
Deriving the APT when the

Number of Factors is Unknown

L. Middleton and S. Satchell

June 1999

L. Middleton is a Research Student at the Judge Institute of Management Studies at

the University of Cambridge.

S. Satchell is a member of the Faculty of Economics and Politics and Trinity College,

University of Cambridge.



Abstract

This paper examines the use of proxies (or reference variables) for the true

factors in the Arbitrage Pricing Theory (APT). It generalises the work of

Reisman(1992) and Shanken(1992) and shows that, when there are more reference

variables than the true factors, the APT still holds. The possibility of fewer reference

variables than the true factors is also considered, but the APT is not shown to hold, in

the same sense, for this case. This work builds on an earlier paper by Ingersoll(1984),

and our propositions can be thought of as specialisations of his Theorems 1 and 6. Our

work does not use the mathematics of Hilbert and Banach spaces (as used by

Reisman(1992)) and, thus, is open to a much wider audience.



Deriving the APT when the Number of Factors is

Unknown

1) Introduction

The Arbitrage Pricing Theory (APT)*, as proposed by Ross(1976), is an

important tool for valuing risky assets. Originally, it assumed that the return from a

large number of assets followed a strict factor structure i.e. a linear factor model with

uncorrelated disturbances. Ross(1976) does not specify the number or nature of the

required factors. Those chosen by researchers range from one to thirteen (and many

more for practitioners’ models) and there is disagreement as to their identities. It is

necessary, therefore, to consider using reference variables i.e. proxies for the true

factors.

Shanken(1982) shows that virtually any set of variables can be factors in a

well-defined strict factor model. Chamberlain and Rothschild(1983) demonstrate that

the Arbitrage Pricing Theory still holds even with an approximate factor model i.e.

the disturbances need not be uncorrelated, although the eigenvalues of the residual

covariance must be bounded as the number of assets tends to infinity. Ingersoll(1984),

Theorem 6, derives a pricing restriction for the case where there are errors in

measuring both the expected returns and the matrix of sensitivities to the true set of

factors. Our work examines errors in identifying the factors, and, whilst this is

mathematically similar to Ingersoll(1984), it is conceptually different. Specifically,

we interpret the errors as mis-specifying the nature and number of factors. Thus, we

can identify the errors in pricing in terms of characteristics of missing/included

factors/proxies.

Reisman(1992), Shanken(1992) and Nawalkha(1997) all investigate the

situation where the true factors are unknown but the number of true unknown factors

is known. To us, this appears to be implausible for the reasons shown below.

We briefly present a sample from the many authors who have tried to identify

the number of true factors from the data. Roll and Ross(1980) estimate that three

factors are definitely priced and a fourth may also be present. Dhrymes, Friend and

Gultekin(1984) appear to show that the “discovered” factors equate to approximately

10% of the number of the security group analysed, but they do not put it forward as a



proposition, as the exercise was not repeated with many groups. Shanken(1987) finds

that there is at least a 99% chance of there being more than ten factors in all cases.

Conway and Reinganum(1988) find a cross-validation technique identified one

dominant and one minor factor, whilst the likelihood ratio test identified from four to

six factors. Connor and Korajczyk(1993) use an asymptotic test for an approximate

factor structure and find evidence for one to six pervasive factors. Clare, Priestly and

Thomas(1997) show that, by allowing for the existence of an approximate factor

structure, five factors, plus a proxy for the market portfolio, are priced in the UK

stock market. Chan, Karceski and Lakonishok(1998) find there is nothing to be gained

by going beyond the first two or three principal components.

From the above, it can be seen that, to date, research to determine the

“correct” number of factors gives a range of one to in excess of ten. This work is

further aggravated by the fact that, in constructing the model factors, by using factor

analysis and/or principal components, there are possible variations in the process of

estimating the factors.

