.3) 100 (100) 100 (100) 100 (100) 100 (100)
0.85 39.7(17.3) 82.1(58.8) 99.7(98.3) 100 (100) 100 (100) 100 (100)
0.75 28.9(12.5) 59.1 (34.6) 95.5 (86.5) 99.9(99.5) 100 (100) 100 (100)
-0.65 18.7(6.1) 41.5(20.1) 83.5(63.1) 98.5 (94.7) 100 (100) 100 (100)
-0.55 13.9 (4.7) 28.1(10.6) 59.6 (35.9) 91.1(77) 99.9(98.8) 100 (100)

S(1.1)

5(1) 43 (1) 5(12) 43 (1) 55(1.3)
-1.00 18.4(6.5) 36.6 (16.9) 75.2 (46.6) 97.5 (86.6) 100 (99.8) 100 (100)
-0.85 11.2(3.7) 25.4(10.4) 51 (25.6) 82.2(57.4) 99.4 (94.5) 100 (100)
0.75 11(3.1) 17.1 (4.7) 35.3(15.9) 63.8(35.6) 93.6 (77) 100 (100)
0.65 9.4 (2.6) 14.2(4.3) 25.6(9) 483 (24.4) 79.4(53.3) 100 (100)
-0.55 7.5(1.8) 10.8 (2.5) 17.6 (5.4) 33.4(14.7) 61.9(33) 100 (99)
-0.45 5.9(14) 7.7 (1.7) 12.9(34) 22 (8.5) 36.8 (17.2 97.6 (86.9

16.1(4.9)

0.00 5() 5(1.6) 4.9() 5.6(1.3) 8.1(2.4)

-1.00 39(18.6) 70.2 (48.5) 97.4(91.2) 100 (99.8) 100 (100) 100 (100)
-0.85 23.4(84) 48.7(26.4) 82.4 (63.5) 98.8 (95.6) 100 (100) 100 (100)
-0.75 18.2 (6.7) 33(14.2) 66.2 (42.7) 92.1(79.1) 100 (99.5) 100 (100)
-0.65 14.2(4.9) 23.9(9.8) 50.4 (27.7) 80.2 (61.7) 98.6 (94) 100 (100)
-0.55 10.2 (2.8) 17.2 (5.6) 32(134) 61.6 (39.2) 88.5(75.7) 100 (100)
-0.45 6.9 (1.6) 10.3(2.9) 23.5(8.9) 39.3(194) 68.5 (45.6) 100 (99.8)

7(L1)

=

(L — 48(L1) 4(1) 9(1. 8(2.2) 6 (4.

-1.00 37.3(17.9) 70.3 (47.3) 96.9 (91.5) 100 (100) 100 (100) 100 (100)
0.85 22 (7.8) 46.2 (24.2) 79.9(60.6) 98.3(93.7) 100 (100) 100 (100)
-0.75 172 (5.4) 28.9(12.6) 62.3(39.9) 88.8(75.1) 99.9 (99) 100 (100)
-0.65 12.7 (4) 22.4(7.7) 47 (24.5) 77.1(56.9) 97.8 (91) 100 (100)
0.55 8.9(2.7) 15.7(5) 28.8(12.1) 56.5 (32.9) 86.3 (71) 100 (100)
0.45 6.1(L.7) 9.3(2.3) 21.6 (1.6) 36.3 (16.5) 63.8(39.8) 100 (99.7)
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Figure 6 shows the empirical and theoretical cumulative probabilities for a standard
Ramberg distribution with kurtosis = 4 and skewness = -0.75, when the forecasting

distribution is a Student’s t with 10 degrees of freedom.

Figure 6:

Ramberg(0, 1) with Kurtosis = 4.0 & Skewness = -0.75 v Student's t with 10 Degrees of Freedom
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Conclusions:

Increasingly, forecasters are required to supply more information than a single point
forecast from their models. In the limit, they can supply information about the entire
distribution from which the forecast was generated, i.e. a distributional forecast. To
evaluate the validity of this distributional forecast, Dawid (1984) and later Diebold et a/
(1998) suggest using the probability integral transform, where, under the null of a correct
model, the resulting cumulative probabilities are distributed i.i.d. U(0,1). Diebold ez a/
(1998b) and Smith and Clemens (1999) use this probability integral transform and find

that, using a Komogorov-Smirnov difference they are unable to reject the null hypothesis.

This paper shows that the Kolmogorov-Smirnov statistic is less powerful than alternative
tests also based on the empirical distribution function to detect misspecifications in the
forecast distributions. Of all the tests analysed, the Anderson-Darling statistic seems to be
the most powerful to detect biases in the first two moments (mean and variance), with
Watson’s statistic being slightly more powerful in the variance case for large samples.
For biases in the higher moments, however, the Doornik-Hansen test on the inverse of the
cumulative normal seems to be the most powerful test. This case is particularly important
in the area of finance, where it is recognised that returns are leptokurtic and, sometimes,
negatively skewed. However, for small sample sizes, the test is less powerful except for

cases of substantial negative skewness (g = -0.75).
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