In this paper, we generalise the work of Reisman(1992) and Shanken(1992) by

relaxing the assumption that the true number of factors is known. We show that more,

or less, reference variables (proxies) can represent the factors. The number of proxies

can be the same or more than the “true” factors and the APT remains valid

(Propositions 1&2). We also show, in Proposition 3, that less reference variables can

also lead to an APT relationship but that the order of magnitude (as a function of the

number of stocks) of the squared pricing errors is higher. These orders of magnitude

for the two cases of more or less proxies are interpreted in Proposition 4 in terms of

the number of pricing errors that exceed a given bound. Our work shows that any

number of proxy factors equal to or greater than the true number of factors allows the

average pricing error to converge to zero. Apart from the obvious short-comings of

factor analysis, this work may also go some way in helping to explain why so many

researchers have come up with so many varying numbers of factors. Our proofs avoid

the use of the mathematics of Hilbert and Banach spaces and involve only elementary

linear algebra.

Section 2 derives general forms of factor structures where proxy factors have

replaced the true factors and derives the pricing relations from these factor structures.

Section 3 contains some discussion and concluding comments.



2) Factor proxies

This section deduces the general forms of factor structures where proxies have

replaced the true factors and, from these, the APT pricing relations are found. The

analysis is presented in terms of linear projections, which allow us to present our

arguments in terms of matrix algebra.

Consider the following factor structure

R is the n-vector of asset returns, E is the n-vector of expected asset returns, BT is the

nxm sensitivity matrix, T is the m-vector of true factors with E(T)= 0 and cov(T) = Im

(mxm identity matrix) and e T is the n-vector of idiosyncratic risk, E(e T) = 0 and

cov(e T) = D, a nxn diagonal matrix.

This gives rise to the pricing relation

λ0
T  is a constant, i is a n-vector of ones, λT is a m-vector.

Equation (1) represents the correct factor structure, by this we mean that

Equation (1) is the true model in the sense that statisticians use the term.

Ingersoll(1984), and others take a different stance on what constitutes the true model.

He uses the notion of a complete factor representation, (see lemma 4 p1028ff).

Needless to say, the true model is a complete factor representation.

Consider a second factor structure

R is the n-vector of asset returns, E is the n-vector of expected asset returns, BP is the

nxk sensitivity matrix, P is the k-vector of proxies with E(P)= 0 and cov(P) = Ik (kxk

identity matrix) and eP is the n-vector of mean zero idiosyncratic risk.

)3(PP ePBER ++=

)1(TT eTBER ++=

)2(0
TTBiE λ+≈ Tλ



If we mistakenly believe that (3) describes the variation in stock prices, can a

result similar to (2) be derived? That is, does (4) hold?

λ0
P is a constant, i is a n-vector of ones, λP is a k-vector.

We would like (2) and (4) to be equivalent statements. This requires a relation

between T and P to be specified. Therefore, let us use the best linear projection (BLP)

of P given T. This can be written as,

∆  is a kxm sensitivity matrix and ξ  is a k-vector of residuals with mean zero.

We wish to substitute the true factors for the proxies, hence, T needs to be

made the subject of Equation (5).

__________

Lemma 1: a matrix N exists such that N ∆  = Im, where Im is the (mxm) identity

matrix, if and only if rank(∆) = m.

Proof – see Appendix – Section 1

__________

This restriction on the existence of N (Lemma 1) gives two cases that require

investigation.

)4(0
PPBiE λ+≈ Pλ

)5(ξ∆ += TP



Case (1) – where rank(∆) = m  -  ie where k ≥ m

For this case N exists, and, from now, we will re-label it as ∆ -1. Hence, from

(5) we have

Substituting (6) into (1), we have

Case (2) – where rank(∆) ≠ m  -  ie where m > k

For this situation N does not exist. However, without loss of generality, we

can rewrite (5) as,

Where,

and ∆1 is non-singular.

Hence, we can now write

Now, without loss of generality, rewrite (1) as
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Substituting (9) into (10),

Note the presence of some of the true factors in the “error” section of this

result. This is the general form of equation (7). When the matrix N exists, T2 is a

matrix of zeroes and T1 = T and B1
T = BT and ∆1 = ∆ .

__________

A further assumption for the derivation of the APT pricing relation is required.

It is that no arbitrage opportunities exist. This is defined in a limiting sense for our

proofs and is identical to the asymptotic arbitrage conditions used by Ingersoll(1984)

(his Equations (7a) and (7b)). If ωn is an arbitrage portfolio, then an arbitrage

opportunity exists if,

Proposition 1: Under the assumption of no asymptotic arbitrage, as defined by (12a)

and (12b), the factor structure of m true factors can be represented by

k proxy factors, correlated with the true factors, where k = m and the

APT holds.

Proof:

This is shown by Reisman(1992) Theorems(1) and (2) and by Shanken(1992)

when k=m=1.
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Proposition 2: Under the assumptions of no asymptotic arbitrage, as defined by (12a)

and (12b), and that E((eT)2) ≡ si
2 <  S2, where S is some bounded

constant, the factor structure of m true factors can be represented by k

correlated proxy factors where k > m; thus

where B* = BT∆ -1. More specifically,

∀q > 0; i = 1, 2,…, n; j = 1, 2,…, k

Proof: See Appendix – Section 2

The derived no arbitrage condition is

∀q > 0

This result differs from the no arbitrage conditions derived by other

researchers (eg Ingersoll(1984) Theorem 1) in that q is usually taken to be ½. This is a

minor generalisation. Each term in this infinite sum is non-negative. If q = ½, the

average term is zero. Therefore, most of the terms must be negligible. Hence, the

linear pricing model, (14), prices most assets correctly, a notion that will be made

more precise in Proposition 4. It follows from (13) that

QED.
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We now consider the case where the number of proxies, k, is less than the

number of true factors, m.

Proposition 3: Under the assumptions of no asymptotic arbitrage, as defined by (12a)

and (12b), and that E((eT)2) ≡ si
2 <  S2, where S is some bounded

constant and that the largest value in B2
T is (b2

T)max – a bounded

constant, the factor structure of m true factors can be represented by k

correlated proxy factors where k < m; thus

where B1
* = B1

T∆1
-1. More specifically,

∀q > 1/2, and i = 1, 2,…, n and j = 1, 2,…, k

Proof: See Appendix – Section 3

The derived no arbitrage condition is

∀q > ½

Theorem 1 of Ingersoll(1984) could be applied to the case described in

Proposition 3. In which case we would demonstrate that the Ω n in Ingersoll’s notation

is the cov(φ ) in our notation. We would find a uniform bound of order n (see Equation

(a18) in the Appendix), thus we would need n1+ε for ε > 0 in the denominator of the

derived no arbitrage condition to force it to zero.
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We now establish how these propositions can give us bounds on the number of

large values for vi.

Proposition 4: Let V be the n-vector with elements vi. If the number of vi greater in

absolute value than δ can be written as Cnθ for C > 0 and θ > 0, then

given

implies that

ie that θ < 2q

__________

Applying Proposition 4 to Equation (13) shows, for Proposition 2, θ < 2q ∀q >

0. Hence, if we say that q ≤ ½, the number of mis-pricings (Cnθ) may not increase as

fast as the number of assets. Thus, the mean square pricing error is forced towards

zero, as the number of assets becomes large.

However, the result obtained from Equation (15), for Proposition 3, is θ < 2q

∀q > ½. Therefore, the increase in the number of mis-pricings may be the same as the

increase in assets. Thus, the mean square pricing error is not forced to be zero as the

number of assets becomes large.

3) - Concluding Comments

Proposition 1, that an equal number of proxy factors can represent the set of

true factors was proven in the work of Reisman(1992).
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Proposition 2, that a greater number of proxy factors can represent the set of

true factors, has resulted in generalising the work of Reisman(1992) and

Shanken(1992) without the mathematical complexity of the former.

Proposition 3, that a fewer set of proxies leads to an APT type relationship

seems unexpected. However, it is a consequence of Proposition 4 that the APT

relationship of Proposition 3 cannot be shown to have a relatively small number of

large deviations in the same sense that an APT relationship derived from Proposition

2 can.

Ingersoll(1984), in his theorem 1, examines the case where the covariance

matrix of the errors is not assumed to be diagonal. However, he does not address the

question as to whether the APT prices have zero average error for this case. In his

theorem 6, he shows that the problem where there are errors in measuring both the

risk free rate of return and the sensitivity matrix can be reduced to the same problem

as in his theorem 1. Our work shows that the problem of errors in identifying the

factors can be reduced to the problem in theorem 1. We, however, are able to prove

that, when the number of proxy factors is greater or equal to the number of true

factors, the APT does price with zero average error. We are unable to prove a similar

result for the case where there are fewer proxies than the true factors, but we can give

some measure of the average error in this case, see Proposition (4).

The fact that more proxies could represent a fewer number of true factors was

expected. The practical implications of this work are that the correct APT pricing

relation would be best represented by an equal or greater number of correlated proxy

factors. Hence, if there is factor uncertainty in the model, and we would like the APT

to hold, the principal of parsimony seems inappropriate. Thus, the empirical

implication of our paper for model builders is to be generous in the number of factors

when building linear factor models.



Appendix

1) Proof of lemma 1

Suppose that the columns of ∆  are given by column vectors v1,…, vm. These

vectors are linearly independent so we can extend the set to a basis for k-dimensional

space:

v1,…, vm, vm+1,…,vk

Now the matrix ∆ ′, resulting from putting all these column vectors side by

side, has two properties:

(i) it is invertible (because the columns are linearly independent)

(ii) the first m columns are the original matrix ∆ .

By the first property, we can find a kxk matrix N′ such that, N′∆ ′ = Ik. And,

taking the first m rows of N′ will give a mxk matrix N such that N ∆  = Ik

QED

__________

2) Proof of Proposition 2

Equation (7) states

Where

It follows from the definitions of the various quantities that
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Regress E with B* and a vector of ones. Call the regression coefficients λ  and

λ0 respectively. This should, in general, be possible, as there should be no collinearity.

Thus we have

v are the residuals of the regression and have the conventional properties of BLP

residuals,

Consider the arbitrage portfolio ω, with elements

where

The profit on this portfolio is

from (a3)
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The expected profit is

from (a2) and (a3)

The variance of the profit is

If the proposition is false, the expected profit (a6) remains nonzero while the

variance would tend to zero as n increases. This would represent an opportunity of the

kind prohibited by asymptotic arbitrage. Hence, ||vn||2/n2q must vanish.

The derived no arbitrage condition is

QED

__________

3) Proof of Proposition 3

Equation (11) states
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Rewrite (11) as

where

It follows from the definitions of the various quantities that

The covariance matrix of the errors is given by

Regress E with B1
* and a vector of ones. Call the regression coefficients λ  and

λ0, thus we have

Where v is the vector of regression residuals, with the usual properties,

Consider a portfolio ω where
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The profit on this portfolio is

The expected profit is

The variance on this profit is

From (a12) and (a13)

Therefore we need to find a bound for the numerator.

__________

Lemma 2:

If the nxn matrix A has n distinct eigenvalues and is positive semidefinite, then

for some n-vector, v,
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Where λA
max is the largest eigenvalue of A, tr(A) is the trace of A and amax (< ∞) is the

largest value in A.

__________

Inserting (a19) into (a18) gives

Where (b2
T)max is the largest value in B2

T

Assuming that E((e T)2) ≡ si
2 < S2.

If the proposition is false, the expected profit remains nonzero (see (a16))

while the variance would tend to zero as n increases. This would represent an

opportunity of the kind prohibited by asymptotic arbitrage. Hence, ||vn||2/(n2q) must

vanish.

The derived no arbitrage condition is

QED
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